
Apache Spark Internals

Pietro Michiardi

Eurecom

Pietro Michiardi (Eurecom) Apache Spark Internals 1 / 80



Acknowledgments & Sources

Sources
I Research papers:

F https://spark.apache.org/research.html
I Presentations:

F M. Zaharia, “Introduction to Spark Internals”,
https://www.youtube.com/watch?v=49Hr5xZyTEA

F A. Davidson, “A Deeper Understanding of Spark Internals”,
https://www.youtube.com/watch?v=dmL0N3qfSc8

I Blogs:
F Quang-Nhat Hoang-Xuan, Eurecom, http://hxquangnhat.com/
F Khoa Nguyen Trong, Eurecom,

https://trongkhoanguyenblog.wordpress.com/

Pietro Michiardi (Eurecom) Apache Spark Internals 2 / 80

https://spark.apache.org/research.html
https://www.youtube.com/watch?v=49Hr5xZyTEA
https://www.youtube.com/watch?v=dmL0N3qfSc8
http://hxquangnhat.com/
https://trongkhoanguyenblog.wordpress.com/


Anatomy of a Spark Application

Anatomy of a Spark
Application

Pietro Michiardi (Eurecom) Apache Spark Internals 13 / 80



Anatomy of a Spark Application

A Very Simple Application Example

1 val sc = new SparkContext("spark://...", "MyJob", home,
jars)

2

3 val file = sc.textFile("hdfs://...") // This is an RDD
4

5 val errors = file.filter(_.contains("ERROR")) // This is
an RDD

6

7 errors.cache()
8

9 errors.count() // This is an action

Pietro Michiardi (Eurecom) Apache Spark Internals 14 / 80



Anatomy of a Spark Application

Spark Applications: The Big Picture
There are two ways to manipulate data in Spark

I Use the interactive shell, i.e., the REPL
I Write standalone applications, i.e., driver programs

Pietro Michiardi (Eurecom) Apache Spark Internals 15 / 80



Anatomy of a Spark Application

Spark Components: details

Pietro Michiardi (Eurecom) Apache Spark Internals 16 / 80



Anatomy of a Spark Application

The RDD graph: dataset vs. partition views

Pietro Michiardi (Eurecom) Apache Spark Internals 17 / 80



Anatomy of a Spark Application

Data Locality

Data locality principle
I Same as for Hadoop MapReduce
I Avoid network I/O, workers should manage local data

Data locality and caching
I First run: data not in cache, so use HadoopRDD’s locality prefs

(from HDFS)
I Second run: FilteredRDD is in cache, so use its locations
I If something falls out of cache, go back to HDFS

Pietro Michiardi (Eurecom) Apache Spark Internals 18 / 80



Anatomy of a Spark Application

Lifetime of a Job in Spark

RDD Objects

rdd1.join(rdd2)

.groupBy(...)

.filter(...)

Build the operator DAG

DAG Scheduler

Split the DAG into

stages of tasks

Submit each stage and

its tasks as ready

Task Scheduler

Cluster(
manager(

Launch tasks via Master

Retry failed and strag-

gler tasks

Worker

Block&
manager&

Threads&

Execute tasks

Store and serve blocks

Pietro Michiardi (Eurecom) Apache Spark Internals 19 / 80



Application model for scheduling

Application: Driver code that represents the DAG

Job: Subset of application triggered for execution 
by an “action” in the DAG

Stage: Job sub-divided into stages that have 
dependencies with each other

Task: Unit of work in a stage that is scheduled on 
a worker

http://spark.apache.org/docs/latest/cluster-overview.html



Anatomy of a Spark Application

In Summary

Our example Application: a jar file
I Creates a SparkContext, which is the core component of the

driver
I Creates an input RDD, from a file in HDFS
I Manipulates the input RDD by applying a filter(f: T =>
Boolean) transformation

I Invokes the action count() on the transformed RDD
The DAG Scheduler

I Gets: RDDs, functions to run on each partition and a listener for
results

I Builds Stages of Tasks objects (code + preferred location)
I Submits Tasks to the Task Scheduler as ready
I Resubmits failed Stages

The Task Scheduler
I Launches Tasks on executors
I Relaunches failed Tasks
I Reports to the DAG Scheduler

Pietro Michiardi (Eurecom) Apache Spark Internals 20 / 80



Spark Deployments

Spark Deployments

Pietro Michiardi (Eurecom) Apache Spark Internals 21 / 80



Spark Deployments

Spark Components: System-level View

Pietro Michiardi (Eurecom) Apache Spark Internals 22 / 80



Spark Deployments

Spark Deployment Modes

The Spark Framework can adopt several cluster managers
I Local Mode
I Standalone mode
I Apache Mesos
I Hadoop YARN

General “workflow”
I Spark application creates SparkContext, which initializes the
DriverProgram

I Registers to the ClusterManager
I Ask resources to allocate Executors
I Schedule Task execution

Pietro Michiardi (Eurecom) Apache Spark Internals 23 / 80



Spark Deployments

Worker Nodes and Executors

Worker nodes are machines that run executors
I Host one or multiple Workers
I One JVM (= 1 UNIX process) per Worker
I Each Worker can spawn one or more Executors

Executors run tasks, used by 1 application, for whole lifetime
I Run in child JVM (= 1 UNIX process)
I Execute one or more task using threads in a ThreadPool

Pietro Michiardi (Eurecom) Apache Spark Internals 24 / 80



Spark Deployments

Comparison to Hadoop MapReduce

Hadoop MapReduce
One Task per UNIX process
(JVM), more if JVM reuse
MultiThreadedMapper,
advanced feature to have
threads in Map Tasks

→ Short-lived Executor, with one
large Task

Spark
Tasks run in one or more
Threads, within a single UNIX
process (JVM)
Executor process statically
allocated to worker, even with
no threads

→ Long-lived Executor, with
many small Tasks

Pietro Michiardi (Eurecom) Apache Spark Internals 25 / 80



Spark Deployments

Benefits of the Spark Architecture

Isolation
I Applications are completely isolated
I Task scheduling per application

Low-overhead
I Task setup cost is that of spawning a thread, not a process
I 10-100 times faster
I Small tasks→ mitigate effects of data skew

Sharing data
I Applications cannot share data in memory natively
I Use an external storage service like Tachyon

Resource allocation
I Static process provisioning for executors, even without active tasks
I Dynamic provisioning under development

Pietro Michiardi (Eurecom) Apache Spark Internals 26 / 80



Resilient Distributed Datasets 

RDD Partition Dependency Types 

Narrow dependencies Wide dependencies

Pietro Michiardi (Eurecom) Apache Spark Internals 34 / 80



Resilient Distributed Datasets

Dependency Types (2)

Narrow dependencies
I Each partition of the parent RDD is used by at most one partition of

the child RDD
I Task can be executed locally and we don’t have to shuffle. (Eg:
map, flatMap, filter, sample)

Wide Dependencies
I Multiple child partitions may depend on one partition of the parent

RDD
I This means we have to shuffle data unless the parents are

hash-partitioned (Eg: sortByKey, reduceByKey, groupByKey,
cogroupByKey, join, cartesian)

Pietro Michiardi (Eurecom) Apache Spark Internals 35 / 80



Resilient Distributed Datasets

Dependency Types: Optimizations
Benefits of Lazy evaluation

I The DAG Scheduler optimizes Stages and Tasks before submitting
them to the Task Scheduler

I Piplining narrow dependencies within a Stage
I Join plan selection based on partitioning
I Cache reuse

Pietro Michiardi (Eurecom) Apache Spark Internals 36 / 80



Spark Word Count

Detailed Example:
Word Count

Pietro Michiardi (Eurecom) Apache Spark Internals 48 / 80



Spark Word Count

Spark Word Count: the driver

1 import org.apache.spark.SparkContext
2

3 import org.apache.spark.SparkContext._
4

5 val sc = new SparkContext("spark://...", "MyJob", "spark
home", "additional jars")

Driver and SparkContext
I A SparkContext initializes the application driver, the latter then

registers the application to the cluster manager, and gets a list of
executors

I Then, the driver takes full control of the Spark job

Pietro Michiardi (Eurecom) Apache Spark Internals 49 / 80



Spark Word Count

Spark Word Count: the code

1 val lines = sc.textFile("input")
2 val words = lines.flatMap(_.split(" "))
3 val ones = words.map(_ -> 1)
4 val counts = ones.reduceByKey(_ + _)
5 val result = counts.collectAsMap()

RDD lineage DAG is built on driver side with
I Data source RDD(s)
I Transformation RDD(s), which are created by transformations

Job submission
I An action triggers the DAG scheduler to submit a job

Pietro Michiardi (Eurecom) Apache Spark Internals 50 / 80



Spark Word Count

Spark Word Count: the DAG

Directed Acyclic Graph
I Built from the RDD lineage

DAG scheduler
I Transforms the DAG into stages and turns each partition of a stage

into a single task
I Decides what to run

Pietro Michiardi (Eurecom) Apache Spark Internals 51 / 80



Spark Word Count

Spark Word Count: the execution plan

Spark Tasks
I Serialized RDD lineage DAG + closures of transformations
I Run by Spark executors

Task scheduling
I The driver side task scheduler launches tasks on executors

according to resource and locality constraints
I The task scheduler decides where to run tasks

Pietro Michiardi (Eurecom) Apache Spark Internals 52 / 80



Spark Word Count

Spark Word Count: the Shuffle phase

1 val lines = sc.textFile("input")
2 val words = lines.flatMap(_.split(" "))
3 val ones = words.map(_ -> 1)
4 val counts = ones.reduceByKey(_ + _)
5 val result = counts.collectAsMap()

reduceByKey transformation
I Induces the shuffle phase
I In particular, we have a wide dependency
I Like in Hadoop MapReduce, intermediate <key,value> pairs are

stored on the local file system

Automatic combiners!
I The reduceByKey transformation implements map-side

combiners to pre-aggregate data

Pietro Michiardi (Eurecom) Apache Spark Internals 53 / 80



Resource Allocation

Spark Schedulers

Two main scheduler components, executed by the driver
I The DAG scheduler
I The Task scheduler

Objectives
I Gain a broad understanding of how Spark submits Applications
I Understand how Stages and Tasks are built, and their optimization
I Understand interaction among various other Spark components

Pietro Michiardi (Eurecom) Apache Spark Internals 62 / 80



Resource Allocation

Submitting a Spark Application: A Walk Through

Pietro Michiardi (Eurecom) Apache Spark Internals 63 / 80



Resource Allocation

The DAG Scheduler
Stage-oriented scheduling

I Computes a DAG of stages for each job in the application
I Keeps track of which RDD and stage output are materialized
I Determines an optimal schedule, minimizing stages
I Submit stages as sets of Tasks (TaskSets) to the Task scheduler

Data locality principle
I Uses “preferred location” information (optionally) attached to each

RDD
I Package this information into Tasks and send it to the Task

scheduler
Manages Stage failures

I Failure type: (intermediate) data loss of shuffle output files
I Failed stages will be resubmitted
I NOTE: Task failures are handled by the Task scheduler, which

simply resubmit them if they can be computed with no dependency
on previous output

Pietro Michiardi (Eurecom) Apache Spark Internals 65 / 80



Resource Allocation

More About Stages

What is a DAG
I Directed acyclic graph of stages
I Stage boundaries determined by the shuffle phase
I Stages are run in topological order

Definition of a Stage
I Set of independent tasks
I All tasks of a stage apply the same function
I All tasks of a stage have the same dependency type
I All tasks in a stage belong to a TaskSet

Stage types
I Shuffle Map Stage: stage tasks results are inputs for another stage
I Result Stage: tasks compute the final action that initiated a job

(e.g., count(), save(), etc.)

Pietro Michiardi (Eurecom) Apache Spark Internals 68 / 80



Resource Allocation

The Task Scheduler

Task oriented scheduling
I Schedules tasks for a single SparkContext
I Submits tasks sets produced by the DAG Scheduler
I Retries failed tasks
I Takes care of stragglers with speculative execution
I Produces events for the DAG Scheduler

Implementation details
I

I

The Task scheduler creates a TaskSetManager to wrap the 
TaskSet from the DAG scheduler
The TaskSetManager class operates as follows:

F Keeps track of each task status
F Retries failed tasks
F Imposes data locality using delayed scheduling

I Message passing implemented using Actors, and precisely using
the Akka framework

Pietro Michiardi (Eurecom) Apache Spark Internals 69 / 80



Resource Allocation

Running Tasks on Executors

Pietro Michiardi (Eurecom) Apache Spark Internals 70 / 80



Resource Allocation

Running Tasks on Executors

Executors run two kinds of tasks
I ResultTask: apply the action on the RDD, once it has been

computed, alongside all its dependencies
Line 19

I ShuffleTask: use the Block Manager to store shuffle output
using the ShuffleWriter
Lines 23,24

I The ShuffleRead component depends on the type of the RDD,
which is determined by the compute function and the
transformation applied to it

Pietro Michiardi (Eurecom) Apache Spark Internals 71 / 80



Data Shuffling

Data Shuffling

Pietro Michiardi (Eurecom) Apache Spark Internals 72 / 80



Data Shuffling

The Spark Shuffle Mechanism

Same concept as for Hadoop MapReduce, involving:
I Storage of “intermediate” results on the local file-system
I Partitioning of “intermediate” data
I Serialization / De-serialization
I Pulling data over the network

Transformations requiring a shuffle phase
I groupByKey(), reduceByKey(), sortByKey(), distinct()

Various types of Shuffle
I Hash Shuffle
I Consolidate Hash Shuffle
I Sort-based Shuffle

Pietro Michiardi (Eurecom) Apache Spark Internals 73 / 80



Data Shuffling

The Spark Shuffle Mechanism: an Illustration

Data Aggregation
I Defined on ShuffleMapTask
I Two methods available:

F AppendOnlyMap: in-memory hash table combiner
F ExternalAppendOnlyMap: memory + disk hash table combiner

Batching disk writes to increase throughput

Pietro Michiardi (Eurecom) Apache Spark Internals 74 / 80



Data Shuffling

The Hash Shuffle Mechanism

Map Tasks write output to multiple files
I Assume: m map tasks and r reduce tasks
I Then: m × r shuffle files as well as in-memory buffers (for batching

writes)
Be careful on storage space requirements!

I Buffer size must not be too big with many tasks
I Buffer size must not be too small, for otherwise throughput

decreases

Pietro Michiardi (Eurecom) Apache Spark Internals 76 / 80



Data Shuffling

The Sort-based Shuffle Mechanism

Implements the Hadoop Shuffle mechanism
I Single shuffle file, plus an index file to find “buckets”
I Very beneficial for write throughput, as more disk writes can be

batched
Sorting mechanism

I Pluggable external sorter
I Degenerates to Hash Shuffle if no sorting is required

Pietro Michiardi (Eurecom) Apache Spark Internals 78 / 80



https://0x0fff.com/spark-architecture-shuffle/


	Introduction and Motivations
	Anatomy of a Spark Application
	Spark Deployments
	Resilient Distributed Datasets
	Spark Word Count
	Caching and Storage
	Resource Allocation
	Data Shuffling



