P, Indian Institute of Science Department of Computational and Data Sciences

4 ‘ & Bangalore, India

Vv,

)
/‘» N una"mﬁaﬁwn
f{}“; "\"‘.f"bf

Tutorial: Apache Storm

Anshu Shukla

Creative Commons Attribution 4.0 International License

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.in | Department of Computational and Data Sciences

Open source distributed realtime computation system
Can process million tuples processed per second per
node.

Scalable, fault-tolerant, guarantees your data will be
processed

Does for realtime processing what Hadoop did for batch
processing.

Key difference is that a MapReduce job eventually
finishes, whereas a topology processes messages forever
(or until you Rill it).

. CDS.IISc.in | Department of Computational and Data Sciences

Storm Architecture:

* Two Rinds of nodes on a Storm cluster: Master node and the worker nodes

* Master node
»runs a daemon called "Nimbus"
»distributing code around the cluster, assigning tasks to machines, and
monitoring for failures.

* Worker node
» runs a daemon called the “Supervisor”
» listens for work assigned by nimbus to its machine and starts and stops
worker processes
»WorkRer process executes a subset of a topology, a running topology
consists of many worker processes spread across many machines.

Supervisor =

; Worker
Zookeeper

= e
Super visor . Worker ——

e
Launches Worker 5
Workers Processes

Master Cluster
Node Coordination

. CDS.IISc.in | Department of Computational and Data Sciences

Storm Architecture:

 Zookeeper
» Coordination between Nimbus and the Supervisors is done through a
Zookeeper cluster
 Nimbus daemon and Supervisor daemons are fail-fast and stateless,
state is Rept in Zookeeper
»can Rill Nimbus or the Supervisors and they'll start back up like
nothing happened.

Worker

Supervisor N

=
Supervisor === Worker —

Zookeeper
Supervisor . Worker P

Master Cluster Launches Worker A
Node Coordination Workers Processes

Worker

AISc.in | Department of Computational and Data Sciences

Tuples: an ordered list of elements.
Streams: an unbounded sequence of tuples.
Spouts: sources of streams in a computation (e.g. a Twitter API)
Bolts:

* process input streams and produce output streams.

« run functions (filter, aggregate, or join data or talk to databases).
Topologies: Computation DAG, each node contains processing logic, and
links between nodes indicate how data streams

\

Spout

i

[|

Spout-~\§§\§*

DS.IISc.in | Department of Computational and Data Sciences

TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("words", new TestWordSpout(), 10);
builder.setBolt("exclaiml", new ExclamationBolt(), 3)
.shuffleGrouping("words");
builder.setBolt("exclaim2", new ExclamationBolt(), 2)
.shuffleGrouping("exclaiml");

Contains a spout and two bolts, Spout emits words, and each bolt
appends the string "l!1" to its input
Nodes are arranged in a line

« e.g. spout emits the tuples ["bob"] and ["john"], then the second bolt

Last parameter, parallelism: how many threads should run for that
component across the cluster

"shuffle grouping” means that tuples should be randomly distributed to

downstream tasks.
6

CDS.IISc.in | Department of Computational and Data Sciences

Processing logic implements
the IRichSpout & IRichBolt
interface for spouts & bolts.

public static class ExclamationBolt implements IRichBolt {

open/prepare method provides = et <ot

the bolt with an ﬁﬁﬁiigzggigtz:e:azi{p::gtgi?f, R ey G o) G
OutputCollector that is used for } ——

emitting tuples from this bolt, ,, Eg'%Eggéﬁfggrgsn:wn::nmn ottt stk *jackson “gatess "bereis'y
executed once. e e e e

Execute method receives a PRI Vo P T

tuple from one of the bolt's it s Ot ietisectarer dectaren <

inputs, executes for every y eerrerdectoretie pekds Crord:

tuple. e et st

return null;

Cleanup method is called when |, *
a Bolt is being shutdown,
executed once.

CDS.IISc.in | Department of Computational and Data Sciences

Stateful bolts (from v1.0.1)

» Abstractions for bolts to save and retrieve the state of its operations.

* By extending the BaseStatefulBolt and implement initState(T state)
method.

« initState method is invoked by the framework during the bolt
initialization (after prepare()) with the previously saved state of the bolt.

public class WordCountBolt extends(BaseStatefuIBOI;LKeyValueState<String, Long>> {
private KeyValueState<String, Long> v

private OutputCollector collector;

@Override

public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
this.collector = collector;

}

@0verride

public voidKeyVa'lueState<String, Long> state) {
wordCounts = gte;

}

@Override

public void execute(Tuple tuple) {
String word = tuple.getString(@);
Integer count = wordCounts.get(word, @);
count++;
wordCounts.put(word, count);
collector.emit(tuple, new Values(word, count));
collector.ack(tuple);

epartment of Computational and Data Sciences

* The framework periodically checkpoints the state of the bolt (default every
second).

» Checkpoint is triggered by an internal checkpoint spout.

- If there is at-least one IStatefulBolt in the topology, the checkpoint spout is
automatically added by the topology builder.

* Checkpoint tuples flow through a separate internal stream namely
$checkpoint

» Non stateful bolts just forwards the checkpoint tuples so that the
checkpoint tuples can flow through the topology DAC.

default default default
[spoutl] e > [statefulboltl] —————eeaaa > [boltl] ———mmee > [statefulbolt2]
|l mee———— > e >
| ($chpt) ($chpt)
I

[$checkpointspout] | ($chpt)

CDS.IISc.in | Department of Computational and Data Sciences

Example of a running topology

Topology consists of three components: one BlueSpout and two

bolts,GreenBolt and YellowBolt
#worker processes=2
for green Bolt:
« #executors =2
#tasks = 4

ONOOUL A WN R

Config conf = new Config();
conf.setNumWorkers(2); // use two worker processes

topologyBuilder.setSpout("blue-spout", new BlueSpout(), 2); .

topologyBuilder.setBolt(''green-bolt", new GreenBolt(), 2)
.setNumTasks(4)
.shuffleGrouping("blue-spout");

topologyBuilder.setBolt("yellow-bolt", new YellowBolt(), 6)
.shuffleGrouping('green-bolt");

StormSubmitter.submitTopology(
"mytopology",
conf,
topologyBuilder.createTopology()
)i

Yellow
Bolt

parallelism parallelism parallelism

hint=2 hﬁﬂ 2 hint=6
Pavallelism hink = ::,':‘,:’:,'::,";,
initial #Fexetutors =2+2+6=10

\

Each of the 2 worker
protesses will spawn

10 /2 =5 threads.

The green bolt was c.onfiaured to use two
exetutors and four tasks. For this veason
cath exetutor vuns two tasks for this bolt.

10

CDS.IISc.in | Department of Computational and Data Sciences

Runmng topology: worker processes,
executors and tasks

* Worker processes executes a subset of a topology, and runs in its own JVM.

» An executor is a thread that is spawned by a worker process and runs within
the worker’s JVM (parallelism hint).

» Atask performs the actual data processing and is run within its parent
executor’s thread of execution.

« # threads can change at A michine in 3 Storm cluster may vun one or move
run time, but not # tasks vorker Processes for one or more {opologes. Each

worker Protess vuns exetutors for a srccific {:o?ology.
« #threads <= #tasks ¥

Worker Process

One or more exetutors may vun within a single
worker Protess, with eath exetutor being 3
thread spawned by the worker protess. Each
exetutor vuns one or move tasks of the same
Com?oncn{: (SPou{ or boH’)-

A task performs the actual data Protessing.

CDS.IISc.in | Department of Computational and Data Sciences

Updatlng the parallelism of a running
topology

« Rebalancing: Increase or decrease the number of worker processes and/or
executors without being required to restart the cluster or the topology,

but not tasks.
» e.g. To reconfigure the topology "mytopology"” to use 5 worker processes,

the spout "blue-spout” to use 3 executors.
- storm rebalance mytopology -n 5 -e blue-spout=3

« Demo:

12

Stream groupings

CDS.IISc.in | Department of Computational and Data Sciences

« Stream grouping defines how that stream should be partitioned among
the bolt's tasks.

Shuffle grouping: random distribution, each bolt is guaranteed to get
an equal number of tuples
Fields grouping: stream is partitioned by the fields specified in the

grouping

Global grouping: entire stream
goes to a single one of the bolt's
tasks.

All grouping: The stream is
replicated across all the bolt's
tasks.

etc ..

CDS.IISc.in | Department of Computational and Data Sciences

« Storm can guarantee at least once processing.

« Tuple coming off the spout triggers many tuples being created based on it
forming Tuple tree.

« "fully processed” tuple: tuple tree has been exhausted and every message
in the tree has been processed (within a specified timeout).

Spout while emitting provides a "message id" that will be used to
identify the tuple later.

Storm taRes care of tracking the tree of messages that is created.
if fully processed, Storm will call the ack method on the originating
Spout task with its message id.

if tuple times-out Storm will call the fail method on the Spout.

14

CDS.IISc.in | Department of Computational and Data Sciences

» Things user have to do to achieve at-least once semantics.
» Anchoring: creating a new link in the tree of tuples.
» Acking: finished processing an individual tuple.
- Failing: to immediately fail tuple at the root of the tuple tree,
to replay faster than waiting for the tuple to time-out.

public class SplitSentence extends BaseRichBolt {
OutputCollector _collector;

public void prepare(Map conf, TopologyContext context, OutputCollector collector) {
_collector = collector;

}

public void execute(Tuple tuple) {
String sentence = tuple.getString(9);

for(String word: sentence.split(" ")) {
_collector.emit(tuple, new Values(word)); 4—[AnChOl"ing
}
_collector.ack(tuple); 4—[AChing]
}

public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields('"word"));

} 15

}

. CDS.IISc.in | Department of Computational and Data Sciences

Internal messaging within Storm worker
processes

Each worker has a single Worker Process Reads from the Disru?bor
transfer queve to send tuples

veteive thread that listens T akes msajs from its ou{going quese and
over the network. Queue is

on the worker port. |t puts Puts them on the shaved transfer queue.

inComing msqs from the o N . g a list of tuples.
network on the exetutors’ e ExecutorMowa §
x
(inComing queues. g -;;
@ User Logic =

4] h % Thread g [A
Worker Receive Thread P (= spout/bolt) g Worker Send Thread
edis () 4)

topology.receiver.buffer.size (8) topology.transfer.buffer.size (1024)

Network layer J_I-L Each element of the Disruptor J-LL
' veteive queve is a list of tuples. '
Incoming TCP port H . h. Outgoing TCP port
©.0. 6700/ch) eve, tuples are appended in bate (random)
< topology.executor.receive.buffer.size (1024)
Eath clement of this Disruptor

he Po n
One of the ports defined by send queue contains a /single/ tuple.

supervisor.slots.ports topology.executor.send.buffer.size (1024)

CDS.IISc.in | Department of Computational and Data Sciences

esource Scheduling for DSPS

» Scheduling for the DSPS has two parts:
* Resource allocation -
* Determining the appropriate degrees of parallelism per task
(i.e., threads of execution)
« Amount of computing resources per task (e.g., Virtual
Machines (VMs)) for the given dataflow
* Resource mapping -
» Deciding the specific assignment of the threads to the VMs
ensuring that the expected performance behavior and resource
utilization is met.

17

CDS.IISc.in | Department of Computational and Data Sciences

esource Allocation

» For a given DAG and input rate, allocation determines the number of resource
slots(p) for DAG & number of threads(q), resourcesrequired for each task.
» Resource allocation algorithms:
e Linear Storm Allocation (LSA)
« Model Based Allocation (MBA) [3]
« Requires input rate to each task for finding the resource needs and data
parallelism for that task.

« # of slots:

o= max ([Y[om)

t,eT t,€T

18

[3] Model-driven Scheduling for Distributed Stream Processing Systems, Shukla,et al {under review}

. CDS.IISc.in | Department of Computational and Data Sciences

Linear Storm Allocation

Pseudocode:
AllocateLSA(G,Q){
for each task in DAG
while(input rate for task ti > Peak rate with 1 thread)
{

add 1 thread
decrease required rate by Peak rate with 1 thread
increase resources allocated with that required for 1 thread

}

if(remaining input rate for task ti>e)
{
increase number of threads by 1
set input rate to zero
add resources by scaling remaining rate with peak rate

}

return <#threads,CPU%,Memory%> for each task

—&—Rate = - Extrapolated Rate
—&—CPU% Mem%

100
90
80
70
60
50
40
30
20
10

« e.g. For 105 tuples/sec rate.
* Threads=(52 thread * 2 tuples/sec)+(1 thread*1 tuple/sec)
« CPU% =52%6.73+3.3=353%
« Memory%=52%23.92+11.16=1255.8%
* Required #Slots=ceil (353%,1255.8%)=13

Peak Input Rate (tuples/sec)
Incremental CPU/Memory%

0 10 20 30 40 50 60 70 80
Number of Task threads

19

CDS.IISc.in | Department of Computational and Data Sciences

Default Mapping

Pseudocode:
« Not “resource aware”, so does not use the

output of the performance model MapDSM(R, S){

. Threads are picked in any arbitrary order for M<- new map()

mapping t the list of slot
- For each thread, next slot is picked in round- L The 1.t O SIOts
for each thread

robin fashion pick slots in round robin manner

« Unbalanced load distribution across the slots
store mapping of thread to slot in M

return M

DAG with Thread Allocation for Tasks using Model Default Storm Mapping (DSM)

01..0% \\
BL. .B° GL.G°
Yellow: 3

YL.y3 p = 6 slots

CDS.IISc.in | Department of Computational and Data Sciences

Resource Aware Mappingu

* Use only resource usage for single thread from the performance model

* “Network aware”, places the threads on slots such that communication latency between
adjacent tasks is reduced

* Threads are picked in order of BFS traversal of the DAG for locality.

« Slots are chosen by Distance function (minimum value) based on the available and required
resources, and a network latency measure

d = wy X (M] —l’ﬁi)z + we X (CJ —C_'l')z + Wy XNWDIST(\;,VJ')

DAG with Thread Allocation for Tasks using Model

- -
A'Yellow: 3/

[4] Peng et.al. R-storm: Resource-aware scheduling in storm, in: Middleware 2016

CDS.IISc.in | Department of Computational and Data Sciences

= Apache Storm concepts

http://storm.apache.org/releases/current/Concepts.html|

= Understanding the Parallelism of a Storm Topology

http://www.michael-noll.com/blog/2012/10/16/understanding-the-parallelism-of-a-storm-
topology/

= Model-driven Scheduling for Distributed Stream
Processing Systems, Shukla et. al. {under review}

= R-storm: Resource-aware scheduling in storm, Peng
et.al.,in: Middleware 2016

14-Feb-17 20

