
CUDA

Sathish Vadhiyar

High Performance Computing

Hierarchical Parallelism

 Parallel computations arranged as grids

 One grid executes after another

 Grid consists of blocks

 Blocks assigned to SM. A single block

assigned to a single SM. Multiple blocks can

be assigned to a SM.

 Max thread blocks executed concurrently per SM

= 16

Hierarchical Parallelism

 Block consists of elements

 Elements computed by threads

 Max threads per thread block = 1024

 A thread executes on a GPU core

Hierarchical Parallelism

Thread Blocks

 Thread block – an array of concurrent

threads that execute the same program and

can cooperate to compute the result

 Has shape and dimensions (1d, 2d or 3d) for

threads

 A thread ID has corresponding 1,2 or 3d

indices

 Threads of a thread block share memory

CUDA Programming Language

 Programming language for threaded
parallelism for GPUs

 Minimal extension of C

 A serial program that calls parallel kernels

 Serial code executes on CPU

 Parallel kernels executed across a set of
parallel threads on the GPU

 Programmer organizes threads into a
hierarchy of thread blocks and grids

CUDA C

 Built-in variables:

 threadIdx.{x,y,z} – thread ID within a block

 blockIDx.{x,y,z} – block ID within a grid

 blockDim.{x,y,z} – number of threads within a
block

 gridDim.{x,y,z} – number of blocks within a grid

 kernel<<<nBlocks,nThreads>>>(args)

 Invokes a parallel kernel function on a grid of
nBlocks where each block instantiates nThreads
concurrent threads

Example: Summing Up
kernel function

grid of kernels

General CUDA Steps

1. Copy data from CPU to GPU

2. Compute on GPU

3. Copy data back from GPU to CPU

 By default, execution on host doesn’t wait for

kernel to finish

 General rules:

 Minimize data transfer between CPU & GPU

 Maximize number of threads on GPU

CUDA Elements

 cudaMalloc – for allocating memory in device

 cudaMemCopy – for copying data to

allocated memory from host to device, and

from device to host

 cudaFree – freeing allocated memory

 void syncthreads__() – synchronizing all

threads in a block like barrier

EXAMPLE 1: MATRIX VECTOR

MULTIPLICATION

Kernel

Host Program

Host Program

EXAMPLE 1, VERSION 2:

ACCESS FROM SHARED

MEMORY

EXAMPLE 2: MATRIX

MULTIPLICATION

Example 1: Matrix Multiplication

Example 1

Example 1

Example 1

Example 1

EXAMPLE 2: REDUCTION

Example: Reduction

 Tree based approach used within each

thread block

 In this case, partial results need to be

communicated across thread blocks

 Hence, global synchronization needed across

thread blocks

Reduction

 But CUDA does not have global

synchronization –

 expensive to build in hardware for large number of

GPU cores

 Solution

• Decompose into multiple kernels

• Kernel launch serves as a global

synchronization point

Illustration

Host Code

int main(){

int* h_idata, h_odata; /* host data*/

Int *d_idata, d_odata; /* device data*/

/* copying inputs to device memory */

cudaMemcpy(d_idata, h_idata, bytes, cudaMemcpyHostToDevice) ;

cudaMemcpy(d_odata, h_idata, numBlocks*sizeof(int),

cudaMemcpyHostToDevice) ;

int numThreadsperBlock = (n < maxThreadsperBlock) ? n : maxThreadsperBlock;

int numBlocks = n / numThreadsperBlock;

dim3 dimBlock(numThreads, 1, 1); dim3 dimGrid(numBlocks, 1, 1);

reduce<<< dimGrid, dimBlock >>>(d_idata, d_odata);

Host Code

int s=numBlocks;

while(s > 1) {

numThreadsperBlock = (s< maxThreadsperBlock) ? s :

maxThreadsperBlock; numBlocks = s / numThreadsperBlock;

dimBlock(numThreads, 1, 1); dimGrid(numBlocks, 1, 1);

reduce<<< dimGrid, dimBlock, smemSize >>>(d_idata,

d_odata);

s = s / numThreadsperBlock;

}

}

Device Code

__global__ void reduce(int *g_idata, int *g_odata)

{

extern __shared__ int sdata[];

// load shared mem

unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

sdata[tid] = g_idata[i];

__syncthreads();

// do reduction in shared mem

for(unsigned int s=1; s < blockDim.x; s *= 2) {

if ((tid % (2*s)) == 0)

sdata[tid] += sdata[tid + s];

__syncthreads();

}

// write result for this block to global mem

if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}

 For more information…

 CUDA SDK code samples – NVIDIA -

http://www.nvidia.com/object/cuda_get_samp

les.html

http://www.nvidia.com/object/cuda_get_samples.html

BACKUP

EXAMPLE 3: SCAN

Example: Scan or Parallel-prefix sum

 Using binary tree

 An upward reduction phase (reduce phase or
up-sweep phase)
 Traversing tree from leaves to root forming partial

sums at internal nodes

 Down-sweep phase
 Traversing from root to leaves using partial sums

computed in reduction phase

Up Sweep

Down Sweep

Host Code

 int main(){

 const unsigned int num_threads = num_elements / 2;

 /* cudaMalloc d_idata and d_odata */

 cudaMemcpy(d_idata, h_data, mem_size,
cudaMemcpyHostToDevice));

 dim3 grid(256, 1, 1); dim3 threads(num_threads, 1, 1);

 scan<<< grid, threads>>> (d_odata, d_idata);

 cudaMemcpy(h_data, d_odata[i], sizeof(float) *
num_elements, cudaMemcpyDeviceToHost

 /* cudaFree d_idata and d_odata */

 }

Device Code

__global__ void scan_workefficient(float *g_odata, float *g_idata, int n)

{

// Dynamically allocated shared memory for scan kernels

extern __shared__ float temp[];

int thid = threadIdx.x; int offset = 1;

// Cache the computational window in shared memory

temp[2*thid] = g_idata[2*thid];

temp[2*thid+1] = g_idata[2*thid+1];

// build the sum in place up the tree

for (int d = n>>1; d > 0; d >>= 1)

{

__syncthreads();

if (thid < d)

{

int ai = offset*(2*thid+1)-1;

int bi = offset*(2*thid+2)-1;

temp[bi] += temp[ai];

}

offset *= 2;

}

Device Code

// scan back down the tree

// clear the last element

if (thid == 0) temp[n - 1] = 0;

// traverse down the tree building the scan in place

for (int d = 1; d < n; d *= 2)

{

offset >>= 1;

__syncthreads();

if (thid < d)

{

int ai = offset*(2*thid+1)-1;

int bi = offset*(2*thid+2)-1;

float t = temp[ai];

temp[ai] = temp[bi];

temp[bi] += t;

}

}

__syncthreads();

// write results to global memory

g_odata[2*thid] = temp[2*thid]; g_odata[2*thid+1] = temp[2*thid+1];

}

