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 The following slides are based on: 

“Distributed Filesystems”, CSE 490h –

Introduction to Distributed Computing, Spring 

2007, © Aaron Kimball
 https://courses.cs.washington.edu/courses/cse490h/07sp/

Google File System, Alex Moshchuk

Credits

https://courses.cs.washington.edu/courses/cse490h/07sp/


File Systems Overview
 System that permanently stores data

 Usually layered on top of a lower-level 

physical storage medium

 Divided into logical units called “files”

Addressable by a filename  (“foo.txt”)

Usually supports hierarchical nesting 

(directories)

 A file path joins file & directory names into 

a relative or absolute address to identify a 

file (“/home/aaron/foo.txt”)



What Gets Stored
 User data itself is the bulk of the file 

system's contents

 Also includes meta-data on a drive-wide 

and per-file basis:
Drive-wide:

Available space

Formatting info

character set

...

Per-file:

name

owner

modification date

physical layout...



High-Level Organization

 Files are organized in a “tree” structure 
made of nested directories

 One directory acts as the “root” 

 “links” (symlinks, shortcuts, etc) provide 

simple means of providing multiple access 

paths to one file

 Other file systems can be “mounted” and 

dropped in as sub-hierarchies (other 

drives, network shares)



Low-Level Organization (1/2)

 File data and meta-data stored separately

 File descriptors + meta-data stored in 

inodes

Large tree or table at designated location on 

disk

Tells how to look up file contents

 Meta-data may be replicated to increase 

system reliability



Low-Level Organization (2/2)
 “Standard” read-write medium is a hard 

drive (other media: CDROM, tape, ...)

 Viewed as a sequential array of blocks 

 Must address ~1 KB chunk at a time

 Tree structure is “flattened” into blocks

 Overlapping reads/writes/deletes can 

cause fragmentation: files are often not 

stored with a linear layout

 inodes store all block numbers related to file



Fragmentation

A B C (free space)

A B C (free space)A

A (free space) C (free space)A

A D C (free)A D



Design Considerations
 Smaller inode size reduces amount of 

wasted space

 Larger inode size increases speed of 

sequential reads (may not help random 

access) 

 Should the file system be faster or more

reliable? 

 But faster at what: Large files? Small files? 

Lots of reading? Frequent writers, 

occasional readers?



Distributed Filesystems

 Support access to files on remote servers

 Must support concurrency

Make varying guarantees about locking, who 

“wins” with concurrent writes, etc...

Must gracefully handle dropped connections

 Can offer support for replication and local 

caching

 Different implementations sit in different 

places on complexity/feature scale
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Motivation
 Google needed a good distributed file system

 Redundant storage of massive amounts of data on

cheap and unreliable computers

 Why not use an existing file system?

 Google’s problems are different from anyone else’s

 Different workload and design priorities

 GFS is designed for Google apps and workloads

 Google apps are designed for GFS



Assumptions

 High component failure rates

 Inexpensive commodity components fail all the 

time…seeds for the “Cloud” on commodity clusters

 “Modest” number of HUGE files

 Just a few million

Each is 100MB or larger; multi-GB files typical

 Files are write-once, mostly appended to

Perhaps concurrently

Example?

 Large streaming reads, sequential reads

 High sustained throughput favored over low latency



Web Search
 Crawl the web

Downloads URLs, store them to file 

system

Extract page content (words), URL 

links

Do BFS traversal

 Index the text content

 Invested index: Word->URL

 Rank the pages

PageRank

Crawler

Crawler

Crawler

Store

Index

Index

Web 

Graph

Web 

Graph

Page 

Rank

Page 

Rank



GFS Design Decisions
 Files stored as chunks

 Fixed size (64MB)

 Reliability through replication

 Each chunk replicated across 3+ chunkservers

 Single master to coordinate access, keep metadata

 Simple centralized management, placement decisions

 No data caching

 Little benefit due to large data sets, streaming reads

 Familiar interface, but customize the API

 Simplify the problem; focus on Google apps

 Add snapshot and record append operations



GFS Architecture
 Single master

 Mutiple chunkservers

…Can anyone see a potential weakness in this design?



Single master
 Downsides

 Single point of failure

 Scalability bottleneck

 GFS solutions:
 Shadow masters

 Minimize master involvement
 never move data through it, use only for metadata

 and cache metadata at clients

 large chunk size

 master delegates authority to primary replicas in data mutations 
(chunk leases)



Chunks

 Stored as a Linux file on chunk servers

 Default is 64MB…larger than file system 

block sizes

Pre-allocates disk space, avoids 

fragmentation

Reduces master metadata

Reduces master interaction, allows metadata 

caching on client

Persistent TCP connection to chunk server

 Con: hot-spots…need to tune replication



Metadata
 Global metadata is stored on the master

 File and chunk namespaces

 Mapping from files to chunks

 Locations of each chunk’s replicas

 All kept in-memory (64 bytes / chunk)

 Fast

 Easily accessible

 Cheaper to add more memory



Metadata

 Master builds chunk-to-server mapping on boot-

up, from chunk servers

 And on heart-beat

 Avoids sync of chunkservers & master

 Chunkservers can come and go, fail, restart often

 Gives flexibility to manage chunkservers

independently

 Lazy propagation to master

 Chunk server is final authority on whether it has 

chunk or not



Metadata
 Metadata should be consistent, and updates 

visible to clients only after stable

Once metadata is visible, clients can use/change it

 Master has an operation log for persistent 

logging of critical metadata updates

Namespace & file-chunk mapping persisted

 Persistent on local disk as log mutations

 Logical time, order of concurrent ops, single master!

 Replicated, client ack only after replication

 Replay log to recover metadata

 Checkpoints for faster recovery



Chunk Servers

 Master controls chunk placement

 Chunk servers store chunks

 Interacts with clients for file operations

 Heart beat messages to master 

 liveliness, list of chunks present



Master’s responsibilities
 Namespace management/locking

 Metadata storage

 Periodic scanning of in-memory metadata

 Periodic communication with chunkservers

 give instructions, collect state, track cluster health



Chunk Management

 Chunk creation, re-replication, rebalancing

 balance space utilization, bandwidth utilization and 

access speed/performance

 spread replicas across racks to reduce correlated 

failures…across servers, racks

 re-replicate data if redundancy falls below threshold

 rebalance data to smooth out storage and request 

load



Master’s responsibilities
 Garbage Collection

 simpler, more reliable than traditional file delete

 master logs the deletion, renames the file to a hidden 

name

 lazily garbage collects hidden files

 Stale replica deletion

 detect “stale” replicas using chunk version numbers



Fault Tolerance

 High availability

 fast recovery

 master and chunkservers restartable in a few seconds

 chunk replication

 default: 3 replicas.  

 Replication for fault tolerance vs. Replication for performance

 shadow masters

 Data integrity

 checksum every 64KB block in each chunk



Relaxed consistency model

 Namespace updates atomic and serializable

namespace locking guarantees this

 “Consistent” = All replicas have the same value. 
Any client reads same value.

 “Defined” = Consistent, and all replicas reflect 
the mutation performed. All clients read the 
updated value in entirety.



Relaxed consistency model

 Singe successful write leaves region defined

 Concurrent writes leave region consistent, but 
possibly undefined
 All clients see same content, but writes may have 

happened in fragments/interleaved

 Failed writes leave the region inconsistent
 Different clients see different content at different times



Mutations
 Mutation = write or append

 Write to a specific offset

 Append data, atomically at least once

 Must be done for all replicas

 Returns start offset for defined region

 May pad inconsistent regions, Create duplicates

 Mutated file guaranteed to be defined after successful 

mutations…

 Apply mutations to a chunk in the same order on all its replicas

 Use chunk version numbers to detect any stale replica that was 

down during a mutation

 Caching of metadata in client can cause stale reads!



Mutations
 Goal: Minimize master involvement

 Lease mechanism for a mutation
 master picks one replica as primary; gives it a “lease” for 

mutations from any client (default 60 secs, extensible as part of 

heartbeat)

 primary defines a serial order of mutations

 all replicas follow this order



Mutations
 Dataflow decoupled from

control flow

 Forwarding to closest server. Pipeline.

 Fully utilize bandwidth!

 B/T + R.L (Bytes, Thruput, Replicas, Latency)

 Send record to all replicas, any order. 

Maintained in buffer by c’server.

 Send “write” to primary with data IDs. 

Primary assigns serial numbers to 

records. Applies mutations in serial 

order.

 Forwards to secondary’s. Applied on them, and acked to primary. 

Acked to client.

 Any failures replica leaves inconsistent state. Retry.

 Mutations across chunks are split by client.



Mutations

 Clients need to distinguish between defined and 

undefined regions

 Some work has moved into the applications:
 e.g., prefer appends, use self-validating, self-identifying records, 

checkpoint

 Use checksums to identify and discard padding

 Use uids to identify duplicate records

 Simple, efficient
 Google apps can live with it

 what about other apps?



Atomic record append

 Concurrent writes to same region not serializable

 In Append, client specifies data. GFS appends it to the 

file atomically at least once

 GFS picks the offset. Returns offset to client.

 works for concurrent writers

 Client sends data to all replicas of last chunk of file.

 Primary applies to its end; tells secondaries to apply at 

that offset.

 E.g. concurrent appends from different clients…

 Used heavily by Google apps

 e.g., for files that serve as multiple-producer/single-consumer 

queues



Snapshot

 Full copies of a file, rapidly

 On snapshot request, NameNode revokes 

all primary leases to chunks

 Log opn to disk. Copy metadata to new 

file, chunks point to old chunks with 

reference count +1

 Copy old chunk to new on write (copy on 

write to local chunkserver) if reference 

counter > 1



Performance



Performance



Deployment in Google

 50+ GFS clusters

 Each with thousands of storage nodes

 Managing petabytes of data

 GFS is under BigTable, etc.



Conclusion

 GFS demonstrates how to support large-scale 

processing workloads on commodity hardware

 design to tolerate frequent component failures

 optimize for huge files that are mostly appended and 

read

 feel free to relax and extend FS interface as required

 go for simple solutions (e.g., single master)

 GFS has met Google’s storage needs… it must 

be good!



Expected 

Failure/year

Observed 

Failure/year

Disk failures in the real world: What does an MTTF 

of 1,000,000 hours mean to you?, Bianca Schroeder 

Garth A. Gibson Usenix FAST 2007
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Block Report

 DataNode identifies block replicas in its 

possession to the NameNode by sending 

a block report

block id, the generation stamp and the length

 First block report is sent immediately after 

the DataNode registration. Subsequent 

block reports are sent every hour.



Heartbeat

 DataNodes send heartbeats to the NameNode to confirm 

that it is up

 Default interval is 3 seconds. After no heartbeat in 10 

minutes the NameNode considers it out of service, block 

replicas unavailable. Schedules replication.

 Piggyback storage capacity, fraction of storage in use, 

data transfers in progress

 NameNode responds to heartbeat with: 

 Replicate blocks, remove local replicas, shut down 

the node, send immediate block report



Checkpoint Node

 Can take hours to recreate NameNode for 1 

week of journal (ops log)

 Periodically combines existing checkpoint & 

journal to create a new checkpoint & empty 

journal

 Download current checkpoint & journal from the 

NameNode, merges them locally, return new 

checkpoint to NameNode

 New checkpoint lets NameNode truncate the tail 

of the journal



Backup Node

 BackupNode can create periodic checkpoints. 

Read-only NameNode!

 Also maintains an in-memory image of 

namespace, synchronized with NameNode

 Accepts the journal stream of namespace 

transactions from active NameNode, saves them 

to its local store, applies them to its own 

namespace image in memory

 Creating checkpoints is done locally



Block Creation Pipeline

• The DataNodes form a 

pipeline, the order of which

• minimizes the total network 

distance from the client to the 

last DataNode.

• Data is pushed to the pipeline 

as (64 KB) packet buffers

• Async, Max outstanding acks.

• Clients generates checksums 

for blocks, DN stores 

checksums for each block. 

Checksums verified by client 

while reading to detect 

corruption.



Block Placement

 The distance from a node to its parent node is 1. 

Distance between nodes is sum of distances to 

their common ancestor.

 Tradeoff between min write cost, and max 

reliability, availability & agg read B/W

 1st replica on writer node, the 2nd & 3rd on different 

nodes in a different rack

 No Datanode has more than one replica. No rack has 

more than two replicas of a block.

 NameNode returns replica location in the order 

of its closeness to the reader



Replication

 NameNode detects under- or over-replication 

from block report

 Remove replica without reducing the # of racks 

hosting replicas, prefer DataNode with least disk 

space

 Under-replicated blocks put in priority queue. 

Block with 1 replica has highest priority.

 Background thread scans the replication queue, 

decide where to place new replicas



Balancer

 Balances disk space usage on an HDFS cluster 

based on threshold

 Utilization of a node (used%) differs from the 

utilization of cluster by no more than the threshold 

value.

 Iteratively moves replicas from nodes with higher 

utilization to nodes with lower. 

 Maintains data availability, minimizes inter-rack 

copying, limits bandwidth consumed



Discussion
 How many sys-admins does it take to run a 

system like this?
 much of management is built in

 Google currently has ~450,000 machines
 GFS: only 1/3 of these are “effective”

 that’s a lot of extra equipment, extra cost, extra power, 
extra space!

 GFS has achieved availability/performance at a very 
low cost, but can you do it for even less?

 Is GFS useful as a general-purpose commercial 
product?
 small write performance not good enough?

 relaxed consistency model


