
Indian Institute of Science
Bangalore, India
भारतीय िवज्ञान संस्थान
बंगलौर, भारत

Department of Computational and Data Sciences

©Yogesh	Simmhan	&	Partha	Talukdar,	2016 
This	work	is	licensed	under	a	Creative	Commons	Attribution	4.0	International	License		
Copyright	for	external	content	used	with	attribution	is	retained	by	their	original	authors

Tutorial: Apache Storm

Anshu Shukla
1 6 F e b , 2 0 1 7

DS256:Jan17 (3:1)

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.in | Department of Computational and Data Sciences

Apache Storm

• Open source distributed realtime computation system
• Can process million tuples processed per second per

node.
• Scalable, fault-tolerant, guarantees your data will be

processed
• Does for realtime processing what Hadoop did for batch

processing.
• Key difference is that a MapReduce job eventually

finishes, whereas a topology processes messages forever
(or until you kill it).

2

CDS.IISc.in | Department of Computational and Data Sciences

Storm Architecture:
• Two kinds of nodes on a Storm cluster: Master node and the worker nodes

• Master node
»runs a daemon called "Nimbus"
»distributing code around the cluster, assigning tasks to machines, and
monitoring for failures.

• Worker node
» runs a daemon called the “Supervisor"
» listens for work assigned by nimbus to its machine and starts and stops
worker processes
»Worker process executes a subset of a topology, a running topology
consists of many worker processes spread across many machines.

3

CDS.IISc.in | Department of Computational and Data Sciences

Storm Architecture:
• Zookeeper

• Coordination between Nimbus and the Supervisors is done through a
Zookeeper cluster

• Nimbus daemon and Supervisor daemons are fail-fast and stateless,
state is kept in Zookeeper
»can kill Nimbus or the Supervisors and they'll start back up like
nothing happened.

4

CDS.IISc.in | Department of Computational and Data Sciences

Key abstractions
• Tuples: an ordered list of elements.
• Streams: an unbounded sequence of tuples.
• Spouts: sources of streams in a computation (e.g. a Twitter API)
• Bolts:

• process input streams and produce output streams.
• run functions (filter, aggregate, or join data or talk to databases).

• Topologies: Computation DAG, each node contains processing logic, and
links between nodes indicate how data streams

5

Spout
Bolt

Spout
Bolt

Bolt

Bolt

CDS.IISc.in | Department of Computational and Data Sciences

Topology Example

• Contains a spout and two bolts, Spout emits words, and each bolt
appends the string "!!!" to its input

• Nodes are arranged in a line
• e.g. spout emits the tuples ["bob"] and ["john"], then the second bolt

will emit the words ["bob!!!!!!"] and [“john!!!!!!"]
• Last parameter, parallelism: how many threads should run for that

component across the cluster
• "shuffle grouping" means that tuples should be randomly distributed to

downstream tasks.
6

CDS.IISc.in | Department of Computational and Data Sciences

Spout and Bolt
• Processing logic implements

the IRichSpout & IRichBolt
interface for spouts & bolts.

• open/prepare method provides
the bolt with an
OutputCollector that is used for
emitting tuples from this bolt,
executed once.

• Execute method receives a
tuple from one of the bolt's
inputs, executes for every
tuple.

• Cleanup method is called when
a Bolt is being shutdown,
executed once.

7

CDS.IISc.in | Department of Computational and Data Sciences

Stateful bolts (from v1.0.1)

8

• Abstractions for bolts to save and retrieve the state of its operations.
• By extending the BaseStatefulBolt and implement initState(T state)

method.
• initState method is invoked by the framework during the bolt

initialization (after prepare()) with the previously saved state of the bolt.

CDS.IISc.in | Department of Computational and Data Sciences

Stateful bolts (from v1.0.1)

9

• The framework periodically checkpoints the state of the bolt (default every
second).

• Checkpoint is triggered by an internal checkpoint spout.
• If there is at-least one IStatefulBolt in the topology, the checkpoint spout is

automatically added by the topology builder.
• Checkpoint tuples flow through a separate internal stream namely

$checkpoint
• Non stateful bolts just forwards the checkpoint tuples so that the

checkpoint tuples can flow through the topology DAG.

CDS.IISc.in | Department of Computational and Data Sciences

10

Example of a running topology
• Topology consists of three components: one BlueSpout and two

bolts,GreenBolt and YellowBolt
• #worker processes=2
• for green Bolt:

• #executors =2
• #tasks = 4

CDS.IISc.in | Department of Computational and Data Sciences

Running topology: worker processes,
executors and tasks

11

• Worker processes executes a subset of a topology, and runs in its own JVM.
• An executor is a thread that is spawned by a worker process and runs within

the worker’s JVM (parallelism hint).
• A task performs the actual data processing and is run within its parent

executor’s thread of execution.

• # threads can change at
run time, but not # tasks

• #threads <= #tasks

CDS.IISc.in | Department of Computational and Data Sciences

Updating the parallelism of a running
topology

• Rebalancing: Increase or decrease the number of worker processes and/or
executors without being required to restart the cluster or the topology,
but not tasks.

• e.g. To reconfigure the topology "mytopology" to use 5 worker processes,
the spout "blue-spout" to use 3 executors.
• storm rebalance mytopology -n 5 -e blue-spout=3

• Demo:

12

CDS.IISc.in | Department of Computational and Data Sciences

Stream groupings
• Stream grouping defines how that stream should be partitioned among

the bolt's tasks.
• Shuffle grouping: random distribution, each bolt is guaranteed to get

an equal number of tuples
• Fields grouping: stream is partitioned by the fields specified in the

grouping

13

• Global grouping: entire stream
goes to a single one of the bolt's
tasks.

• All grouping: The stream is
replicated across all the bolt's
tasks.

• etc ..

CDS.IISc.in | Department of Computational and Data Sciences

Guaranteeing Message Processing
• Storm can guarantee at least once processing.
• Tuple coming off the spout triggers many tuples being created based on it

forming Tuple tree.
• "fully processed” tuple: tuple tree has been exhausted and every message

in the tree has been processed (within a specified timeout).
• Spout while emitting provides a "message id" that will be used to

identify the tuple later.
• Storm takes care of tracking the tree of messages that is created.
• if fully processed, Storm will call the ack method on the originating

Spout task with its message id.
• if tuple times-out Storm will call the fail method on the Spout.

14

CDS.IISc.in | Department of Computational and Data Sciences

Guaranteeing Message Processing…
• Things user have to do to achieve at-least once semantics.

• Anchoring: creating a new link in the tree of tuples.
• Acking: finished processing an individual tuple.
• Failing: to immediately fail tuple at the root of the tuple tree,

to replay faster than waiting for the tuple to time-out.

15

Anchoring
Acking

CDS.IISc.in | Department of Computational and Data Sciences

Internal messaging within Storm worker
processes

16

CDS.IISc.in | Department of Computational and Data Sciences

Resource Scheduling for DSPS

17

• Scheduling for the DSPS has two parts:

• Resource allocation -
• Determining the appropriate degrees of parallelism per task

(i.e., threads of execution)
• Amount of computing resources per task (e.g., Virtual

Machines (VMs)) for the given dataflow
• Resource mapping -

• Deciding the specific assignment of the threads to the VMs
ensuring that the expected performance behavior and resource
utilization is met.

CDS.IISc.in | Department of Computational and Data Sciences

Resource Allocation

18

• For a given DAG and input rate, allocation determines the number of resource
slots(ρ) for DAG & number of threads(q), resources required for each task.

• Resource allocation algorithms:
• Linear Storm Allocation (LSA)
• Model Based Allocation (MBA) [3]

• Requires input rate to each task for finding the resource needs and data
parallelism for that task.

• # of slots:

[3] Model-driven Scheduling for Distributed Stream Processing Systems, Shukla,et al {under review}

CDS.IISc.in | Department of Computational and Data Sciences

Linear Storm Allocation

19

• e.g. For 105 tuples/sec rate.
• Threads=(52 thread * 2 tuples/sec)+(1 thread*1 tuple/sec)
• CPU% =52*6.73+3.3=353%
• Memory%=52*23.92+11.16=1255.8%
• Required #Slots=ceil (353%,1255.8%)=13

Pseudocode:	
AllocateLSA(G,Ω){
	 for	each	task	in	DAG
	 	 while(input	rate	for	task	ti	>	Peak	rate	with	1	thread)
	 	 	 {
	 	 	 	 add	1	thread
	 	 	 	 decrease	required	rate	by	Peak	rate	with	1	thread
	 	 	 	 increase	resources	allocated	with	that	required	for	1	thread
	 	 	 }		
	 	 if(remaining	input	rate	for	task	ti>0)
	 	 	 {
	 	 	 	 increase	number	of	threads	by	1
	 	 	 	 set	input	rate	to	zero
	 	 	 	 add	resources	by	scaling	remaining	rate	with	peak	rate
	 	 	 }
	 return	<#threads,CPU%,Memory%>	for	each	task	

CDS.IISc.in | Department of Computational and Data Sciences

Default Mapping

20

• Not “resource aware”, so does not use the
output of the performance model

• Threads are picked in any arbitrary order for
mapping

• For each thread, next slot is picked in round-
robin fashion

• Unbalanced load distribution across the slots

Default	Storm	Mapping	(DSM)

v1 v2 v3

Blue:	5

Orange:	4

Yellow:	3

Green:	5

DAG	with	Thread	Allocation	for	Tasks	using	Model

B1.	.B5

O1.	.O4

Y1.	.Y3

G1.	.G5

s21 s31

s12 s2
2

s32

s11

B1,	O2,	G1 B3,	O4,	G3 B5,	Y2,	Y5

B2,	O3,	G2 B4,	Y1,	G4 O1,	Y3
⍴	=	6	slots

Pseudocode:

MapDSM(R,S){
	 M<-	new	map()
	 get	the	list	of	slots
	 for	each	thread
	 	 pick	slots	in	round	robin	manner
	 	 store	mapping	of	thread	to	slot	in	M

	 return	M	
	 	

CDS.IISc.in | Department of Computational and Data Sciences

Resource Aware Mapping[4]

21

• Use only resource usage for single thread from the performance model
• “Network aware”, places the threads on slots such that communication latency between

adjacent tasks is reduced
• Threads are picked in order of BFS traversal of the DAG for locality.
• Slots are chosen by Distance function (minimum value) based on the available and required

resources, and a network latency measure

Blue:	5

Orange:	4

Yellow:	3

Green:	5

DAG	with	Thread	Allocation	for	Tasks	using	Model

v1 v2 v3

s21 s31

s12 s22 s32

s11

G1,	B2,	O2

B1,	O1,	Y1 Y2,	G2,	B3

O3,Y3,G3,O4

 

B4,	G4,	G5

B5

[4] Peng et.al. R-storm: Resource-aware scheduling in storm, in: Middleware 2016

CDS.IISc.in | Department of Computational and Data Sciences

References

▪Apache	Storm	concepts	
http://storm.apache.org/releases/current/Concepts.html		
▪Understanding	the	Parallelism	of	a	Storm	Topology	

http://www.michael-noll.com/blog/2012/10/16/understanding-the-parallelism-of-a-storm-
topology/		
▪Model-driven	Scheduling	for	Distributed	Stream	
Processing	Systems,	Shukla	et.	al.	{under	review}		
▪R-storm:	Resource-aware	scheduling	in	storm,	Peng	
et.al.,in:	Middleware	2016

14-Feb-17 22

