
CUDA Optimizations

Sathish Vadhiyar

Parallel Programming

SIMT Architecture and Warps

 Multi-processor creates, manages, schedules and
executes threads in groups of 32 parallel threads
called warps

 Threads in a warp start at the same program address

 They have separate instruction address counter and
register state, and hence free to branch

 When a SM is given one or more thread blocks to
execute, it partitions them into warps that get
scheduled by a warp scheduler for execution

Warps and Warp Divergence

 A warp executes one common instruction
at a time

 Hence max efficiency can be achieved
when all threads in a warp agree on a
common execution path

 If threads of a warp diverge via a data-
dependent conditional branch, the warp
serially executes each branch path taken,
disabling threads that are not on that path
– branch divergence

Performance Optimization Strategies

 Maximize parallel execution to achieve
maximum utilization

 Optimize memory usage to achieve
maximum memory throughput

 Optimize instruction usage to achieve
maximum instruction throughput

Maximize Parallel Execution

 Launch kernel with at least as many
thread blocks as there are
multiprocessors in the device

 The number of threads per block should
be chosen as a multiple of warp size to
avoid wasting computing resource with
under-populated warps

Maximize Parallel Execution for

Maximum Utilization
 At points when parallelism is broken and threads need

to synchronize:
 Use _syncthreads() if threads belong to the same block

 Synchronize using global memory through separate kernel
invocations

 Second case should be avoided as much as possible;
computations that require inter-thread
communication should be performed within a single
thread block as much as possible

Maximize Memory Throughput

 Minimize data transfers between host and
device
 Move more data from host to device

 Produce intermediate data on the device

 Data can be left on the GPU between kernel
calls to avoid data transfers

 Batch many small host-device transfers into a
single transfer

 Minimize data transfers between global
(device) memory and device
 Maximize usage of shared memory

Maximize Memory Throughput:

Other performance Issues

 Memory alignment and coalescing : Make
sure that all threads in a half warp access
continuous portions of memory
 (Refer to slides 30-34 of NVIDIA’s Advanced

CUDA slides)

 Shared memory divided into memory
banks: Multiple simultaneous accesses to a
bank can result in bank conflict
 (Refer to slides 37-40 of NVIDIA’s Advanced

CUDA slides)

Maximize Instruction Throughput

 Minimize use of arithmetic instructions
with low throughput
 Trade precision for speed – e.g., use single-

precision for double-precision if it does not
affect the result much

 Minimize divergent warps
 Hence avoid use of conditional statements that

checks on threadID

 e.g.: (instead of if(threadId >2), use
if(threadId/warpSize) > 2)

Maximize Instruction Throughput:

Reducing Synchronization
 _syncthreads() can impact performance

 A warp executes one common instruction
at a time; Hence threads within a warp
implicitly synchronize

 This can be used to omit _syncthreads()
for better performance

Example with _syncthreads()

Can be converted to….

Reducing Synchronization

Threads are guaranteed to belong to the same warp.
Hence no need for explit synchronization using
_syncthreads()

Occupancy

 Occupancy depends on resource usage
(register and shared memory usage)

 More the usage per thread, less number of
threads can be simultaneously active
 One cannot indiscriminately use registers in a

thread - If (registers used per thread x thread
block size) > N, the launch will fail; for Tesla, N =
16384

 Very less usage increases the cost of global
memory access

 Maximizing occupancy can help cover latency
during global memory loads

Occupancy Calculation

 Active threads per SM =

 Active thread blocks per SM * ThreadsPerBlock

 Active warps per SM =

 Active thread blocks per SM * my warps per block

 Active thread blocks per SM =

 Min(warp-based-limit, registers-based-limit,

shared-memory-based-limit)

 Occupancy = (active warps per SM) / (max

warps per SM)

