
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान

बंगलौर, भारत

Department of Computational and Data Sciences

©Yogesh Simmhan & Partha Talukdar, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

L9,10:Distributed
Stream Processing

Yogesh Simmhan
1 4 F e b , 2 0 1 7

DS256:Jan17 (3:1)

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.in | Department of Computational and Data Sciences

Stream are Commonplace
(too)

 Web & Social Networks
‣ Twitter, Facebook, Internet packets

 Cybersecurity
‣ Telecom call logs, financial transactions, Malware

 Internet of Things
‣ Smart Transport/Power/Water networks

‣ Smart watch/phone/TV/…

14-Feb-17 2

CDS.IISc.in | Department of Computational and Data Sciences

IISc Smart Campus: Water
Management

 Plan pumping operations for reliability
‣ Avoid underflow/overflow of water
‣ 12 hrs to fill a large OHT, scarcity in summer weeks

 Provide safer water
‣ Leakages, contamination from decades old network

 Reduce water usage for sustainability
‣ IISc average: 400 Lit/day, Global standard: 135 Lit/day
‣ Lack of visibility on usage footprint, sources
‣ Opportunities for water harvesting, recycling

 Lower the cost
‣ Reduce cost for water use & electricity for pumping

14-Feb-17 3

Over Head Tank (OHT)

Ground Level Reservoir (GLR)

BWSSB Main Inlet

OHT 8

GLR 13

Inlet 4+3

IISc Campus
• 440 Acres, 8 Km Perimeter
• 50 buildings: Office, Hotel,

Residence, Stores
• 10,000 people
• Water Use: 40 Lakh Lit/Day
• 10MW Power Consumed

14-Feb-17 4

CDS.IISc.in | Department of Computational and Data Sciences
Over Head Tanks (OHT)

TPH (near Mechanical) JNT Auditorium Chemical Stores Opposite to CENSE

Opposite to
NESARA

Behind old C-
Mess

Opposite to
Cense (new)

E Type Quarters 14-Feb-17 5

CDS.IISc.in | Department of Computational and Data Sciences

Custom Level + Quality
Sensor

Fig. 7. System block diagram

Fig. 8. Scatter plot of measured vs actual distance

Fifty readings are taken every 60cm, and histograms are

plotted at each distance. Finally, all the histograms are merged

into a single scatter plot as shown in figure 8. The spots in this

graph indicate the concentration of readings in an area. Clearly,

accuracy is better at shorter distances. We determined that our

sensor has an accuracy within ±1.5% of full scale, with improved

accuracy at shorter distances. Further experiments at a

swimming pool indicated the sensors performed with the same

accuracy as that observed with the Aluminium board. A picture

of the installation of the sensor on a tank is shown in figure 8.

The system is installed in a Ground Level Reservoir (GLR)

in the campus, with a repeater placed on a nearby Overhead Tank

(OHT) and an access point setup a few hundred metres away.

The data collected every minute from the tank is encapsulated

into packets and transmitted to the repeater, which then forwards

it to the access point. The AP unpacks the received packet and

uploads the level data online to a Google App Engine

application. Figure 10 shows the collected data for half a day. A

few glitches in the data can be seen that can be smoothed after

acquisition. Jitter in readings is only 1-2cm.

Fig. 9. Installation on a tank

Fig. 10. Level data collected from a tank

VII. CONCLUSIONS

We have described an IoT system consisting of custom

sensors interconnected via a sub-GHz based wireless network.

The sensor sub-system uses ultrasonic ranging to determine

water levels in large tanks in the distribution system. Optimised

circuitry and algorithm allowed achieving a range of up to 10m

with an accuracy within ±1.5% of full scale, using low cost

transducers. Initial deployment results are encouraging and as a

next step, we will instrument all the tanks. A further addition is

to include control valves so that we can create a smart

distribution system which distributes just enough water to each

tank to satisfy the local demands.

ACKNOWLEDGMENT

We thank Mr. Alok Rawat for the design of the enclosure.

We thank Mr. Sheetal Kumar and Ms. Anjana of Dept. of Civil

Engineering, Indian Institute of Science, for discussions. We

thank the Robert Bosch Centre for Cyber Physical Systems at

Indian Institute of Science, Bangalore, for funding the project.

REFERENCES

[1] UNDP. Human Development Report, Beyond Scarcity: Power,

Poverty and the Global Water Crisis. United Nations

Development Programme, 2006.

[2] UNDP. Human Development Report, Sustaining Human

Progress: Reducing Vulnerability and Building Resilience.

United Nations Development Programme, 2014.

14-Feb-17 6

CDS.IISc.in | Department of Computational and Data Sciences

Backend

14-Feb-17

ECE Building
W

W

7

CDS.IISc.in | Department of Computational and Data Sciences

Aadhaar Enrolment

 Input is stream of identity enrolment packets

 Output is a UIDAI ID (success) or rejection

 Each task tagged with Latency (ms)

 Each edge tagged with Selectivity
‣ Input:output rate, probability of path taken

14-Feb-17
Benchmarking Fast Data Platforms for the ‘Aadhaar’ Biometric Database, Shukla, et al,
Workshop on Big Data Benchmarking (WBDB), 2015 8

CDS.IISc.in | Department of Computational and Data Sciences

Aadhaar Authentication

14-Feb-17
Benchmarking Fast Data Platforms for the ‘Aadhaar’ Biometric Database, Shukla, et al,
Workshop on Big Data Benchmarking (WBDB), 2015 9

CDS.IISc.in | Department of Computational and Data Sciences

Fast Data Processing

14-Feb-17 10

CDS.IISc.in | Department of Computational and Data Sciences

Size vs. Latency

14-Feb-17 11Big Data Analytics Platforms for Real-time Applications in IoT, Yogesh Simmhan & Srinath Perera, Big Data
Analytics: Methods and Applications, Eds. Saumyadipta Pyne, B.L.S. Prakasa Rao, S.B. Rao, 2016

CDS.IISc.in | Department of Computational and Data Sciences

Application Model
 Application composed as a Directed Acyclic Graph

(DAG)

 Tasks are user-defined logic, vertices of the DAG

 Streams are channels between Tasks, edges of DAG

 Streams carry “infinite” number of tuples
‣ Also called events, messages

 Tuples may be opaque, or have Name/Value/Type

14-Feb-17 12

A

B

C

D E

CDS.IISc.in | Department of Computational and Data Sciences

Application Model
 Tasks executed once for each input tuple

‣ Tasks may emit zero or more tuples for each input

 Latency: Time taken to process a single tuple by a task.

 Selectivity: Ratio of average number of output tuples

expected for each input tuple (in:out or
𝒐𝒖𝒕

𝒊𝒏
)

 Can be used to calculate input rate at each task, given DAG
input rate
‣ e.g. i_d = i*s_a*s_b + i*s_a*s_c

14-Feb-17 13

A

B

C

D E

CDS.IISc.in | Department of Computational and Data Sciences

Application Model

 Different degrees of parallelism helps exploit multiple
resources to complete the execution faster, reduce
latency

 Task parallelism due to multiple tasks composed and
executing in parallel (B&C || D)
‣ Two tuples can be concurrently executed on two different

tasks that are independent of each other
‣ Different from data parallelism (later…)

 Pipelining due to streaming execution
‣ Different parts of the infinite stream can be executing at the

same time on different tasks
‣ All tasks can execute at the same time, once pipeline filled

 Orthogonal concepts, can have one without other

14-Feb-17 14

CDS.IISc.in | Department of Computational and Data Sciences

Common Task Patterns

14-Feb-17 15
Benchmarking Distributed Stream Processing Platforms for IoT Applications, Anshu Shukla and Yogesh Simmhan, TPCTC, 2016

CDS.IISc.in | Department of Computational and Data Sciences

Routing Semantics

 Multiple outgoing edges
‣ Duplicate, Round-robin or Hash

 Multiple input edges
‣ Interleave: Does a union of tuples entering an input queue.

Number of tuples is the sum of number of tuples from each
input stream.

‣ Join: Merges one tuple from each input stream into a single
tuple, that is given to the task. Number of tuples is the
minimum of all tuples that enter on any input stream.

14-Feb-17 16

A

B

D

E F

C

CDS.IISc.in | Department of Computational and Data Sciences

Application Model
 Multiple Source/Sink tasks can be present

 Count: Number of tasks in the DAG. Determines
resource needs.

 Width: Widest number of parallel tasks. Task
parallelism. (e.g. 3)

 Length: Longest number of tasks from a source to a
sink (e.g. 4). Similar to Critical path…

 Average Edge Degree: Hotspots, affects selectivity

14-Feb-17 17

B

D

E

F H

GA

C

CDS.IISc.in | Department of Computational and Data Sciences

Application Model
 Causally Dependent Messages: Set of output tuple

generated as a result of an input tuple.
‣ What happens with aggregation? Sliding window?

 Critical Path: Longest latency from the source to the
sink.
‣ Determines the slowest causally dependent output, for a

given input.

‣ Includes task latency, I/O queue delay, and NW time

14-Feb-17 18

A

B

D

E F

C

CDS.IISc.in | Department of Computational and Data Sciences

Application Model
 Tasks may have one or more input and output

“ports”

 Makes the routing semantics explicit in the
composition
‣ Join between tuples on different ports
‣ Hash by writing to explicit output port

14-Feb-17 19

A

B

C

D

F

E

“hash”

“duplicate”

CDS.IISc.in | Department of Computational and Data Sciences

Application Model

 Visual DAG composition

 Programming abstractions
‣ Task centric view (Storm)

‣ Data centric view (Spark)

14-Feb-17 20

val wordsDs = src.flatMap(value => value.split("\\s+"))
val wordsPairDs = wordsDs.groupByKey(value => value)
val wordCountDs = wordsPairDs.count()

filteredDS = wordsDs.filter(value => value =="hello")

src Split

Filter

Count

Hash

http://blog.madhukaraphatak.com/introduction-to-spark-two-part-3/

CDS.IISc.in | Department of Computational and Data Sciences

14-Feb-17 21

CDS.IISc.in | Department of Computational and Data Sciences

Execution Model

 Input and output queue for each task
‣ Buffers tuples

 Multiple Threads for same Task
‣ Allows and controls data parallel execution

 Each thread can operate on one of the tuples in
input queue
‣ What happens to ordering?

14-Feb-17 22

CDS.IISc.in | Department of Computational and Data Sciences

Execution Model

 Tuple Ordering

 Can we guarantee that tuples are processing in
specific order?
‣ Difficult

‣ Needs logical timestamps

‣ Physical time-stamps vs. time skew

 Guarantee at the source vs. each task in the DAG

14-Feb-17 23

CDS.IISc.in | Department of Computational and Data Sciences

Execution Model

 Stateful vs. Stateless

 Do tasks retain state?

 Is state shared across threads?

 What is the impact on aggregation operations?
Hash keys

14-Feb-17 24

CDS.IISc.in | Department of Computational and Data Sciences

Execution Model

 Delivery Guarantees

 Best effort

 At least once delivery

 Exactly once delivery

 Need to keep track of progress. Replay if necessary.

14-Feb-17 25

CDS.IISc.in | Department of Computational and Data Sciences

Distributed Stream Processing
Systems

 Aurora – Early Research System

 Borealis – Early Research System

 Apache Storm

 Apache S4

 Apache Samza

 Google MillWheel

 Amazon Kinesis

 LinkedIn Databus

 Facebook Puma/Ptail/Scribe/ODS

 Azure Stream Analytics

 Apache Flink

 FlumeJava

 NiFi

 Google Dataflow

 Spark Streaming

 Apache Beam

© Programming Models for IoT and Streaming Data, Qiu
14-Feb-17 26

CDS.IISc.in | Department of Computational and Data Sciences

Event Processing vs. Stream
Processing
 Tuples are “transparent”
‣ Columns, values

 Query Based
‣ Complex Event processing

‣ SQL like languages over continuous tuples

‣ Tasks are operators with have specific semantic meaning

 Time operators included with
‣ window, sequence, group, merge, trigger

The Dataflow Model, Akidau, et al., VLDB 2015
14-Feb-17 27

CDS.IISc.in | Department of Computational and Data Sciences

Reading

 Ankit Toshniwal, et al. Storm@twitter. In ACM
SIGMOD, 2014

 Discretized Streams: An Efficient and Fault-Tolerant
Model for Stream Processing on Large Clusters,
Zaharia, et al, USENIX HotCloud, 2012,
https://www.usenix.org/conference/hotcloud12/workshop-
program/presentation/zaharia

 Leonardo Neumeyer, et al, S4: Distributed Stream
Computing Platform. In ICDMW 2010

14-Feb-17 28

https://www.usenix.org/conference/hotcloud12/workshop-program/presentation/zaharia

