Depth First Search and
Dynamic Load Balancing

Sathish Vadhiyar

Parallel Depth First Search

Easy to parallelize

Left subtree can be searched in parallel
with the right subtree

Begin as BFS; Statically assign a node to
a processor - the whole subtree rooted
at that node can be searched
independently.

Can lead to load imbalance; Load
imbalance increases with the number of

processors (more later)

Dynamic Load Balancing (DLB)

Difficult to estimate the size of the
search space beforehand

Need to balance the search space among
processors dynamically

In DLB, when a processor runs out of
work, it gets work from another
processor

Maintaining Search Space

Each processor searches the space
depth-first

Unexplored states saved as stack; each
processor maintains its own local stack

Initially, the entire search space
assigned to one processor

When a processor's local stack is empty,
it requests untried alternative from

another processor's stack

Work Splitting

B

O

When a processor receives work request, it splits
its search space

Half -split: Stack space divided into two equal
pieces - may result in load imbalance

Giving stack space near the bottom of the stack
can lead to giving bigger trees

Stack space near the top of the stack tend to have
small trees

To avoid sending very small amounts of work -
nodes beyond a specified stack depth are not given
away - cutoff depth

Strategies

1. Send nodes near the bottom of the
stack

2. Send nodes near the cutoff depth

3. Send half the nodes between the
bottom of the stack and the cutoff
depth

Example: Figures 11.5(a) and 11.9

Load Balancing Strategies

Asynchronous round-robin: Each
processor has a target processor to get
work from; the value of the target is
incremented with modulo

Global round-robin: One single target
processor variable is maintained for all
processors

Random polling: randomly select a donor

Termination Detection

As processors search independently, how
will they know when to terminate the
program?

Two strategies

B Dijikstra's token based
B Tree-based

Termination Detection

Dijikstra's Token Termination Detection
Algorithm

B Based on passing of a token in a logical ring;
PO initiates a token when idle; A processor
holds a token until it has completed its work,
and then passes to the next processor; when
PO receives again, then all processors have
completed

B However, a processor may get more work
after becoming idle

Algorithm Continued....

B Taken care of by using white and
black tokens

B A processor can be in one of two
states: black and white

B Initially, the token is white; all
processors are in white state

Algorithm Continued....

B Tf a processor Pj sends work to Pi (i<j),
the token must traverse the ring again

B A processor j becomes black if it sends
work to i<j

B If j completes work, it changes token to
black and sends it to next processor;
after sending, changes to white.

B When PO receives a black token,
reinitiates the ring

Tree Based Termination
Detection

B
Ll
L

I

Uses weights
Initially processor O has weight 1

When a processor transfers work to another
processor, the weights are halved in both the
processors

When a processor finishes, weights are returned
Termination is when processor O gets back 1

Goes with the DFS algorithm; No separate
communication steps

Figure 11.10

