
Depth First Search and 
Dynamic Load Balancing

Sathish Vadhiyar



Parallel Depth First Search

 Easy to parallelize

 Left subtree can be searched in parallel 
with the right subtree

 Begin as BFS; Statically assign a node to 
a processor – the whole subtree rooted 
at that node can be searched 
independently.

 Can lead to load imbalance; Load 
imbalance increases with the number of 
processors (more later)



Dynamic Load Balancing (DLB)

 Difficult to estimate the size of the 
search space beforehand

 Need to balance the search space among 
processors dynamically

 In DLB, when a processor runs out of 
work, it gets work from another 
processor 



Maintaining Search Space

 Each processor searches the space 
depth-first

 Unexplored states saved as stack; each 
processor maintains its own local stack

 Initially, the entire search space 
assigned to one processor

 When a processor’s local stack is empty, 
it requests untried alternative from 
another processor’s stack



Work Splitting

 When a processor receives work request, it splits 
its search space

 Half-split: Stack space divided into two equal 
pieces – may result in load imbalance

 Giving stack space near the bottom of the stack 
can lead to giving bigger trees

 Stack space near the top of the stack tend to have 
small trees

 To avoid sending very small amounts of work –
nodes beyond a specified stack depth are not given 
away – cutoff depth



Strategies

 1. Send nodes near the bottom of the 
stack

 2. Send nodes near the cutoff depth

 3. Send half the nodes between the 
bottom of the stack and the cutoff 
depth

 Example: Figures 11.5(a) and 11.9



Load Balancing Strategies

 Asynchronous round-robin: Each 
processor has a target processor to get 
work from; the value of the target is 
incremented with modulo

 Global round-robin: One single target 
processor variable is maintained for all 
processors

 Random polling: randomly select a donor



Termination Detection

 As processors search independently, how 
will they know when to terminate the 
program?

 Two strategies
 Dijikstra’s token based

 Tree-based



Termination Detection

 Dijikstra’s Token Termination Detection 
Algorithm
 Based on passing of a token in a logical ring; 

P0 initiates a token when idle; A processor 
holds a token until it has completed its work, 
and then passes to the next processor; when 
P0 receives again, then all processors have 
completed

 However, a processor may get more work 
after becoming idle



Algorithm Continued….

 Taken care of by using white and 
black tokens

 A processor can be in one of two 
states: black and white

 Initially, the token is white; all 
processors are in white state



Algorithm Continued….

 If a processor Pj sends work to Pi (i<j), 
the token must traverse the ring again

 A processor j becomes black if it sends 
work to i<j

 If j completes work, it changes token to 
black and sends it to next processor; 
after sending, changes to white.

 When P0 receives a black token, 
reinitiates the ring



Tree Based Termination 
Detection

 Uses weights

 Initially processor 0 has weight 1

 When a processor transfers work to another 
processor, the weights are halved in both the 
processors

 When a processor finishes, weights are returned

 Termination is when processor 0 gets back 1

 Goes with the DFS algorithm; No separate 
communication steps

 Figure 11.10


