
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान

बंगलौर, भारत

Department of Computational and Data Sciences

©Yogesh Simmhan & Partha Talukdar, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

NoSQL Databases

Yogesh Simmhan
2 8 M a r , 2 0 1 7

DS256:Jan17 (3:1)

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.in | Department of Computational and Data Sciences

SQL vs. NoSQL

2

CDS.IISc.in | Department of Computational and Data Sciences

OLTP vs. OLAP
We can divide IT systems into transactional

(OLTP) and analytical (OLAP). In general we can
assume that OLTP systems provide source data to
data warehouses, whereas OLAP systems help to
analyze it

W2013, CSCI 2141, https://web.cs.dal.ca/~hawkey/2141/NoSQL.ppt

CDS.IISc.in | Department of Computational and Data Sciences

Challenges of Scale Differ

W2013, CSCI 2141, https://web.cs.dal.ca/~hawkey/2141/NoSQL.ppt

CDS.IISc.in | Department of Computational and Data Sciences

CDS.IISc.in | Department of Computational and Data Sciences

What is NoSQL?

Not only SQL

 Data models other than strict tabular form

Query models other than strict SQL

 Designed for un/semi/un/irregular structured data

 Designed to scale

Many different varieties!

6

CDS.IISc.in | Department of Computational and Data Sciences

http://2.bp.blogspot.com/-6ufQu8Te8Tc/VoDRa2HcDGI/AAAAAAAALTw/tlzKrrtji58/s1600/Types%2Bof%2BNoSQL%2BDatabase.png

CDS.IISc.in | Department of Computational and Data Sciences

8

CDS.IISc.in | Department of Computational and Data Sciences

ACID & BASE

CDS.IISc.in | Department of Computational and Data Sciences

SQL Characteristics

 Data stored in columns and tables

 Relationships represented by data

 Declarative Languages
‣ Data Manipulation Language

‣ Data Definition Language

 Transactions

 Abstraction from physical layer

 ACID!

Keith W. Hare, Metadata Open Forum

CDS.IISc.in | Department of Computational and Data Sciences

ACID
 A model for correct behaviour of databases

‣ Name was coined (no surprise) in California in 60’s

 Atomicity: even if “transactions” have multiple
operations, does them to completion (commit) or
rolls back so that they leave no effect (abort)

 Consistency: A transaction that runs on a correct
database leaves it in a correct (“consistent”) state

 Isolation: It looks as if each transaction ran all by
itself. Basically says “we’ll hide any concurrency”

Durability: Once a transaction commits, updates can’t
be lost or rolled back

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

CDS.IISc.in | Department of Computational and Data Sciences

ACID eases development
No need to worry about a transaction leaving some

sort of partial state
‣ For example, showing Tony as retired and yet leaving some

customer accounts with him as the account rep

 Transaction can’t glimpse a partially completed state
of some concurrent transaction
‣ Eliminates worry about transient database inconsistency

that might cause a transaction to crash

 Serial & Serializable Execution
‣ Offers concurrency while hiding side-effects

 But costs are not small
‣ O(n2)..O(n5) for replicated ACID, n is replica set size

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

Jim Gray, Pat Helland, Patrick E. O'Neil, Dennis Shasha: The Dangers of Replication and a
Solution. SIGMOD 1996: 173-182

CDS.IISc.in | Department of Computational and Data Sciences

BASE

 Basically Available Soft-State Services with Eventual
Consistency
‣ Methodology for transforming transactional application

into more concurrent & less rigid

‣ Guide programmers to a cloud solution that performs
much better

 Doesn’t guarantee ACID properties
‣ Uses the CAP Theorem

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

BASE: An ACID Alternative, DAN PRITCHETT, May/June 2008 ACM QUEUE

CDS.IISc.in | Department of Computational and Data Sciences

BASE

 Basically Available

Goal is to promote rapid responses.

 Partitioning faults are rare in data centers
‣ Crashes force isolated machines to reboot

Need rapid responses even when some replicas on
critical path can’t be contacted
‣ Fast response even if some replicas are slow or crashed

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

CDS.IISc.in | Department of Computational and Data Sciences

BASE

 Soft State Service

 Runs in first tier. Can’t store permanent data.

 Restarts in a “clean” state after a crash

 To remember data:
‣ Replicate it in memory in enough copies to never lose all

in any crash

‣ Pass it to some other service that keeps “hard state”

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

CDS.IISc.in | Department of Computational and Data Sciences

BASE
 Eventual Consistency

OK to send “optimistic” answers to external client
‣ Send reply to user before finishing the operation

 Can use cached data (without staleness check)

 Can guess the outcome of an update

 Can skip locks, hoping no conflicts happen

 Later, if needed, correct any inconsistencies in an
offline cleanup activity

 Developer ends up thinking hard and working hard!

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

CDS.IISc.in | Department of Computational and Data Sciences

CAP Theorem

17

CDS.IISc.in | Department of Computational and Data Sciences

Eric Brewer’s CAP theorem
 In a famous 2000 keynote talk at ACM PODC, Eric

Brewer proposed that “you can have just two from
Consistency, Availability and Partition Tolerance”
‣ He argues that data centers need very snappy response,

hence availability is paramount

‣ And they should be responsive even if a transient fault
makes it hard to reach some service.

‣ So they should use cached data to respond faster even if
the cache can’t be validated and might be stale!

 Conclusion: weaken consistency for faster
response

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

CAP Twelve Years Later: How the “Rules” Have Changed,
Eric Brewer, IEEE Computer, FEBRUARY 2012

CDS.IISc.in | Department of Computational and Data Sciences

CAP theorem

 A proof of CAP was later introduced by MIT’s Seth
Gilbert and Nancy Lynch
‣ Suppose a data center service is active in two parts of

the country with a network link between them

‣ We temporarily cut the link (“partitioning” the network)

‣ And present the service with conflicting requests

 The replicas can’t talk to each other so can’t sense
the conflict

 If they respond at this point, inconsistency arises

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

Perspectives on the CAP Theorem,
Seth Gilbert & Nancy A. Lynch, IEEE Computer, FEBRUARY 2012

CDS.IISc.in | Department of Computational and Data Sciences

© Cuong Pham & Biplap Deka, CS525 Spring 2013, UIUC

CDS.IISc.in | Department of Computational and Data Sciences

© Eric A. Brewer

CDS.IISc.in | Department of Computational and Data Sciences

© Eric A. Brewer

CDS.IISc.in | Department of Computational and Data Sciences

© Eric A. Brewer

CDS.IISc.in | Department of Computational and Data Sciences

Is inconsistency a bad
thing?
How much consistency is really needed in the first

tier of the cloud?
‣ Think about YouTube videos. Would consistency be an

issue here?

‣ What about the Amazon “number of units available”
counters. Will people notice if those are a bit off?

 Puzzle: Can you come up with a general policy for
knowing how much consistency a given thing
needs?

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

CDS.IISc.in | Department of Computational and Data Sciences

eBay’s Five
Commandments
 As described by Randy Shoup at LADIS 2008

Thou shalt…
1. Partition Everything

2. Use Asynchrony Everywhere

3. Automate Everything

4. Remember: Everything Fails

5. Embrace Inconsistency

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

http://images.google.com/imgres?imgurl=http://image4.360doc.com/DownloadImg/2009/4/9/2459_3077871_1.jpg&imgrefurl=http://www.360doc.com/content/090409/23/2459_3077871.html&usg=__KqM0SM6gUgjc4WUrP6FHQ1ks_9k=&h=375&w=500&sz=34&hl=en&start=14&um=1&tbnid=h3bkxvCwXi3MLM:&tbnh=98&tbnw=130&prev=/images?q=randy+shoup+eBay&hl=en&rls=com.microsoft:en-us:IE-SearchBox&rlz=1I7GGLD&um=1
http://images.google.com/imgres?imgurl=http://image4.360doc.com/DownloadImg/2009/4/9/2459_3077871_1.jpg&imgrefurl=http://www.360doc.com/content/090409/23/2459_3077871.html&usg=__KqM0SM6gUgjc4WUrP6FHQ1ks_9k=&h=375&w=500&sz=34&hl=en&start=14&um=1&tbnid=h3bkxvCwXi3MLM:&tbnh=98&tbnw=130&prev=/images?q=randy+shoup+eBay&hl=en&rls=com.microsoft:en-us:IE-SearchBox&rlz=1I7GGLD&um=1

CDS.IISc.in | Department of Computational and Data Sciences

Vogels at the Helm

Werner Vogels is CTO at Amazon.com…

He was involved in building a new shopping cart
service
‣ The old one used strong consistency for replicated data

‣ New version was build over a DHT, like Chord, and has
weak consistency with eventual convergence

 This weakens guarantees… but
‣ Speed matters more than correctness

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

Consistency technologies
just don’t scale!

http://images.google.com/imgres?imgurl=http://meetthetaylors.com/images/puzzled-man.jpg&imgrefurl=http://neverknewthat.wordpress.com/category/sql/&usg=__Kv_M1kmsrsSOuzcB8QkApJOty4c=&h=268&w=447&sz=81&hl=en&start=15&um=1&tbnid=KH80U7j7-f5cKM:&tbnh=76&tbnw=127&prev=/images?q=puzzled&hl=en&rls=com.microsoft:en-us:IE-SearchBox&rlz=1I7GGLD&um=1
http://images.google.com/imgres?imgurl=http://meetthetaylors.com/images/puzzled-man.jpg&imgrefurl=http://neverknewthat.wordpress.com/category/sql/&usg=__Kv_M1kmsrsSOuzcB8QkApJOty4c=&h=268&w=447&sz=81&hl=en&start=15&um=1&tbnid=KH80U7j7-f5cKM:&tbnh=76&tbnw=127&prev=/images?q=puzzled&hl=en&rls=com.microsoft:en-us:IE-SearchBox&rlz=1I7GGLD&um=1

CDS.IISc.in | Department of Computational and Data Sciences

What does “consistency”
mean?
We need to pin this basic issue down!

 As used in CAP, consistency is about two things
1. First, that updates to the same data item are applied in

some agreed-upon order

2. Second, that once an update is acknowledged to an
external user, it won’t be forgotten

Not all systems need both properties

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

CDS.IISc.in | Department of Computational and Data Sciences

Apache Dynamo DB
Key Value Store

Cassandra

28

CDS.IISc.in | Department of Computational and Data Sciences

Amazon’s Dynamo DB
 Key-Value Store

‣ Simple Get() & Put() operations on objects with unique
ID. No queries.

Highly Available
‣ Even the slightest outage has significant financial

consequences

 Service Level Agreements
‣ Guaranteeing response in 300ms for 99.9% of requests at a

peak load of 500 req/sec

Dynamo: Amazon’s Highly Available Key-value Store, Giuseppe DeCandia, et al, SOSP, 2007

CDS.IISc.in | Department of Computational and Data Sciences

Design Choices

 Sacrifice strong consistency for availability
‣ “always writeable”. No updates are rejected.

‣ Conflict resolution is executed during read instead of
write, i.e. “always writeable”.

 Incremental scalability & decentralization
‣ Symmetry of responsibility

‣ Heterogeneity in capacity

 All nodes are trusted

From external sources

CDS.IISc.in | Department of Computational and Data Sciences

Techniques

Problem Technique Advantage

Partitioning Consistent Hashing Incremental Scalability

High Availability for
writes

Vector clocks with
reconciliation during

reads

Version size is decoupled
from update rates.

Handling temporary
failures

Sloppy Quorum and
hinted handoff

Provides high availability and
durability guarantee when

some of the replicas are not
available.

Recovering from
permanent failures

Anti-entropy using
Merkle trees

Synchronizes divergent
replicas in the background.

Membership and failure
detection

Gossip-based
membership protocol
and failure detection.

Preserves symmetry and
avoids having a centralized

registry for storing
membership and node
liveness information.

From external sources

CDS.IISc.in | Department of Computational and Data Sciences

Partitioning
 Consistent hashing

Output range of hash func. on
key is a fixed “ring”

 Virtual node is responsible for a
range of hash values (tokens)
‣ Hash value for the key maps to a

virtual node

 Each physical node responsible
for multiple virtual nodes
‣ Allows nodes to arrive and leave

without having to change keys
present in virtual nodes

From external sources

CDS.IISc.in | Department of Computational and Data Sciences

Partitioning and placement of key

 Divide the hash space into Q equally sized
partitions…virtual node or token

 Each physical node assigned Q/S tokens where S
is the number of nodes in the system.
‣ Can also assign variable tokens to physical node based

on machine size

 Adapt to capacity of physical nodes

 Incrementally add/remove physical nodes
‣ When a node leaves the system, its tokens

(virtual nodes) are randomly & uniformly
distributed to the remaining nodes to load
balance

‣ When a node joins the system it uniformaly
"steals" tokens from nodes in the system to load
balance

From external sources

CDS.IISc.in | Department of Computational and Data Sciences

Replication
 Each data item is replicated at N

hosts.
‣ “preference list”: The list of nodes

responsible for storing a
particular key.

 Coordinator node (from hashing)
stores first copy
‣ Next copy stored in subsequent

virtual nodes
‣ Skip virtual nodes present on

same physical node

 Gossip protocol
‣ Propagates changes among nodes
‣ Eventually consistent view of

membership, mapping from
tokens to nodes

D stores (A, B], (B, C], (C, D]

From external sources

CDS.IISc.in | Department of Computational and Data Sciences

Key Value Operations

 Add and update items both use put(key, value)
operation

 get(key) returns the value

 Any node may receive the request

 Forwarded to the coordinator node for response

 put() may return to its client before the update is
applied at all replicas
‣ May leave replicas in inconsistent state

 get() may return many versions of same object

35

CDS.IISc.in | Department of Computational and Data Sciences

Sloppy Quorum

Writes are successful if ‘w’ replicas can be updated
(w<N)
‣ Coordinator forwards requests to all N replicas, and

returns when ‘w’ respond

 Reads return all ‘r’ replica values (r<N)
‣ Coordinator sends requests to all N replicas, and returns

when ‘r’ respond

‣ Clients need to decide how to use these copies

 Reads & writes dictated by slowest replica
‣ Set r+w > N

From external sources

CDS.IISc.in | Department of Computational and Data Sciences

Data Versioning & Consistency

 put() is treated as append of the updated value
‣ Immutable append to a particular version of the object

‣ Multiple versions can coexist…but system will not internally
“resolve” them

 Challenge
‣ Distinct version sub-histories need to be reconciled.

 Solution
‣ Uses vector clocks to capture causality between different

versions of the same object.

From external sources

CDS.IISc.in | Department of Computational and Data Sciences

Consistency with Vector Clocks

 Vector clock: (node, counter) pair
‣ Every version of every object is

associated with one vector clock.

‣ If the counters on the first object’s clock
are <= all nodes in the second clock,
then the first is an ancestor of the
second and can be forgotten.

‣ i.e. first object happened before second
object

 If get() has multiple replica versions,
return causally “unrelated” versions
‣ i.e. remove partial ordered & only return

causally unordered versions for
reconciliation

 Client writes the reconciled version back
‣ e.g. Sx resolves D3 and D4 into D5 From external sources

CDS.IISc.in | Department of Computational and Data Sciences

Hinted handoff
 Assume N = 3. When A is

temporarily down or
unreachable during a write,
send replica to D.

 D is hinted that the replica is
belong to A and it will
deliver to A when A is
recovered.

 Again: “always writeable”

From external sources

CDS.IISc.in | Department of Computational and Data Sciences

Replica synchronization

Merkle tree:
‣ a hash tree where leaves are hashes of the values of

individual keys.

‣ Parent nodes higher in the tree are hashes of their
respective children.

From external sources

CDS.IISc.in | Department of Computational and Data Sciences

Replica synchronization

 Advantage of Merkle tree:
‣ Each branch of the tree can be checked independently

without requiring nodes to download the entire tree.

‣ Help in reducing the amount of data that needs to be
transferred while checking for inconsistencies among
replicas.

From external sources

CDS.IISc.in | Department of Computational and Data Sciences

Self study: Cassandra

 Intro to Apache Cassandra, Philip Thompson,
DataStax
‣ https://www.youtube.com/watch?v=oawc4doC76U

‣ Q&A next Tuesday

42

https://www.youtube.com/watch?v=oawc4doC76U

CDS.IISc.in | Department of Computational and Data Sciences

Hive
SQL Data Warehouse

43

CDS.IISc.in | Department of Computational and Data Sciences

Hive Key Principles

https://courses.engr.illinois.edu/cs525/sp2015/hive_slides-2.pptx

CDS.IISc.in | Department of Computational and Data Sciences

HiveQL to MapReduce

Data Analyst

Hive Framework

SELECT COUNT(1) FROM Sales;

rowcount,1

MR JOB Instance

rowcount, N

Sales: Hive table

rowcount,1

N

https://courses.engr.illinois.edu/cs525/sp2015/hive_slides-2.pptx

CDS.IISc.in | Department of Computational and Data Sciences

What Is Hive?

 Developed by Facebook and a top-level Apache
project

 A data warehousing infrastructure based on
Hadoop

 Immediately makes data on a cluster available to
non-Java programmers via SQL like queries

 Built on HiveQL (HQL), a SQL-like query language

 Interprets HiveQL and generates MapReduce jobs
that run on the cluster

 Enables easy data summarization, ad-hoc reporting
and querying, and analysis of large volumes of data

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

What Hive Is Not

Hive, like Hadoop, is designed for batch processing
of large datasets

Not an OLTP or real-time system

 Latency and throughput are both high compared to
a traditional RDBMS
‣ Even when dealing with relatively small data (<100 MB)

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

Data Hierarchy

Hive is organised hierarchically into:
‣ Databases: namespaces that separate tables and other

objects

‣ Tables: homogeneous units of data with the same
schema
• Analogous to tables in an RDBMS

‣ Partitions: determine how the data is stored
• Allow efficient access to subsets of the data

‣ Buckets/clusters
• For sub-sampling within a partition

• Join optimization

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

Tables

 Analogous to relational tables

 Each table has a corresponding directory in HDFS

 Data serialized and stored as files within that
directory

Hive has default serialization built in which
supports compression and lazy deserialization

Users can specify custom serialization –
deserialization schemes (SerDe’s)

https://courses.engr.illinois.edu/cs525/sp2015/hive_slides-2.pptx

CDS.IISc.in | Department of Computational and Data Sciences

Partitions

 Each table can be broken into partitions

 Partitions determine distribution of data within
subdirectories

 Example -

CREATE_TABLE Sales (sale_id INT, amount FLOAT)

PARTITIONED BY (country STRING, year INT, month INT)

 So each partition will be split out into different folders like

 Sales/country=US/year=2012/month=12

https://courses.engr.illinois.edu/cs525/sp2015/hive_slides-2.pptx

CDS.IISc.in | Department of Computational and Data Sciences

Hierarchy of Hive Partitions

/hivebase/Sales

/country=US

/country=CANADA

/year=2012

/year=2015

/year=2012

/year=2014
/month=12

/month=11

File File File

/month=11

https://courses.engr.illinois.edu/cs525/sp2015/hive_slides-2.pptx

CDS.IISc.in | Department of Computational and Data Sciences

Buckets

 Data in each partition divided into buckets

 Based on a hash function of the column

H(column) mod NumBuckets = bucket number

 Each bucket is stored as a file in partition directory

https://courses.engr.illinois.edu/cs525/sp2015/hive_slides-2.pptx

CDS.IISc.in | Department of Computational and Data Sciences

HiveQL

HiveQL / HQL provides the basic SQL-like
operations:
‣ Select columns using SELECT

‣ Filter rows using WHERE

‣ JOIN between tables

‣ Evaluate aggregates using GROUP BY

‣ Store query results into another table

‣ Download results to a local directory (i.e., export from
HDFS)

‣ Manage tables and queries with CREATE, DROP, and
ALTER

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

Primitive Data Types

Type Comments

TINYINT, SMALLINT, INT, BIGINT 1, 2, 4 and 8-byte integers

BOOLEAN TRUE/FALSE

FLOAT, DOUBLE Single and double precision real numbers

STRING Character string

TIMESTAMP Unix-epoch offset or datetime string

DECIMAL Arbitrary-precision decimal

BINARY Opaque; ignore these bytes

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

Complex Data Types

Type Comments

STRUCT A collection of elements
If S is of type STRUCT {a INT, b INT}:

S.a returns element a

MAP Key-value tuple
If M is a map from 'group' to GID:

M['group'] returns value of GID

ARRAY Indexed list
If A is an array of elements ['a','b','c']:

A[0] returns 'a'

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

HiveQL Limitations

HQL only supports equi-joins, outer joins, left semi-
joins

 Because it is only a shell for mapreduce, complex
queries can be hard to optimise

Missing large parts of full SQL specification:
‣ HAVING clause in SELECT

‣ Correlated sub-queries

‣ Sub-queries outside FROM clauses

‣ Updatable or materialized views

‣ Stored procedures

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

Hive Metastore

 Stores Hive metadata

 Default metastore database uses Apache Derby

 Various configurations:
‣ Embedded (in-process metastore, in-process database)

• Mainly for unit tests

‣ Local (in-process metastore, out-of-process database)
• Each Hive client connects to the metastore directly

‣ Remote (out-of-process metastore, out-of-process
database)
• Each Hive client connects to a metastore server, which

connects to the metadata database itself

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

Hive Schemas

Hive is schema-on-read
‣ Schema is only enforced when the data is read (at query

time)

‣ Allows greater flexibility: same data can be read using
multiple schemas

 Contrast with an RDBMS, which is schema-on-write
‣ Schema is enforced when the data is loaded

‣ Speeds up queries at the expense of load times

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

Create Table Syntax

CREATE TABLE table_name

(col1 data_type,

col2 data_type,

col3 data_type,

col4 datatype)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY ','

STORED AS format_type;

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

Simple Table

CREATE TABLE page_view

(viewTime INT,

userid BIGINT,

page_url STRING,

referrer_url STRING,

ip STRING COMMENT 'IP Address of the User')

ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\t'

STORED AS TEXTFILE;

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

More Complex Table

CREATE TABLE employees (

(name STRING,

salary FLOAT,

subordinates ARRAY<STRING>,

deductions MAP<STRING, FLOAT>,

address STRUCT<street:STRING,

city:STRING,

state:STRING,

zip:INT>)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\t'

STORED AS TEXTFILE;

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

External Table

CREATE EXTERNAL TABLE page_view_stg

(viewTime INT,

userid BIGINT,

page_url STRING,

referrer_url STRING,

ip STRING COMMENT 'IP Address of the User')

ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\t'

STORED AS TEXTFILE

LOCATION '/user/staging/page_view';

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

More About Tables

 CREATE TABLE
‣ LOAD: file moved into Hive’s data warehouse directory

‣ DROP: both metadata and data deleted

 CREATE EXTERNAL TABLE
‣ LOAD: no files moved

‣ DROP: only metadata deleted

‣ Use this when sharing with other Hadoop applications,
or when you want to use multiple schemas on the same
data

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

Partitioning

 Can make some queries faster

 Divide data based on partition column

Use PARTITION BY clause when creating table

Use PARTITION clause when loading data

 SHOW PARTITIONS will show a table’s partitions

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

Bucketing

 Can speed up queries that involve sampling the
data
‣ Sampling works without bucketing, but Hive has to scan

the entire dataset

Use CLUSTERED BY when creating table
‣ For sorted buckets, add SORTED BY

 To query a sample of your data, use TABLESAMPLE

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

Browsing Tables And
Partitions

Command Comments

SHOW TABLES; Show all the tables in the database

SHOW TABLES 'page.*'; Show tables matching the
specification (uses regex syntax)

SHOW PARTITIONS page_view; Show the partitions of the page_view
table

DESCRIBE page_view; List columns of the table

DESCRIBE EXTENDED page_view; More information on columns (useful
only for debugging)

DESCRIBE page_view

PARTITION (ds='2008-10-31');

List information about a partition

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

Loading Data

Use LOAD DATA to load data from a file or directory
‣ Will read from HDFS unless LOCAL keyword is specified

‣ Will append data unless OVERWRITE specified

‣ PARTITION required if destination table is partitioned

LOAD DATA LOCAL INPATH '/tmp/pv_2008-06-

8_us.txt'

OVERWRITE INTO TABLE page_view

PARTITION (date='2008-06-08', country='US')

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

Inserting Data

Use INSERT to load data from a Hive query
‣ Will append data unless OVERWRITE specified

‣ PARTITION required if destination table is partitioned

FROM page_view_stg pvs

INSERT OVERWRITE TABLE page_view

PARTITION (dt='2008-06-08',

country='US')

SELECT pvs.viewTime, pvs.userid,

pvs.page_url, pvs.referrer_url

WHERE pvs.country = 'US';

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

Inserting Data
Normally only one partition can be inserted into

with a single INSERT

 A multi-insert lets you insert into multiple
partitions

FROM page_view_stg pvs

INSERT OVERWRITE TABLE page_view

PARTITION (dt='2008-06-08', country='US‘)

SELECT pvs.viewTime, pvs.userid, pvs.page_url, pvs.referrer_url WHERE
pvs.country = 'US'

INSERT OVERWRITE TABLE page_view

PARTITION (dt='2008-06-08', country='CA')

SELECT pvs.viewTime, pvs.userid, pvs.page_url, pvs.referrer_url WHERE
pvs.country = 'CA'

INSERT OVERWRITE TABLE page_view

PARTITION (dt='2008-06-08', country='UK')

SELECT pvs.viewTime, pvs.userid, pvs.page_url, pvs.referrer_url WHERE
pvs.country = 'UK';

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

Inserting Data During Table
Creation
Use AS SELECT in the CREATE TABLE statement to

populate a table as it is created

CREATE TABLE page_view AS

SELECT pvs.viewTime, pvs.userid, pvs.page_url,

pvs.referrer_url

FROM page_view_stg pvs

WHERE pvs.country = 'US';

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

Loading And Inserting Data:
Summary

Use this For this purpose

LOAD Load data from a file or directory

INSERT Load data from a query
• One partition at a time
• Use multiple INSERTs to insert into

multiple partitions in the one query

CREATE TABLE AS (CTAS) Insert data while creating a table

Add/modify external file Load new data into external table

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

Sample Select Clauses

 Select from a single table

SELECT *

FROM sales

WHERE amount > 10 AND

region = "US";

 Select from a partitioned table

SELECT page_views.*

FROM page_views

WHERE page_views.date >= '2008-03-01' AND

page_views.date <= '2008-03-31'

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

Relational Operators

 ALL and DISTINCT
‣ Specify whether duplicate rows should be returned

‣ ALL is the default (all matching rows are returned)

‣ DISTINCT removes duplicate rows from the result set

WHERE
‣ Filters by expression

‣ Does not support IN, EXISTS or sub-queries in the
WHERE clause

 LIMIT
‣ Indicates the number of rows to be returned

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

Relational Operators

GROUP BY
‣ Group data by column values

‣ Select statement can only include columns included in
the GROUP BY clause

ORDER BY / SORT BY
‣ ORDER BY performs total ordering

• Slow, poor performance

‣ SORT BY performs partial ordering
• Sorts output from each reducer

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

Advanced Hive Operations

 JOIN
‣ If only one column in each table is used in the join, then

only one MapReduce job will run
• This results in 1 MapReduce job:

SELECT * FROM a JOIN b ON a.key = b.key JOIN c ON

b.key = c.key

• This results in 2 MapReduce jobs:

SELECT * FROM a JOIN b ON a.key = b.key JOIN c ON

b.key2 = c.key

‣ If multiple tables are joined, put the biggest table last
and the reducer will stream the last table, buffer the
others

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

Advanced Hive Operations

 JOIN
‣ Do not specify join conditions in the WHERE clause

• Hive does not know how to optimise such queries
• Will compute a full Cartesian product before filtering it

 Join Example

SELECT

a.ymd, a.price_close, b.price_close

FROM stocks a

JOIN stocks b ON a.ymd = b.ymd

WHERE a.symbol = 'AAPL' AND

b.symbol = 'IBM' AND

a.ymd > '2010-01-01';

CMSC 491: Adam Shook, Spring 2016

CDS.IISc.in | Department of Computational and Data Sciences

Architecture

Externel Interfaces- CLI, WebUI, JDBC,
ODBC programming interfaces

Thrift Server – Cross Language service
framework .

Metastore - Meta data about the Hive
tables, partitions

Driver - Brain of Hive! Compiler,
Optimizer and Execution engine

https://courses.engr.illinois.edu/cs525/sp2015/hive_slides-2.pptx

CDS.IISc.in | Department of Computational and Data Sciences

Hive Thrift Server

• Framework for cross language services
• Server written in Java
• Support for clients written in different languages

- JDBC(java), ODBC(c++), php, perl, python scripts

https://courses.engr.illinois.edu/cs525/sp2015/hive_slides-2.pptx

CDS.IISc.in | Department of Computational and Data Sciences

Metastore

• System catalog which contains metadata about the Hive tables
• Stored in RDBMS/local fs. HDFS too slow(not optimized for random

access)
• Objects of Metastore

 Database - Namespace of tables
 Table - list of columns, types, owner, storage, SerDes
 Partition – Partition specific column, Serdes and storage

https://courses.engr.illinois.edu/cs525/sp2015/hive_slides-2.pptx

CDS.IISc.in | Department of Computational and Data Sciences

Hive Driver

• Driver - Maintains the lifecycle of HiveQL statement
• Query Compiler – Compiles HiveQL in a DAG of map reduce tasks
• Executor - Executes the tasks plan generated by the compiler in proper

dependency order. Interacts with the underlying Hadoop instance

https://courses.engr.illinois.edu/cs525/sp2015/hive_slides-2.pptx

CDS.IISc.in | Department of Computational and Data Sciences

Compiler

 Converts the HiveQL into a plan for execution

 Plans can
‣ Metadata operations for DDL statements e.g. CREATE
‣ HDFS operations e.g. LOAD

 Semantic Analyzer – checks schema information, type
checking, implicit type conversion, column verification

 Optimizer – Finding the best logical plan e.g. Combines
multiple joins in a way to reduce the number of map
reduce jobs, Prune columns early to minimize data
transfer

 Physical plan generator – creates the DAG of map-
reduce jobs

https://courses.engr.illinois.edu/cs525/sp2015/hive_slides-2.pptx

CDS.IISc.in | Department of Computational and Data Sciences

HiveQL
DDL :

CREATE DATABASE
CREATE TABLE
ALTER TABLE
SHOW TABLE
DESCRIBE

DML:
LOAD TABLE
INSERT

QUERY:
SELECT
GROUP BY
JOIN
MULTI TABLE INSERT

https://courses.engr.illinois.edu/cs525/sp2015/hive_slides-2.pptx

CDS.IISc.in | Department of Computational and Data Sciences

Hive SerDe

 SELECT Query

Record
Reader

Deserialize

Hive Row
Object

Object
Inspector

Map Fields

Hive Table

End User

 Hive built in Serde:
Avro, ORC, Regex etc

 Can use Custom
SerDe’s (e.g. for
unstructured data
like audio/video
data, semistructured
XML data)

https://courses.engr.illinois.edu/cs525/sp2015/hive_slides-2.pptx

CDS.IISc.in | Department of Computational and Data Sciences

Try on your Own

Use Hive and HiveQL with Hadoop in HDInsight
‣ https://docs.microsoft.com/en-

us/azure/hdinsight/hdinsight-use-hive

 Thu Apr 13, TensorFlow by Narayan Hegde, Google

 330PM, CDS102

85

https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-use-hive

CDS.IISc.in | Department of Computational and Data Sciences

HBase

86

CDS.IISc.in | Department of Computational and Data Sciences

GraphDB

87

