
Depth First Search and 
Dynamic Load Balancing

Sathish Vadhiyar



Parallel Depth First Search

 Easy to parallelize

 Left subtree can be searched in parallel 
with the right subtree

 Begin as BFS; Statically assign a node to 
a processor – the whole subtree rooted 
at that node can be searched 
independently.

 Can lead to load imbalance; Load 
imbalance increases with the number of 
processors (more later)



Dynamic Load Balancing (DLB)

 Difficult to estimate the size of the 
search space beforehand

 Need to balance the search space among 
processors dynamically

 In DLB, when a processor runs out of 
work, it gets work from another 
processor 



Maintaining Search Space

 Each processor searches the space 
depth-first

 Unexplored states saved as stack; each 
processor maintains its own local stack

 Initially, the entire search space 
assigned to one processor

 When a processor’s local stack is empty, 
it requests untried alternative from 
another processor’s stack



Work Splitting

 When a processor receives work request, it splits 
its search space

 Half-split: Stack space divided into two equal 
pieces – may result in load imbalance

 Giving stack space near the bottom of the stack 
can lead to giving bigger trees

 Stack space near the top of the stack tend to have 
small trees

 To avoid sending very small amounts of work –
nodes beyond a specified stack depth are not given 
away – cutoff depth



Strategies

 1. Send nodes near the bottom of the 
stack

 2. Send nodes near the cutoff depth

 3. Send half the nodes between the 
bottom of the stack and the cutoff 
depth

 Example: Figures 11.5(a) and 11.9



Load Balancing Strategies

 Asynchronous round-robin: Each 
processor has a target processor to get 
work from; the value of the target is 
incremented with modulo

 Global round-robin: One single target 
processor variable is maintained for all 
processors

 Random polling: randomly select a donor



Termination Detection

 As processors search independently, how 
will they know when to terminate the 
program?

 Two strategies
 Dijikstra’s token based

 Tree-based



Termination Detection

 Dijikstra’s Token Termination Detection 
Algorithm
 Based on passing of a token in a logical ring; 

P0 initiates a token when idle; A processor 
holds a token until it has completed its work, 
and then passes to the next processor; when 
P0 receives again, then all processors have 
completed

 However, a processor may get more work 
after becoming idle



Algorithm Continued….

 Taken care of by using white and 
black tokens

 A processor can be in one of two 
states: black and white

 Initially, the token is white; all 
processors are in white state



Algorithm Continued….

 If a processor Pj sends work to Pi (i<j), 
the token must traverse the ring again

 A processor j becomes black if it sends 
work to i<j

 If j completes work, it changes token to 
black and sends it to next processor; 
after sending, changes to white.

 When P0 receives a black token, 
reinitiates the ring



Tree Based Termination 
Detection

 Uses weights

 Initially processor 0 has weight 1

 When a processor transfers work to another 
processor, the weights are halved in both the 
processors

 When a processor finishes, weights are returned

 Termination is when processor 0 gets back 1

 Goes with the DFS algorithm; No separate 
communication steps

 Figure 11.10


