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Apache Storm

• Open source distributed realtime computation system 
• Can process million tuples processed per second per 

node. 
• Scalable, fault-tolerant, guarantees your data will be 

processed 
• Does  for realtime processing what Hadoop did for batch 

processing. 
• Key difference is that a MapReduce job eventually 

finishes, whereas a topology processes messages forever 
(or until you kill it).
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Storm Architecture:
• Two kinds of nodes on a Storm cluster: Master node and the worker nodes 

• Master node 
»runs a daemon called "Nimbus"  
»distributing code around the cluster, assigning tasks to machines, and 
monitoring for failures. 

• Worker node  
» runs a daemon called the “Supervisor" 
» listens for work assigned by nimbus to its machine and starts and stops 
worker processes 
»Worker process executes a subset of a topology, a running topology 
consists of many worker processes spread across many machines.
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Storm Architecture:
• Zookeeper 

• Coordination between Nimbus and the Supervisors is done through a 
Zookeeper cluster 

• Nimbus daemon and Supervisor daemons are fail-fast and stateless, 
state is kept in Zookeeper 
»can kill Nimbus or the Supervisors and they'll start back up like 
nothing happened.
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Key abstractions
• Tuples: an ordered list of elements. 
• Streams: an unbounded sequence of tuples. 
• Spouts: sources of streams in a computation (e.g. a Twitter API) 
• Bolts:  

• process input streams and produce output streams. 
• run functions (filter, aggregate, or join data or talk to databases). 

• Topologies: Computation DAG, each node contains processing logic, and 
links between nodes indicate how data streams
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Topology Example

• Contains a spout and two bolts, Spout emits words, and each bolt 
appends the string "!!!" to its input 

• Nodes are arranged in a line 
• e.g. spout emits the tuples ["bob"] and ["john"], then the second bolt 

will emit the words ["bob!!!!!!"] and [“john!!!!!!"] 
• Last parameter, parallelism: how many threads should run for that 

component across the cluster 
• "shuffle grouping" means that tuples should be randomly distributed to 

downstream tasks. 
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Spout and Bolt
• Processing logic implements 

the IRichSpout & IRichBolt 
interface for spouts & bolts. 

• open/prepare method provides 
the bolt with an 
OutputCollector that is used for 
emitting tuples from this bolt, 
executed once. 

• Execute method receives a 
tuple from one of the bolt's 
inputs, executes for every 
tuple. 

• Cleanup method is called when 
a Bolt is being shutdown, 
executed once.
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Stateful bolts (from v1.0.1)
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• Abstractions for bolts to save and retrieve the state of its operations.  
• By extending the BaseStatefulBolt and implement initState(T state) 

method.  
• initState method is invoked by the framework during the bolt 

initialization (after prepare()) with the previously saved state of the bolt.
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Stateful bolts (from v1.0.1)
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• The framework periodically checkpoints the state of the bolt (default every 
second). 

• Checkpoint is triggered by an internal checkpoint spout. 
• If there is at-least one IStatefulBolt in the topology, the checkpoint spout is 

automatically added by the topology builder. 
• Checkpoint tuples flow through a separate internal stream namely 

$checkpoint 
• Non stateful bolts just forwards the checkpoint tuples so that the 

checkpoint tuples can flow through the topology DAG. 
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Example of a running topology
• Topology consists of three components: one BlueSpout and two 

bolts,GreenBolt and YellowBolt 
• #worker processes=2 
• for green Bolt: 

• #executors =2 
• #tasks = 4 
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Running topology: worker processes, 
executors and tasks
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• Worker processes executes a subset of a topology, and runs in its own JVM. 
• An executor is a thread that is spawned by a worker process and runs within 

the worker’s JVM (parallelism hint).  
• A task performs the actual data processing and is run within its parent 

executor’s thread of execution.

•  # threads can change at 
run time, but not # tasks 

• #threads <= #tasks
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Updating the parallelism of a running 
topology

• Rebalancing: Increase or decrease the number of worker processes and/or 
executors without being required to restart the cluster or the topology, 
but not tasks. 

•  e.g. To reconfigure the topology "mytopology" to use 5 worker processes, 
# the spout "blue-spout" to use 3 executors. 
• storm rebalance mytopology -n 5 -e blue-spout=3 

• Demo:
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Stream groupings
• Stream grouping defines how that stream should be partitioned among 

the bolt's tasks. 
• Shuffle grouping: random distribution, each bolt is guaranteed to get 

an equal number of tuples 
• Fields grouping: stream is partitioned by the fields specified in the 

grouping 
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• Global grouping: entire stream 
goes to a single one of the bolt's 
tasks.  

• All grouping: The stream is 
replicated across all the bolt's 
tasks. 

• etc ..
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Guaranteeing Message Processing
• Storm can guarantee at least once processing. 
• Tuple coming off the spout triggers many tuples being created based on it 

forming Tuple tree. 
• "fully processed” tuple: tuple tree has been exhausted and every message 

in the tree has been processed (within a specified timeout).  
• Spout while emitting provides a "message id" that will be used to 

identify the tuple later.  
• Storm takes care of tracking the tree of messages that is created. 
• if fully processed, Storm will call the ack method on the originating 

Spout task with its message id. 
• if tuple times-out Storm will call the fail method on the Spout.
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Guaranteeing Message Processing…
• Things user have to do to achieve at-least once semantics. 

• Anchoring: creating a new link in the tree of tuples. 
• Acking: finished processing an individual tuple. 
• Failing: to immediately fail tuple at the root of the tuple tree, 

to replay faster than waiting for the tuple to time-out.
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Internal messaging within Storm worker 
processes
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Resource Scheduling for DSPS
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• Scheduling for the DSPS has two parts:  

• Resource allocation -  
• Determining the appropriate degrees of parallelism per task 

(i.e., threads of execution)  
• Amount of computing resources per task (e.g., Virtual 

Machines (VMs)) for the given dataflow  
• Resource mapping -  

• Deciding the specific assignment of the threads to the VMs 
ensuring that the expected performance behavior and resource 
utilization is met. 
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Resource Allocation
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• For a given DAG and input rate, allocation determines the number of resource 
slots(ρ) for DAG & number of threads(q), resources  required for each task. 

• Resource allocation algorithms:   
• Linear Storm Allocation (LSA) 
• Model Based Allocation (MBA) [3] 

• Requires input rate to each task for finding the resource needs and data 
parallelism for that task. 

• # of slots:

[3] Model-driven Scheduling for Distributed Stream Processing Systems, Shukla,et al {under review} 
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Linear Storm Allocation
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• e.g. For 105 tuples/sec rate. 
• Threads=(52 thread * 2 tuples/sec)+(1 thread*1 tuple/sec) 
• CPU% =52*6.73+3.3=353% 
• Memory%=52*23.92+11.16=1255.8% 
• Required #Slots=ceil (353%,1255.8%)=13

Pseudocode:	
AllocateLSA(G,Ω){ 
	 for	each	task	in	DAG 
	 	 while(input	rate	for	task	ti	>	Peak	rate	with	1	thread) 
	 	 	 { 
	 	 	 	 add	1	thread 
	 	 	 	 decrease	required	rate	by	Peak	rate	with	1	thread 
	 	 	 	 increase	resources	allocated	with	that	required	for	1	thread 
	 	 	 }		  
	 	 if(remaining	input	rate	for	task	ti>0) 
	 	 	 { 
	 	 	 	 increase	number	of	threads	by	1 
	 	 	 	 set	input	rate	to	zero 
	 	 	 	 add	resources	by	scaling	remaining	rate	with	peak	rate 
	 	 	 } 
	 return	<#threads,CPU%,Memory%>	for	each	task	
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Default Mapping
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• Not “resource aware”, so does not use the 
output of the performance model 

• Threads are picked in any arbitrary order for 
mapping  

• For each thread, next slot is picked in round-
robin fashion 

• Unbalanced load distribution across the slots

Default	Storm	Mapping	(DSM)

v1 v2 v3
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Orange:	4
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Green:	5

DAG	with	Thread	Allocation	for	Tasks	using	Model

B1.	.B5 

O1.	.O4 

Y1.	.Y3 

G1.	.G5 
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2

s32
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B1,	O2,	G1 B3,	O4,	G3 B5,	Y2,	Y5 

B2,	O3,	G2 B4,	Y1,	G4 O1,	Y3 
⍴	=	6	slots

Pseudocode: 

MapDSM(R,S){ 
	 M<-	new	map() 
	 get	the	list	of	slots 
	 for	each	thread 
	 	 pick	slots	in	round	robin	manner 
	 	 store	mapping	of	thread	to	slot	in	M 

	 return	M	
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Resource Aware Mapping[4]
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• Use only resource usage for single thread from the performance model 
• “Network aware”, places the threads on slots such that communication latency between 

adjacent tasks is reduced 
• Threads are picked in order of BFS traversal of the DAG for locality. 
• Slots are chosen by Distance function (minimum value) based on the available and required 

resources, and a network latency measure
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DAG	with	Thread	Allocation	for	Tasks	using	Model
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[4] Peng et.al. R-storm: Resource-aware scheduling in storm, in: Middleware 2016 
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