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Stream are Commonplace 
(too)

 Web & Social Networks
‣ Twitter, Facebook, Internet packets

 Cybersecurity
‣ Telecom call logs, financial transactions, Malware

 Internet of Things
‣ Smart Transport/Power/Water networks

‣ Smart watch/phone/TV/…
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IISc Smart Campus: Water 
Management

 Plan pumping operations for reliability
‣ Avoid underflow/overflow of water
‣ 12 hrs to fill a large OHT, scarcity in summer weeks

 Provide safer water
‣ Leakages, contamination from decades old network

 Reduce water usage for sustainability
‣ IISc average: 400 Lit/day, Global standard: 135 Lit/day
‣ Lack of visibility on usage footprint, sources
‣ Opportunities for water harvesting, recycling

 Lower the cost
‣ Reduce cost for water use & electricity for pumping
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Over Head Tank (OHT)

Ground Level Reservoir (GLR)

BWSSB Main Inlet

OHT 8

GLR 13

Inlet 4+3

IISc Campus
• 440 Acres, 8 Km Perimeter
• 50 buildings: Office, Hotel, 

Residence, Stores
• 10,000 people
• Water Use: 40 Lakh Lit/Day
• 10MW Power Consumed
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Custom Level + Quality 
Sensor 

 

 

Fig. 7.  System block diagram 

 

Fig. 8.  Scatter plot of measured vs actual distance 

Fifty readings are taken every 60cm, and histograms are 

plotted at each distance. Finally, all the histograms are merged 

into a single scatter plot as shown in figure 8. The spots in this 

graph indicate the concentration of readings in an area. Clearly, 

accuracy is better at shorter distances. We determined that our 

sensor has an accuracy within ±1.5% of full scale, with improved 

accuracy at shorter distances. Further experiments at a 

swimming pool indicated the sensors performed with the same 

accuracy as that observed with the Aluminium board. A picture 

of the installation of the sensor on a tank is shown in figure 8. 

The system is installed in a Ground Level Reservoir (GLR) 

in the campus, with a repeater placed on a nearby Overhead Tank 

(OHT) and an access point setup a few hundred metres away. 

The data collected every minute from the tank is encapsulated 

into packets and transmitted to the repeater, which then forwards 

it to the access point. The AP unpacks the received packet and 

uploads the level data online to a Google App Engine 

application. Figure 10 shows the collected data for half a day. A 

few glitches in the data can be seen that can be smoothed after 

acquisition. Jitter in readings is only 1-2cm. 

 

Fig. 9.  Installation on a tank 

 

Fig. 10.  Level data collected from a tank 

VII. CONCLUSIONS 

We have described an IoT system consisting of custom 

sensors interconnected via a sub-GHz based wireless network. 

The sensor sub-system uses ultrasonic ranging to determine 

water levels in large tanks in the distribution system. Optimised 

circuitry and algorithm allowed achieving a range of up to 10m 

with an accuracy within ±1.5% of full scale, using low cost 

transducers. Initial deployment results are encouraging and as a 

next step, we will instrument all the tanks. A further addition is 

to include control valves so that we can create a smart 

distribution system which distributes just enough water to each 

tank to satisfy the local demands. 
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Backend
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Aadhaar Enrolment

 Input is stream of identity enrolment packets

 Output is a UIDAI ID (success) or rejection

 Each task tagged with Latency (ms)

 Each edge tagged with Selectivity
‣ Input:output rate, probability of path taken

14-Feb-17
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Aadhaar Authentication
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Fast Data Processing

14-Feb-17 10



CDS.IISc.in  |  Department of Computational and Data Sciences

Size vs. Latency

14-Feb-17 11Big Data Analytics Platforms for Real-time Applications in IoT, Yogesh Simmhan & Srinath Perera, Big Data 
Analytics: Methods and Applications, Eds. Saumyadipta Pyne, B.L.S. Prakasa Rao, S.B. Rao, 2016
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Application Model
 Application composed as a Directed Acyclic Graph 

(DAG)

 Tasks are user-defined logic, vertices of the DAG

 Streams are channels between Tasks, edges of DAG

 Streams carry “infinite” number of tuples
‣ Also called events, messages

 Tuples may be opaque, or have Name/Value/Type
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Application Model
 Tasks executed once for each input tuple

‣ Tasks may emit zero or more tuples for each input

 Latency: Time taken to process a single tuple by a task.

 Selectivity: Ratio of average number of output tuples 

expected for each input tuple (in:out or
𝒐𝒖𝒕

𝒊𝒏
)

 Can be used to calculate input rate at each task, given DAG 
input rate
‣ e.g. i_d = i*s_a*s_b + i*s_a*s_c
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Application Model

 Different degrees of parallelism helps exploit multiple 
resources to complete the execution faster, reduce 
latency

 Task parallelism due to multiple tasks composed and 
executing in parallel (B&C || D)
‣ Two tuples can be concurrently executed on two different 

tasks that are independent of each other
‣ Different from data parallelism (later…)

 Pipelining due to streaming execution
‣ Different parts of the infinite stream can be executing at the 

same time on different tasks
‣ All tasks can execute at the same time, once pipeline filled

 Orthogonal concepts, can have one without other
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Common Task Patterns
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Routing Semantics

 Multiple outgoing edges
‣ Duplicate, Round-robin or Hash

 Multiple input edges
‣ Interleave: Does a union of tuples entering an input queue. 

Number of tuples is the sum of number of tuples from each 
input stream.

‣ Join: Merges one tuple from each input stream into a single 
tuple, that is given to the task. Number of tuples is the 
minimum of all tuples that enter on any input stream.
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Application Model
 Multiple Source/Sink tasks can be present

 Count: Number of tasks in the DAG. Determines 
resource needs.

 Width: Widest number of parallel tasks. Task 
parallelism. (e.g. 3)

 Length: Longest number of tasks from a source to a 
sink (e.g. 4). Similar to Critical path…

 Average Edge Degree: Hotspots, affects selectivity
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Application Model
 Causally Dependent Messages: Set of output tuple 

generated as a result of an input tuple.
‣ What happens with aggregation? Sliding window?

 Critical Path: Longest latency from the source to the 
sink. 
‣ Determines the slowest causally dependent output, for a 

given input.

‣ Includes task latency, I/O queue delay, and NW time
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Application Model
 Tasks may have one or more input and output 

“ports”

 Makes the routing semantics explicit in the 
composition
‣ Join between tuples on different ports
‣ Hash by writing to explicit output port
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A

B

C

D

F

E

“hash”

“duplicate”



CDS.IISc.in  |  Department of Computational and Data Sciences

Application Model

 Visual DAG composition 

 Programming abstractions
‣ Task centric view (Storm)

‣ Data centric view (Spark)
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val wordsDs = src.flatMap(value => value.split("\\s+"))
val wordsPairDs = wordsDs.groupByKey(value => value)
val wordCountDs = wordsPairDs.count()

filteredDS = wordsDs.filter(value => value =="hello")

src Split

Filter

Count

Hash

http://blog.madhukaraphatak.com/introduction-to-spark-two-part-3/
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Execution Model

 Input and output queue for each task
‣ Buffers tuples

 Multiple Threads for same Task
‣ Allows and controls data parallel execution

 Each thread can operate on one of the tuples in 
input queue
‣ What happens to ordering?
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Execution Model

 Tuple Ordering

 Can we guarantee that tuples are processing in 
specific order?
‣ Difficult

‣ Needs logical timestamps

‣ Physical time-stamps vs. time skew

 Guarantee at the source vs. each task in the DAG
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Execution Model

 Stateful vs. Stateless

 Do tasks retain state?

 Is state shared across threads?

 What is the impact on aggregation operations? 
Hash keys
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Execution Model

 Delivery Guarantees

 Best effort

 At least once delivery

 Exactly once delivery

 Need to keep track of progress. Replay if necessary.
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Distributed Stream Processing 
Systems

 Aurora – Early Research System

 Borealis – Early Research System

 Apache Storm 

 Apache S4 

 Apache Samza

 Google MillWheel

 Amazon Kinesis

 LinkedIn Databus

 Facebook Puma/Ptail/Scribe/ODS

 Azure Stream Analytics 

 Apache Flink

 FlumeJava

 NiFi

 Google Dataflow

 Spark Streaming

 Apache Beam

© Programming Models for IoT and Streaming Data, Qiu
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Event Processing vs. Stream 
Processing
 Tuples are “transparent”
‣ Columns, values

 Query Based
‣ Complex Event processing

‣ SQL like languages over continuous tuples

‣ Tasks are operators with have specific semantic meaning

 Time operators included with 
‣ window, sequence, group, merge, trigger

The Dataflow Model, Akidau, et al., VLDB 2015
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Reading

 Ankit Toshniwal, et al. Storm@twitter. In ACM 
SIGMOD, 2014

 Discretized Streams: An Efficient and Fault-Tolerant 
Model for Stream Processing on Large Clusters, 
Zaharia, et al, USENIX HotCloud, 2012, 
https://www.usenix.org/conference/hotcloud12/workshop-
program/presentation/zaharia

 Leonardo Neumeyer, et al, S4: Distributed Stream 
Computing Platform. In ICDMW 2010
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