
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान

बंगलौर, भारत

Department of Computational and Data Sciences

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

CDS
Department of Computational and Data Sciences

DS221 | 19 Sep – 19 Oct, 2017

Data Structures,
Algorithms & Data
Science Platforms

Yogesh Simmhan
s i m m h a n @ c d s . i i s c . a c . i n

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.ac.in | Department of Computational and Data Sciences

L4: Graphs
Graph ADT, Algorithms

03-Oct-17 2

Slides courtesy:
Venkatesh Babu, CDS, IISc

CDS.IISc.ac.in | Department of Computational and Data Sciences

What is a Graph?

 A graph G = (V,E) is composed of:

V: set of vertices

E: set of edges connecting the vertices in V

 An edge e = (u,v) is a pair of vertices

 Example:

a b

c

d e

V= {a,b,c,d,e}

E= {(a,b),(a,c),(a,d),

(b,e),(c,d),(c,e),

(d,e)}

CDS.IISc.ac.in | Department of Computational and Data Sciences

Applications
 Electronic circuit design

 Transport networks

 Biological Networks

CS16

http://www.pnas.org/content/103/50/19033/F3.expansion.html http://images.slideplayer.com/18/5684225/slides/slide_28.jpg

CDS.IISc.ac.in | Department of Computational and Data Sciences

Applications

03-Oct-17 5
http://allthingsgraphed.com/2014/10/16/your-linkedin-network/ http://allthingsgraphed.com/2014/11/12/code-graphs-5-top-open-source-data-projects/

Java Call Graph for Neo4JLinkedIn Social Network Graph

CDS.IISc.ac.in | Department of Computational and Data Sciences

Terminology

 If (v0, v1) is an edge in an undirected graph,
‣ v0 and v1 are adjacent, or are neighbors

‣ The edge (v0, v1) is incident on vertices v0 and v1

 If <v0, v1> is an edge in a directed graph
‣ v0 is adjacent to v1, and v1 is adjacent from v0

‣ The edge <v0, v1> is incident on v0 and v1

‣ v0 is the source vertex and v1 is the sink vertex

CDS.IISc.ac.in | Department of Computational and Data Sciences

Terminology
 Vertices & edges can have labels that uniquely

identify them
‣ Edge label can be formed from the pair of vertex labels it

is incident upon…assuming only one edge can exist
between a pair of vertices

 Edge weights indicate some measure of distance or
cost to pass through that edge

03-Oct-17 7

3

3

2

6
5

2

1

1
4

4

1

5

CDS.IISc.ac.in | Department of Computational and Data Sciences

e d
i

n




() /
0

1

2

Terminology

 The degree of a vertex is the number of edges incident to
that vertex

 For directed graph,
‣ the in-degree of a vertex v is the number of edges

that have v as the sink vertex
‣ the out-degree of a vertex v is the number of edges

that have v as the source vertex
‣ if di is the degree of a vertex i in a graph G with n

vertices and e edges, the number of edges is

Why? Since adjacent vertices
each count the adjoining edge,
it will be counted twice

CDS.IISc.ac.in | Department of Computational and Data Sciences

0

1 2

3 4 5 6

G2

2

3 3

1 1 1 1

directed graph

0

1

2

G3

in:1, out: 1

in: 1, out: 2

in: 1, out: 0

Examples

3

0

1 2

3

33

3

G1

undirected graphs

CDS.IISc.ac.in | Department of Computational and Data Sciences

Terminology

 path is a sequence of vertices
<v1,v2,. . .vk> such that
consecutive vertices vi and
vi+1 are adjacent

10
1 2 3 4 5 3 2 3 4 5

3

2

4

1

5

3

2

4

1

5

3

2

4

1

5

CDS.IISc.ac.in | Department of Computational and Data Sciences

Terminology

 simple path: no
repeated vertices

 cycle: simple path,
except that the last
vertex is the same as the
first vertex

2 3 5

1 5 4 1

3

2

4

1

5

3

2

4

1

5

CDS.IISc.ac.in | Department of Computational and Data Sciences

Terminology

 Shortest Path: Path between two vertices where
the sum of the edge weights is the smallest
‣ Has to be a simple path (why?)

‣ Assume “unit weight” for edges if not specified

03-Oct-17 12

3

3

2

6
5

2

1

1
4

4

1

5

3

2

4

1

5

1 2 3
1 5 3
1 4 3

1 5 4 3

CDS.IISc.ac.in | Department of Computational and Data Sciences

Connected Graph
 connected graph: any two vertices are connected by some path

connected not connected

CDS.IISc.ac.in | Department of Computational and Data Sciences

Graph Diameter
 A graph’s dimeter is the distance of its longest

shortest path

 if d(u,v) is the distance of the shortest path
between vertices u and v, then:

 diameter = Max(d(u,v)), for all u, v in V

 A disconnected graph has an infinite diameter

03-Oct-17 14http://mathworld.wolfram.com/GraphDiameter.html

d=3 d=4 d=5 d=7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Subgraph

 subgraph: subset of vertices and edges forming a
graph

03-Oct-17 15

0 0

1 2 3

1 2 0

1 2

3
(i) (ii) (iii) (iv)

(a) Some of the subgraph of G1

0

1 2

3

G1

CDS.IISc.ac.in | Department of Computational and Data Sciences

Trees & Forests
 tree - connected graph without cycles

 forest - collection of trees

tree

forest
tree

tree

tree

CDS.IISc.ac.in | Department of Computational and Data Sciences

Fully Connected Graph
 Let n = #vertices, and m = #edges

 Complete graph (or) Fully connected graph: One in which all
pairs of vertices are adjacent

 How many total edges in a complete graph?
‣ Each of the n vertices is incident to n-1 edges, however, we would have

counted each edge twice! Therefore, intuitively, m = n(n -1)/2.

If a graph is not
complete:
m < n(n -1)/2

n = 5

m = (5*4)/2 = 10

CDS.IISc.ac.in | Department of Computational and Data Sciences

More Connectivity

n  5
m  4

n = #vertices

m = #edges

 For a tree m = n - 1

n  5
m  3If m < n - 1, G is

not connected

CDS.IISc.ac.in | Department of Computational and Data Sciences

Connected Component
 A connected component is a maximal subgraph

that is connected.
 Cannot add vertices and edges from original graph and

retain connectedness.

 A connected graph has exactly 1 component.

CDS.IISc.ac.in | Department of Computational and Data Sciences

Clique
 A subgraph C of a graph G with edges between all

pairs of vertices

03-Oct-17 20

6

5

4

7

8

Clique

6

5

7G C

https://www.csc.ncsu.edu/faculty/samatova/practical-graph-mining-with-R

1

CDS.IISc.ac.in | Department of Computational and Data Sciences

Maximal Clique

 A maximal clique is a clique that is not part of a
larger clique

03-Oct-17 21

Maximal Clique

6

5

7

8

6

5

4

7

8

Clique

6

5

7G

1

CDS.IISc.ac.in | Department of Computational and Data Sciences

Directed vs. Undirected Graph

 An undirected graph is one in which the pair of
vertices in a edge is unordered, (v0, v1) = (v1,v0)

 A directed graph (or Digraph) is one in which each
edge is a directed pair of vertices, <v0, v1> != <v1,v0>

source sink

tail head

CDS.IISc.ac.in | Department of Computational and Data Sciences

Graph Representation

 Adjacency Matrix

 Adjacency Lists
 Linked Adjacency Lists

 Array Adjacency Lists

CDS.IISc.ac.in | Department of Computational and Data Sciences

Adjacency Matrix

 0/1 n x n matrix, where n = # of vertices

 A(i,j) = 1 iff (i,j) is an edge

2
3

1

4
5

1 2 3 4 5

1

2

3

4

5

0 1 0 1 0

1 0 0 0 1

0 0 0 0 1

1 0 0 0 1

0 1 1 1 0

CDS.IISc.ac.in | Department of Computational and Data Sciences

Adjacency Matrix Properties
1 2 3 4 5

1

2

3

4

5

0 1 0 1 0

1 0 0 0 1

0 0 0 0 1

1 0 0 0 1

0 1 1 1 0

 Diagonal entries are zero.
 Adjacency matrix of an undirected graph is

symmetric.
 A(i,j) = A(j,i) for all i and j.

2
3

1

4
5

CDS.IISc.ac.in | Department of Computational and Data Sciences

Adjacency Matrix (Digraph)

2
3

1

4
5

1 2 3 4 5

1

2

3

4

5

0 0 0 1 0

1 0 0 0 1

0 0 0 0 0

0 0 0 0 1

0 1 1 0 0

 Diagonal entries are zero.

 Adjacency matrix of a directed graph need
not be symmetric.

CDS.IISc.ac.in | Department of Computational and Data Sciences

Adjacency Matrix

 n2 bits of space

 For an undirected graph, may store only lower or
upper triangle (exclude diagonal)
‣ (n2 -n)/2 bits

O(n) time to find vertex degree and/or vertices
adjacent to a given vertex.

CDS.IISc.ac.in | Department of Computational and Data Sciences

Adjacency Lists

 Adjacency list for vertex i is a linear list of vertices
adjacent from vertex i.

 An array of n adjacency lists.

aList[1] = (2,4)

aList[2] = (1,5)

aList[3] = (5)

aList[4] = (5,1)

aList[5] = (2,4,3)

2
3

1

4
5

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linked Adjacency Lists
 Each adjacency list is a chain.

aList[1]

aList[5]

[2]
[3]
[4]

2 4
1 5
5

5 1
2 4 3

• Array Length = n
• # of chain nodes = 2e (undirected graph)
• # of chain nodes = e (digraph)

2
3

1

4
5

CDS.IISc.ac.in | Department of Computational and Data Sciences

Array Adjacency Lists
 Each adjacency list is an array list.

aList[1]

aList[5]

[2]
[3]
[4]

2 4
1 5
5

5 1
2 4 3

• Array Length = n
• # of list elements = 2e (undirected graph)
• # of list elements = e (digraph)

2
3

1

4
5

CDS.IISc.ac.in | Department of Computational and Data Sciences

Storing Weighted Graphs

 Cost adjacency matrix
‣ C(i,j) = cost of edge (i,j) instead of 0/1

 Adjacency lists
‣ Each list element is a pair (adjacent vertex, edge weight)

CDS.IISc.ac.in | Department of Computational and Data Sciences

ADT for Graph
class Vertex<V,E> {

int id;

V value;

int GetId();

V GetValue();

List<Edge<V,E>> Neighbors();

}

class Edge<V,E> {

int id;

E value;

int GetId();

E GetValue();

Vertex<V,E> GetSource();

Vertex<V,E> GetSink();

}

CDS.IISc.ac.in | Department of Computational and Data Sciences

ADT for Graph
class Graph<V,E>{

List<Vertex<V,E>> vertices;
List<Edge<V,E>> edges;

void InsertVertex(Vertex<V,E> v);
void InsertEdge(Edge<V,E> e);

bool DeleteVertex(int vid);
bool DeleteEdge(int eid);

List<Vertex<V,E>> GetVertices();
List<Edge<V,E>> GetEdges();

bool IsEmpty(graph);
}

03-Oct-17 33

CDS.IISc.ac.in | Department of Computational and Data Sciences

Sample Graph Problems

Graph traversal
‣ Searching

‣ Shortest Paths

‣ Connectedness

‣ Spanning tree

Graph centrality
‣ PageRank

‣ Betweenness centrality

Graph clustering

CDS.IISc.ac.in | Department of Computational and Data Sciences

Graph Search & Traversal

 Find a vertex (or edge) with a given ID or value
‣ If list of vertices/edges is available, linear scan!

‣ BUT, goal here is to traverse the neighbors of the graph,
not scan the list

 Traverse through the graph to list all vertices in a
particular order
‣ Finding the item can be side-effect of traversal

03-Oct-17 35

CDS.IISc.ac.in | Department of Computational and Data Sciences

Breadth-First Search
Example

Start search at vertex 1.

2
3

8

10

1

4
5

9

11
6

7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Breadth-First Search
Example

Visit/mark/label start vertex and put in a FIFO queue.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue

1

CDS.IISc.ac.in | Department of Computational and Data Sciences

Breadth-First Search
Example

Remove 1 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue

1

CDS.IISc.ac.in | Department of Computational and Data Sciences

Breadth-First Search
Example

Remove 1 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

2

4

4

CDS.IISc.ac.in | Department of Computational and Data Sciences

Breadth-First Search
Example

Remove 2 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

2

4

4

CDS.IISc.ac.in | Department of Computational and Data Sciences

Breadth-First Search
Example

Remove 2 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4

4

5

5
3

3

6

6

CDS.IISc.ac.in | Department of Computational and Data Sciences

Breadth-First Search
Example

Remove 4 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4

4

5

5
3

3

6

6

CDS.IISc.ac.in | Department of Computational and Data Sciences

Breadth-First Search
Example

Remove 4 from Q; visit adjacent unvisited vertices;
put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

5
3

3

6

6

CDS.IISc.ac.in | Department of Computational and Data Sciences

Breadth-First Search
Example

Remove 5 from Q; visit adjacent unvisited vertices;
put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

5
3

3

6

6

CDS.IISc.ac.in | Department of Computational and Data Sciences

Breadth-First Search
Example

Remove 5 from Q; visit adjacent unvisited vertices;
put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3
3

6

6

9

9

7

7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Breadth-First Search
Example

Remove 3 from Q; visit adjacent unvisited vertices;
put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3
3

6

6

9

9

7

7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Breadth-First Search
Example

Remove 3 from Q; visit adjacent unvisited vertices;
put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

6

9

9

7

7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Breadth-First Search
Example

Remove 6 from Q; visit adjacent unvisited vertices;
put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

6

9

9

7

7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Breadth-First Search
Example

Remove 6 from Q; visit adjacent unvisited vertices;
put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

9

9

7

7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Breadth-First Search
Example

Remove 9 from Q; visit adjacent unvisited vertices;
put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

9

9

7

7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Breadth-First Search
Example

Remove 9 from Q; visit adjacent unvisited vertices;
put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

9

7

7
8

8

CDS.IISc.ac.in | Department of Computational and Data Sciences

Breadth-First Search
Example

Remove 7 from Q; visit adjacent unvisited vertices;
put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

9

7

7
8

8

CDS.IISc.ac.in | Department of Computational and Data Sciences

Breadth-First Search
Example

Remove 7 from Q; visit adjacent unvisited vertices;
put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

9

7

8
8

CDS.IISc.ac.in | Department of Computational and Data Sciences

Breadth-First Search
Example

Remove 8 from Q; visit adjacent unvisited vertices;
put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

9

7

8
8

CDS.IISc.ac.in | Department of Computational and Data Sciences

Breadth-First Search
Example

Queue is empty. Search terminates.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

9

7

8

CDS.IISc.ac.in | Department of Computational and Data Sciences

Breadth-First Search
Property

 All vertices reachable from the start vertex
(including the start vertex) are visited.

CDS.IISc.ac.in | Department of Computational and Data Sciences

Time Complexity
 Each visited vertex is added to (and so removed

from) the queue exactly once

When a vertex is removed from the queue, we
examine its adjacent vertices
 O(v) if adjacency matrix is used, where v is number of

vertices in whole graph

 O(d) if adjacency list is used, where d is edge degree

 Total time
 Adjacency matrix: O(w.v), where w is number of

vertices in the connected component that is searched

 Adjacency list: O(w+f), where f is number of edges in
the connected component that is searched

CDS.IISc.ac.in | Department of Computational and Data Sciences

Depth-First Search

depthFirstSearch(v) {

Label vertex v as reached;

for(each unreached vertex u
adjacent to v)

depthFirstSearch(u);

}

CDS.IISc.ac.in | Department of Computational and Data Sciences

Depth-First Search
2

3

8

10

1

4
5

9

11
6

7

1

2

Start search at vertex 1.
Label vertex 1 and do a depth first search from either 2 or 4.
Suppose that vertex 2 is selected.

CDS.IISc.ac.in | Department of Computational and Data Sciences

Depth-First Search Example
2

3

8

10

1

4
5

9

11
6

7

Label vertex 2 and do a depth first search from either 3, 5, or 6.

Suppose that vertex 5 is selected.

1

22

5

CDS.IISc.ac.in | Department of Computational and Data Sciences

Depth-First Search
2

3

8

10

1

4
5

9

11
6

7

Label vertex 5 and do a depth first search from either 3, 7, or 9.

Suppose that vertex 9 is selected.

1

22

55
9

CDS.IISc.ac.in | Department of Computational and Data Sciences

Depth-First Search
2

3

8

10

1

4
5

9

11
6

7

Label vertex 9 and do a depth first search from either 6 or 8.

Suppose that vertex 8 is selected.

1

22

55
99

8

CDS.IISc.ac.in | Department of Computational and Data Sciences

2
3

8

10

1

4
5

9

11
6

7

Label vertex 8 and return to vertex 9.

From vertex 9 do a dfs(6)

1

22

55
99

88

Depth-First Search

6

CDS.IISc.ac.in | Department of Computational and Data Sciences

2
3

8

10

1

4
5

9

11
6

7

1

22

55
99

88

Depth-First Search

66

4

Label vertex 6 and do a depth first search from either 4 or 7.

Suppose that vertex 4 is selected.

CDS.IISc.ac.in | Department of Computational and Data Sciences

2
3

8

10

1

4
5

9

11
6

7

1

22

55
99

88

Depth-First Search

66

44

Label vertex 4 and return to 6.
From vertex 6 do a dfs(7).

7

CDS.IISc.ac.in | Department of Computational and Data Sciences

2
3

8

10

1

4
5

9

11
6

7

1

22

55
99

88

Depth-First Search

66

44

77

Label vertex 7 and return to 6.
Return to 9.

CDS.IISc.ac.in | Department of Computational and Data Sciences

2
3

8

10

1

4
5

9

11
6

7

1

22

55
99

88

66

44

77

Return to 5.

Depth-First Search

CDS.IISc.ac.in | Department of Computational and Data Sciences

2
3

8

10

1

4
5

9

11
6

7

1

22

55
99

88

66

44

77

Do a dfs(3).

3

Depth-First Search

CDS.IISc.ac.in | Department of Computational and Data Sciences

2
3

8

10

1

4
5

9

11
6

7

1

22

55
99

88

66

44

77

Label 3 and return to 5.
Return to 2.

33

Depth-First Search

CDS.IISc.ac.in | Department of Computational and Data Sciences

2
3

8

10

1

4
5

9

11
6

7

1

22

55
99

88

66

44

77

33

Depth-First Search

Return to 1.

CDS.IISc.ac.in | Department of Computational and Data Sciences

2
3

8

10

1

4
5

9

11
6

7

1

22

55
99

88

66

44

77

33

Depth-First Search

Return to invoking method.

CDS.IISc.ac.in | Department of Computational and Data Sciences

DFS Properties
 DFS has same time complexity as BFS

 DFS requires O(h) memory for recursive function stack
calls while BFS requires O(w) queue capacity

 Same properties with respect to path finding, connected
components, and spanning trees.
‣ Edges used to reach unlabeled vertices define a depth-first

spanning tree when the graph is connected.

 One is better than the other for some problems, e.g.
‣ When searching, if the item is far from source (leaves), then

DFS may locate it first, and vice versa for BFS
‣ BFS traverses vertices at same distance (level) from source
‣ DFS can be used to detect cycles (revisits of vertices in current

stack)

CDS.IISc.ac.in | Department of Computational and Data Sciences

Shortest Path: Single source, single
destination

 Possible greedy algorithm
‣ Leave source vertex using shortest edge

‣ Leave new vertex using cheapest edge, to reach an
unvisited vertex

‣ Continue until destination is reached

03-Oct-17 73

Greedy Path
from 1 To 7

DFS with
shortest edge

selected!

Length of 12 is not shortest path!

CDS.IISc.ac.in | Department of Computational and Data Sciences

Single Source Shortest Path

 Shortest distance from one source vertex to all
destination vertices

 Is there a simple way to solve this?

…Say if you had an unit-weighted graph?

 Just do Breadth First Search (BFS)! 

03-Oct-17 74

CDS.IISc.ac.in | Department of Computational and Data Sciences

SSSP: BFS on Unweighted
Graphs

03-Oct-17 75

0

1

4

4

5

1

2

3

4

2

3

3

CDS.IISc.ac.in | Department of Computational and Data Sciences

SSSP: BFS on Weighted
Graphs?

03-Oct-17 76

0
1

2

1

3

6

2

1

4 3

5

4

3

1

CDS.IISc.ac.in | Department of Computational and Data Sciences

SSSP: BFS on Weighted
Graphs?

03-Oct-17 77

0

3

1

1

2

1

3

6

2

1

4 3

5

4

3

1

CDS.IISc.ac.in | Department of Computational and Data Sciences

SSSP: BFS on Weighted
Graphs?

03-Oct-17 78

0

3

1

9

3

1

2

1

3

6

2

1

4 3

5

4

3

1

CDS.IISc.ac.in | Department of Computational and Data Sciences

SSSP: BFS on Weighted
Graphs?

03-Oct-17 79

0

3

1

9

13

3

11

4

1

2

1

3

6

2

1

4 3

5

4

3

1

CDS.IISc.ac.in | Department of Computational and Data Sciences

SSSP: BFS on Weighted
Graphs?

03-Oct-17 80

0

3

15

16

1

9

13

16

3

5

4

1

2

1

3

6

2

1

4 3

5

4

3

1

Revisit, recalculate, re-propagate…
cascading effect

CDS.IISc.ac.in | Department of Computational and Data Sciences

SSSP: BFS on Weighted
Graphs?

03-Oct-17 81

0

3

9

16

17

1

9

13

10

3

5

4

1

2

1

3

6

2

1

4 3

5

4

3

1

CDS.IISc.ac.in | Department of Computational and Data Sciences

SSSP: BFS on Weighted
Graphs?

03-Oct-17 82

0

3

15

13

11

1

9

13

10

3

5

4

1

2

1

3

6

2

1

4 3

5

4

3

1

BFS with revisits is not
efficient. Can we be smart

about order of visits?

CDS.IISc.ac.in | Department of Computational and Data Sciences

Dijkstra’s Single Source
Shortest Path (SSSP)
 Prioritize the vertices to visit next
‣ Pick “unvisited” vertex with shortest distance from

source

 Do not visit vertices that have already been visited
‣ Avoids false propagation of distances

03-Oct-17 83

CDS.IISc.ac.in | Department of Computational and Data Sciences

Dijkstra’s Single Source
Shortest Path (SSSP)
 Let w[u,v] be array with weight of edge from u to v

 Initialize distance vector d[] for all vertices to
infinity, except for source which is set to 0

 Add all vertices to queue Q

while(Q is not empty)
‣ Remove u from Q such that d[u] is the smallest in Q

‣ Add u to visited set

‣ for each v adjacent to u that is not visited
• d’ = d[u] + w[u,v]

• if(d’ < d[v]) set d[v] = d’ & add v to Q

03-Oct-17 84

Only change
relative to BFS!

CDS.IISc.ac.in | Department of Computational and Data Sciences

SSSP on Weighted Graphs

03-Oct-17 85

a

b

j

k

l

c

d

h

i

e

g

f

1

2

1

3

6

2

1

4 3

5

4

3

1

Work out!

CDS.IISc.ac.in | Department of Computational and Data Sciences

SSSP on Weighted Graphs

03-Oct-17 86

0

3

9

13

11

1

7

11

10

3

5

4

1

2

1

3

6

2

1

4 3

5

4

3

1

CDS.IISc.ac.in | Department of Computational and Data Sciences

Complexity
 Using a linked list for queue, it takes O(v2 + e)
 For each vertex,

‣ we linearly search the linked list for smallest: O(v)
‣ we check and update for each incident edge once: O(d)

 When a min heap (priority queue) with distance as
priority key, total time is O(e + v log v)
‣ O(log v) to insert or remove from priority queue
‣ O(v) remove min operations
‣ O(e) change d[] value operations (insert/update)

 When e is O(v2) [highly connected, small diameter],
using a min heap is worse than using a linear list

 When a Fibonacci heap is used, the total time is O(e + v
log v)

03-Oct-17 87

CDS.IISc.ac.in | Department of Computational and Data Sciences

Cycles And Connectedness
Removal of an edge that is on a cycle does not affect

connectedness.

2
3

8

101

4
5

9
11

6
7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Cycles And Connectedness
Connected subgraph with all vertices and minimum

number of edges has no cycles.

2
3

8

101

4
5

9
11

6
7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Spanning Tree
 Communication Network Problems
‣ Is the network connected?
‣ Can we communicate between every pair of cities?
‣ Find the components.
‣ Want to construct smallest number of feasible links so

that resulting network is connected.

 Subgraph that includes all vertices of the original
graph.

 Subgraph is a tree.
 If original graph has n vertices, the spanning tree has n

vertices and n-1 edges.

CDS.IISc.ac.in | Department of Computational and Data Sciences

Minimum Cost Spanning
Tree
 Tree cost is sum of edge weights/costs.

2
3

8

101

4
5

9
11

6
7

4

8

6

6

7

5

2

4

4 5
3

8

2

CDS.IISc.ac.in | Department of Computational and Data Sciences

A Spanning Tree

A Spanning tree, cost = 51.

2
3

8

101

4
5

9
11

6
7

4

8

6

6

7

5

2

4

4 5
3

8

2

CDS.IISc.ac.in | Department of Computational and Data Sciences

Minimum Cost Spanning Tree

Minimum Spanning tree, cost = 41.

2
3

8

101

4
5

9
11

6
7

4

8

6

6

7

5

2

4

4 5
3

8

2

CDS.IISc.ac.in | Department of Computational and Data Sciences

A Wireless Broadcast Tree
Source = 1, weights = needed power.

Cost = 4 + 8 + 5 + 6 + 7 + 8 + 3 = 41.

2
3

8

101

4
5

9
11

6
7

4

8

6

6

7

5

2

4

4 5
3

8

2

CDS.IISc.ac.in | Department of Computational and Data Sciences

Graph Clustering
 Clustering: The process of dividing a set of input

data into possibly overlapping, subsets, where
elements in each subset are considered related by
some similarity measure

03-Oct-17 96
Introduction to Graph Cluster Analysis, https://www.csc.ncsu.edu/faculty/samatova

2 Clusters

3 Clusters

CDS.IISc.ac.in | Department of Computational and Data Sciences

Graph Clustering

 Between-graph
‣ Clustering a set of graphs

‣ E.g. structural similarity between chemical compounds

Within-graph
‣ Clustering the nodes/edges of a single graph

‣ E.g., In a social networking graph, these clusters could
represent people with same/similar hobbies

03-Oct-17 97
Introduction to Graph Cluster Analysis, https://www.csc.ncsu.edu/faculty/samatova

CDS.IISc.ac.in | Department of Computational and Data Sciences

Graph Clustering: k-spanning Tree

03-Oct-17 98
Introduction to Graph Cluster Analysis, https://www.csc.ncsu.edu/faculty/samatova

98

1

2

3

4

5

2

3 2
Remove k-1 edges with

highest weight
4

Minimum Spanning Tree

Note: k – is the
number of
clusters

E.g., k=3

1

2

3

4

5

2

3 2

4

E.g., k=3

1

2

3

4

5

3 Clusters

CDS.IISc.ac.in | Department of Computational and Data Sciences

Graph Clustering: k-means
Clustering
1. Identify k random vertices as centers, label them with

unique colors
2. Start BFS traversal from each center, one level at a

time
3. Label the vertices reached from each BFS center with

its colors
4. If multiple centers reach the same vertex at same

level, pick one of the colors
5. Continue propagation till all vertices colored
6. Calculate edge-cuts between vertices of different

colors
7. If cut less than threshold, stop. Else repeat and pick k

new centers

03-Oct-17 99

CDS.IISc.ac.in | Department of Computational and Data Sciences

K-Means Clustering
k=2, maxcut = 2

03-Oct-17 100

a

b

j

k

l

c

d

h

i

e

g

f

CDS.IISc.ac.in | Department of Computational and Data Sciences

K-Means Clustering

03-Oct-17 101

a

b

j

k

l

c

d

h

i

e

g

f
Pick k random vertices

CDS.IISc.ac.in | Department of Computational and Data Sciences

K-Means Clustering

03-Oct-17 102

a

b

j

k

l

c

d

h

i

e

g

f

Perform k BFS simultaneously

CDS.IISc.ac.in | Department of Computational and Data Sciences

K-Means Clustering

03-Oct-17 103

a

b

j

k

l

c

d

h

i

e

g

f

Perform k BFS simultaneously

CDS.IISc.ac.in | Department of Computational and Data Sciences

K-Means Clustering

03-Oct-17 104

a

b

j

k

l

c

d

h

i

e

g

f

Pick one of the
two colors

All vertices colored
Cut = 3; Cut > MaxCut
Repeat!

Pick one of the
two colors

CDS.IISc.ac.in | Department of Computational and Data Sciences

K-Means Clustering

03-Oct-17 105

a

b

j

k

l

c

d

h

i

e

g

f
Pick k random vertices

CDS.IISc.ac.in | Department of Computational and Data Sciences

K-Means Clustering

03-Oct-17 106

a

b

j

k

l

c

d

h

i

e

g

f

Perform k BFS simultaneously

CDS.IISc.ac.in | Department of Computational and Data Sciences

K-Means Clustering

03-Oct-17 107

a

b

j

k

l

c

d

h

i

e

g

f

Pick one of
the two colors

All vertices colored
Cut = 2; Cut <= MaxCut
Done!

CDS.IISc.ac.in | Department of Computational and Data Sciences

PageRank

 Centrality measure of web page quality based on
the web structure
‣ How important is this vertex in the graph?

 Random walk
‣ Web surfer visits a page, randomly clicks a link on that

page, and does this repeatedly.
‣ How frequently would each page appear in this surfing?

 Intuition
‣ Expect high-quality pages to contain “endorsements”

from many other pages thru hyperlinks
‣ Expect if a high-quality page links to another page, then

the second page is likely to be high quality too

2016-03-16 108Simmhan, SSDS, 2016; Lin, Ch 5.3 PAGERANK

CDS.IISc.ac.in | Department of Computational and Data Sciences

PageRank, recursively

 P(n) is PageRank for webpage/URL ‘n’
‣ Probability that you’re in vertex ‘n’

 |G| is number of URLs (vertices) in graph

 α is probability of random jump

 L(n) is set of vertices that link to ‘n’

 C(m) is out-degree of ‘m’

 Initial P(n) = 1/|G|

2016-03-16 109Simmhan, SSDS, 2016; Lin, Ch 5.3 PAGERANK

CDS.IISc.ac.in | Department of Computational and Data Sciences

PageRank Iterations

2016-03-16 110

α=0
Initialize P(n)=1/|G|

Lin, Fig 5.7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Tasks
 Self study
‣ Read: Graphs and graph algorithms (online sources)

 Attend tutorial on C++, turing cluster at 5pm today

 Finish Assignment 2 by Fri Oct 13 (10% points)
‣ Posted online today

03-Oct-17 111

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

CDS.IISc.ac.in | Department of Computational and Data Sciences

Department of Computational and Data Sciences

Questions?

03-Oct-17 112

http://creativecommons.org/licenses/by/4.0/deed.en_US

