CUDA Optimizations

Sathish Vadhiyar
Parallel Programming

SIMT Architecture and Warps

Multi-processor creates, manages, schedules and
executes threads in groups of 32 parallel threads
called warps

Threads in a warp start at the same program address

They have separate instruction address counter and
register state, and hence free to branch

When a SM is given one or more thread blocks to
execute, it partitions them into warps that get
scheduled by a warp scheduler for execution

Warps and Warp Divergence

A warp executes one common instruction
at a time

Hence max efficiency can be achieved
when all threads in a warp agree on a
common execution path

If threads of a warp diverge via a data-
dependent conditional branch, the warp
serially executes each branch path taken,
disabling threads that are not on that path
--branch divergence

Performance Optimization Strategies

Maximize parallel execution to achieve
maximum utilization

Optimize memory usage to achieve
maximum memory throughput

Optimize instruction usage to achieve
maximum instruction throughput

Maximize Parallel Execution

Launch kernel with at least as many
thread blocks as there are
multiprocessors in the device

The number of threads per block should
be chosen as a multiple of warp size to
avoid wasting computing resource with
under-populated warps

Maximize Parallel Execution for

Maximum Utilization

At points when parallelism is broken and threads need

to synchronize:

o Use _syncthreads() if threads belong to the same block

o Synchronize using global memory through separate kernel
Invocations

Second case should be avoided as much as possible;

computations that require inter-thread

communication should be performed within a single

thread block as much as possible

Maximize Memory Throughput

Minimize data transfers between host and
device

a2 Move more data from host to device

o Produce intermediate data on the device

o Data can be left on the GPU between kernel
calls to avoid data transfers

o Batch many small host-device transfers into a
single transfer

Minimize data transfers between global
(device) memory and device

0 Maximize usage of shared memory

Maximize Memory Throughput:

Other performance Issues

Memory alignment and coalescing : Make
sure that all threads in a half warp access
continuous portions of memory

o (Refer to slides 30-34 of NVIDIA's Advanced
CUDA slides)

Shared memory divided into memory

banks: Multiple simultaneous accesses to a

bank can result in bank conflict

o (Refer to slides 37-40 of NVIDIA's Advanced
CUDA slides)

Maximize Instruction Throughput

Minimize use of arithmetic instructions
with low throughput

o Trade precision for speed - e.g., use single-
precision for double-precision if it does not
affect the result much

Minimize divergent warps

o Hence avoid use of conditional statements that
checks on threadID

0 e.g.: (instead of if(threadId »2), use
if(threadId/warpSize) > 2)

Maximize Instruction Throughput:

Reducing Synchronization
_syncthreads() can impact performance

A warp executes one common instruction
at a time; Hence threads within a warp
implicitly synchronize

This can be used to omit _syncthreads()
for better performance

‘ Example with _syncthreads()

// myArray 1s an array of integers located in global or shared
// memory
global void MyKernel (int* result) {

int tid = threadIdx.x;

int refl = myArray[tid]:
___syncthreads ()
myArray[tid + 1] = 2;
~_syncthreads () ;

int ref2 = myArray[tid]:
result[tid] = refl * refz;

Can be converted to....

Reducing Synchronization

'/ myArray is an array of integers located in global or shared
/ memory
__global void MyKernel (int* result) {
int tid = threadIdx.x;

1if (tid < warpSize) {
int refl = myArray[tid]:
myArray[tid + 1] = 2;
int ref2 = myArray[tid]:
result[tid] = refl * ref2;

Threads are guaranteed to belong to the same warp.
Hence no need for explit synchronization using
_syncthreads()

Occupancy

Occupancy depends on resource usage
(register and shared memory usage)

More the usage per thread, less number of
threads can be simultaneously active

o One cannot indiscriminately use registers in a
thread - If (registers used per thread x thread
block size) > N, the launch will fail; for Tesla, N =
16384

Very less usage increases the cost of global

memory access

Maximizing occupancy can help cover latency
during global memory loads

Occupancy Calculation

Active threads per SM =

o Active thread blocks per SM * ThreadsPerBlock

Active warps per SM =

o Active thread blocks per SM * my warps per block

Active thread blocks per SM =

o Min(warp-based-limit, registers-based-limit,
shared-memory-based-limit)

Occupancy = (active warps per SM) / (max

warps per SM)

