Deep Learning

Sathish Vadhiyar

Introduction
Compressed Neural Networks (CNNs)

* CNN composed of a sequence of tensors (generalized matrices with
dynamical properties)

* The tensors are referred to as weights
* Input fed to CNN

* A series of tensor-matrix operations

e Could be matrix-matrix multiplication, matrix-vector multiplication, FFT, non-
linear transform

e Output obtained
* To get correct classification, need to get a set of working weights

CNN Training

* Weights need to be trained
* Training process consists of three steps:

1. Forward propagation: Input passed from first to last layer. Output is
predicted

2. Backward propagation: Numerical prediction error passed from last to
first layer and gradient of W, delta, obtained

3. Weight update: W = W-n.delta [n is the learning rate]
* Above three steps iterated until model is optimized

* Using stochastic gradient descent

 Randomly pick a batch of samples

Parallelism

e Data parallelism
* Data set partitioned into P parts
* Each machine has a copy of a neural network and the Ws

* The master updates W by the sum of all the subgradients, delta, from all the
processors

e The master broadcasts W to all machines

* Model parallelism
 Partitions the neural network across P processors
* i.e., parallelizes the matrix operations across the processors

* Most methods follow data parallelism since the matrix sizes are small
for model parallelism

Parallel Algorithms

e Parameter server or asynchronous SGD

* All workers complete their iteration step (local updates, sending to master, and receiving W
from master) asynchronously

* Master process uses lock to avoid weight update conflicts

Parameter Server W = W - ??"iw

_ 0000000
« One worker at a time w//'ﬁ_ , l I \\
* Hogwild (lock-free) wae || (OO (OO
« Removes the above lock Reiicas () (D) (OO
* Multiple workers at a time el ﬁj ﬁj ffj
* EAGSD (round-robin)
Hrrf+] — W}f _ ﬂ(ﬂ'i’ﬂ‘i +P[Hr;' _ ﬁa}‘” (1) Local updates by workers

F
Wyt = Wi +1 ZP(_W; — W) (2) Global updates by master
i=1

Multi-GPU Implementation

Algorithm 1: Original EASGD on Multi-GPU system
master: CPU, workers: GPUy, GPUs, ..., GPUp

Input: samples and labels: {X;.y;} i€ 1,....n
#iterations: T, batch size: b, #GPUs: G
Output: model weight W
1 Normalize X on CPU by standard deviation: E(X) = 0 (mean)
and o(X) = 1 (variance)
2 Initialize W on CPU: random and Xavier weight filling
forj=1;j <= G; j++ do
I_ create local weight W; on j-th GPU, copy W to W;

W= L

create global weight Wi on 0-th GPU, copy W to W)
6 fort=1:t <=T; t++ do

7 j=tmod G

8 CPU randomly picks b samples

Ln

9 CPU asynchronously copies b samples to j-th GPU
1 | CPU sends W, to j-th GPU
11 Forward and Backward Propagation on j-th GPU

12 CPU gets Wf from j-th GPU
13 j-th GPU updates Wf by Equation (1)
14 CPU updates W; by W1 = W; + rjp{Wf — W)

Thank You

