
CUDA Optimizations

Sathish Vadhiyar

Parallel Programming

SIMT Architecture and Warps

 Multi-processor creates, manages, schedules and
executes threads in groups of 32 parallel threads
called warps

 Threads in a warp start at the same program address

 They have separate instruction address counter and
register state, and hence free to branch

 When a SM is given one or more thread blocks to
execute, it partitions them into warps that get
scheduled by a warp scheduler for execution

Warps and Warp Divergence

 A warp executes one common instruction
at a time

 Hence max efficiency can be achieved
when all threads in a warp agree on a
common execution path

 If threads of a warp diverge via a data-
dependent conditional branch, the warp
serially executes each branch path taken,
disabling threads that are not on that path
– branch divergence

Performance Optimization Strategies

 Maximize parallel execution to achieve
maximum utilization

 Optimize memory usage to achieve
maximum memory throughput

 Optimize instruction usage to achieve
maximum instruction throughput

Maximize Parallel Execution

 Launch kernel with at least as many
thread blocks as there are
multiprocessors in the device

 The number of threads per block should
be chosen as a multiple of warp size to
avoid wasting computing resource with
under-populated warps

Maximize Parallel Execution for

Maximum Utilization
 At points when parallelism is broken and threads need

to synchronize:
 Use _syncthreads() if threads belong to the same block

 Synchronize using global memory through separate kernel
invocations

 Second case should be avoided as much as possible;
computations that require inter-thread
communication should be performed within a single
thread block as much as possible

Maximize Memory Throughput

 Minimize data transfers between host and
device
 Move more data from host to device

 Produce intermediate data on the device

 Data can be left on the GPU between kernel
calls to avoid data transfers

 Batch many small host-device transfers into a
single transfer

 Minimize data transfers between global
(device) memory and device
 Maximize usage of shared memory

Maximize Memory Throughput:

Other performance Issues

 Memory alignment and coalescing : Make
sure that all threads in a half warp access
continuous portions of memory
 (Refer to slides 30-34 of NVIDIA’s Advanced

CUDA slides)

 Shared memory divided into memory
banks: Multiple simultaneous accesses to a
bank can result in bank conflict
 (Refer to slides 37-40 of NVIDIA’s Advanced

CUDA slides)

Maximize Instruction Throughput

 Minimize use of arithmetic instructions
with low throughput
 Trade precision for speed – e.g., use single-

precision for double-precision if it does not
affect the result much

 Minimize divergent warps
 Hence avoid use of conditional statements that

checks on threadID

 e.g.: (instead of if(threadId >2), use
if(threadId/warpSize) > 2)

Maximize Instruction Throughput:

Reducing Synchronization
 _syncthreads() can impact performance

 A warp executes one common instruction
at a time; Hence threads within a warp
implicitly synchronize

 This can be used to omit _syncthreads()
for better performance

Example with _syncthreads()

Can be converted to….

Reducing Synchronization

Threads are guaranteed to belong to the same warp.
Hence no need for explit synchronization using
_syncthreads()

Occupancy

 Occupancy depends on resource usage
(register and shared memory usage)

 More the usage per thread, less number of
threads can be simultaneously active
 One cannot indiscriminately use registers in a

thread - If (registers used per thread x thread
block size) > N, the launch will fail; for Tesla, N =
16384

 Very less usage increases the cost of global
memory access

 Maximizing occupancy can help cover latency
during global memory loads

Occupancy Calculation

 Active threads per SM =

 Active thread blocks per SM * ThreadsPerBlock

 Active warps per SM =

 Active thread blocks per SM * my warps per block

 Active thread blocks per SM =

 Min(warp-based-limit, registers-based-limit,

shared-memory-based-limit)

 Occupancy = (active warps per SM) / (max

warps per SM)

