
CS267, Yelick 1

Cosmology Applications
N-Body Simulations

Credits: Lecture Slides of Dr. James Demmel,

Dr. Kathy Yelick, University of California,

Berkeley

Introduction

• Classical N-body problem simulates the evolution of a

system of N bodies

• The force exerted on each body arises due to its

interaction with all the other bodies in the system

2

CS267, Yelick 3

Motivation

• Particle methods are used for a variety of applications

• Astrophysics

• The particles are stars or galaxies

• The force is gravity

• Particle physics

• The particles are ions, electrons, etc.

• The force is due to Coulomb’s Law

• Molecular dynamics

• The particles are atoms or

• The forces is electrostatic

• Vortex methods in fluid dynamics

• Particles are blobs of fluid

CS267, Yelick 4

Particle Simulation

t = 0

while t < t_final

for i = 1 to n … n = number of particles

compute f(i) = force on particle i

for i = 1 to n

move particle i under force f(i) for time dt … using F=ma

compute interesting properties of particles (energy, etc.)

t = t + dt

end while

• N-Body force (gravity or electrostatics) requires all-to-all interactions

•f(i) = S k!=i f(i,k) … f(i,k) = force on i from k

•Obvious algorithm costs O(N2), but we can do better...

CS267, Yelick 5

Reducing the Number of Particles in the Sum
• Consider computing force on earth due to all celestial bodies

• Look at night sky, # terms in force sum >= number of visible stars

• One “star” is really the Andromeda galaxy, which is billions of stars

• A lot of work if we compute this per star …

• OK to approximate all stars in Andromeda by a single point at its center

of mass (CM) with same total mass

• D = size of box containing Andromeda , r = distance of CM to Earth

• Require that D/r be “small enough”

Earth

r = distance to center of mass

x = location of center of mass

Andromeda

D

D

r

x

CS267, Yelick 6

Using points at CM Recursively

• From Andromeda’s point of view, Milky Way is also a point mass

• Within Andromeda, picture repeats itself

• As long as D1/r1 is small enough, stars inside smaller box can be

replaced by their CM to compute the force on Vulcan

• Boxes nest in boxes recursively

Earth
Andromeda

D

D

r

x

Vulcan

D1

D1

Replacing clusters by their Centers of Mass Recursively

r1

CS267, Yelick 7

Quad Trees

• Data structure to subdivide the plane

• Nodes can contain coordinates of center of box, side length

• Eventually also coordinates of CM, total mass, etc.

• In a complete quad tree, each nonleaf node has 4

children

CS267, Yelick 8

Oct Trees

• Similar Data Structure to subdivide 3D space

• Analogous to 2D Quad tree--each cube is divided into 8

sub-cubes

Two Levels of an OctTree

CS267, Yelick 9

Using Quad Trees and Oct Trees

• All our algorithms begin by constructing a tree to hold all

the particles

• Interesting cases have non-uniform particle distribution

• In a complete tree (full at lowest level), most nodes would be

empty, a waste of space and time

• Adaptive Quad (Oct) Tree only subdivides space where

particles are located

• More compact and efficient computationally, but harder to

program

CS267, Yelick 10

Example of an Adaptive Quad Tree

Child nodes enumerated counterclockwise from SW corner

Empty ones excluded

Adaptive quad tree where no space contains more than 1 particle

CS267, Yelick 11

CS267, Yelick 12

Barnes-Hut Algorithm

• High Level Algorithm (in 2D, for simplicity)

1) Build the QuadTree using QuadTree.build

… already described, cost = O(N log N)

2) For each node = subsquare in the QuadTree, compute the

CM and total mass (TM) of all the particles it contains

… “post order traversal” of QuadTree, cost = O(N log N)

3) For each particle, traverse the QuadTree to compute the force on it,

using the CM and TM of “distant” subsquares

… core of algorithm

… cost depends on accuracy desired but still O(N log N)

CS267, Yelick 13

CS267, Yelick 14

Step 3: Compute Force on Each Particle

• For each node, can approximate force on particles outside the node

due to particles inside node by using the node’s CM and TM

• This will be accurate enough if the node if “far enough away” from

the particle

• Need criterion to decide if a node is far enough from a particle

• D = side length of node

• r = distance from particle to CM of node

 q = user supplied error tolerance < 1

• Use CM and TM to approximate force of node on box if D/r < q

Earth

r = distance to center of mass

x = location of center of mass

Andromeda

D

D

r

x

CS267, Yelick 15

Computing Force on a Particle Due to a Node

• Use example of Gravity (1/r2)

• Given node n and particle k, satisfying D/r < q

• Let (xk, yk, zk) be coordinates of k, m its mass

• Let (xCM, yCM, zCM) be coordinates of CM

• r = ((xk - xCM)2 + (yk - yCM)2 + (zk - zCM)2)1/2

• G = gravitational constant

• Force on k ~
G * m * TM * xCM – xk yCM – yk zCM – zk

----------- ---------- ----------

r3 r3 r3

CS267, Yelick 16

CS267, Yelick 17

Parallelization

• Three phases in a single time-step: tree construction,

tree traversal (or force computation), and particle

advance

• Each of these must be performed in parallel; a tree

cannot be stored at a single processor due to memory

limitations

• Step 1: Tree construction - Processors cooperate to

construct partial image of the entire tree in each

processor

18

Step 1: Tree Construction

• Initially, the particles are distributed to processors such

that all particles corresponding to a subtree of

hierarchical domain decomposition are assigned to a

single processor

• Each processor can independently construct its tree

• The nodes representing the processor domains at the

coarsest level (branch nodes) are communicated to all

processors using all-to-all

• Using these branch nodes, the processor reconstructs

the top parts of the tree independently

• There is some amount of replication of the tree across

processors since top nodes in the tree are repeatedly

accessed

19

Step 1: Illustration

20

Step 2: Force Computation

• To compute the force on a particle (belonging to

processor A) by a node (belonging to processor B),

processors need to communicate if the particle and the

node belong to different processors

• Two methods:

1.Children of nodes of another processor (proc B) are

brought to the processor containing the particle (proc A)

for which the force has to be computed

1. Also called as data-shipping paradigm

2. Follows owner-computes rule

21

Step 2: Force computation

• Method 2: Alternatively, the owning processor (proc A)

can ship the particle coordinates to the other

processor (proc B) containing the subtree

1. Proc B then computes the contribution of the entire subtree

on particle

2. Sends the computed potential back to proc A

3. Function-shipping paradigm: computation (or function) is

shipped to the processor holding the data

4. Communication volume is less when compared to data-

shipping

22

Step 2: Force Computation

• In function-shipping, it is

desirable to send many

particle coordinates

together to amortize start-

up latency:

• A processor keeps storing

its particle coordinates to

bins maintained for each

of the other processor

• Once a bin reaches a

capacity, it is sent to the

corresponding processor

• Processors must

periodically process

remote work requests

23

Load Balancing

• In applications like astrophysical simulations, high energy

physics etc., the particle distributions across the domain can

be highly irregular; hence tree may be very imbalanced

• Method 1: Static partitioning, static assignment (SPSA)

• Partition the domain into r subdomains, r >> p processors

• Assign r/p subdomains to each processor

• Some measure of load balance if r is sufficiently large

24

Load Balancing

• Method 2: Static Partitioning, Dynamic Assignment

(SPDA)

• Partitioning the domain into r subdomains or clusters as

before

• Follow dynamic load balancing at each step based on

the loads of the subdomains

• E.g.: Morton Ordering

25

Load Balancing

• Method 3: Dynamic Partitioning, Dynamic Assignment

(DPDA)

• Allow clusters/subdomains of varying sizes

• Each node in the tree maintains the number of particles

it interacted with

• After force computation, this summed along the tree; the

value of load at each node now stores the number of

interactions with all nodes rooted at the subtree; the root

node contains the total number of interactions, W, in the

system

• The load is partitioned into W/p; the corresponding load

boundaries are 0, W/p, 2W/p,…,(p-1)W/p

• The load balancing problem now becomes locating one

of these points in the tree
26

Load Balancing

• Each processor traverses its local tree

in an in-order fashion and locates all

load boundaries in its subdomain

• All particles lying in the tree between

load boundaries iW/p and (i+1)W/p are

collected in a bin for processor i and

communicated to processor i

27

Load Balancing: Costzones

• DPDA scheme is also referred to as the costzones

scheme

• The costs of computations are partitioned

• The costs are predicted based on the interactions in the

previous time step

• In classical N-body problems, the distribution of particles

changes very slowly across consecutive time steps

• Since a particle’s cost depends on the distribution of

particles, a particle’s cost in one time-step is a good

estimate of its cost in the next time step

• A good estimate of the particle’s cost is simply the

number of interactions required to compute the net force

on that particle

28

Load Balancing: Costzones

• Partition the tree rather than partition the space

• In the costzones scheme, the tree is laid in a 2D plane

• The cost of every particle is stored with the particle

• Internal cell holds the sum of the costs of all particles

that are contained within it

• The total cost in the domain is divided among

processors so that every processor has a contiguous,

equal range or zone of costs (hence the name

costzones)

• E.g.: a total cost of 1000 would be split among 10

processors so that the zone comprising costs 1-100 is

assigned to the first processor, zone 101-200 to the

second, and so on.

29

Load Balancing: ORB (Orthogonal Recursive
Bisection)

30

References

• The paper "Scalable parallel formulations of the Barnes-

Hut method for n-body simulations" by Grama, Kumar

and Sameh. In Supercomputing 1994.

• The paper "Load balancing and data locality in adaptive

hierarchical N-body methods: Barnes-Hut, Fast

Multipole, and Dardiosity" by Singh, Holt, Totsuka,

Gupta and Hennessey. In Journal of Parallel and

Distributed Computing, 1994

CS267, Yelick 31

