
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान

बंगलौर, भारत

Department of Computational and Data Sciences

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

CDS
Department of Computational and Data Sciences

Department of Computational and Data Sciences

L1:Google File System
Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung

ACM SOSP, 2003

Yogesh Simmhan
9 , 1 1 , 1 6 J a n , 2 0 1 8

DS256:Jan18 (3:1)

http://creativecommons.org/licenses/by/4.0/deed.en_US

 The following slides are based on:

“Distributed Filesystems”, CSE 490h –

Introduction to Distributed Computing, Spring

2007, © Aaron Kimball
 https://courses.cs.washington.edu/courses/cse490h/07sp/

Google File System, Alex Moshchuk

Credits

https://courses.cs.washington.edu/courses/cse490h/07sp/

File Systems Overview
 System that permanently stores data

 Usually layered on top of a lower-level

physical storage medium

 Divided into logical units called “files”

Addressable by a filename (“foo.txt”)

Usually supports hierarchical nesting

(directories)

 A file path joins file & directory names into

a relative or absolute address to identify a

file (“/home/aaron/foo.txt”)

What Gets Stored
 User data itself is the bulk of the file

system's contents

 Also includes meta-data on a drive-wide

and per-file basis:
Drive-wide:

Available space

Formatting info

character set

...

Per-file:

name

owner

modification date

physical layout...

High-Level Organization

 Files are organized in a “tree” structure
made of nested directories

 One directory acts as the “root”

 “links” (symlinks, shortcuts, etc) provide

simple means of providing multiple access

paths to one file

 Other file systems can be “mounted” and

dropped in as sub-hierarchies (other

drives, network shares)

Low-Level Organization (1/2)

 File data and meta-data stored separately

 File descriptors + meta-data stored in

inodes

Large tree or table at designated location on

disk

Tells how to look up file contents

 Meta-data may be replicated to increase

system reliability

Low-Level Organization (2/2)
 “Standard” read-write medium is a hard

drive (other media: CDROM, tape, ...)

 Viewed as a sequential array of blocks

 Must address ~1 KB chunk at a time

 Tree structure is “flattened” into blocks

 Overlapping reads/writes/deletes can

cause fragmentation: files are often not

stored with a linear layout

 inodes store all block numbers related to file

Fragmentation

A B C (free space)

A B C (free space)A

A (free space) C (free space)A

A D C (free)A D

Design Considerations
 Smaller inode size reduces amount of

wasted space

 Larger inode size increases speed of

sequential reads (may not help random

access)

 Should the file system be faster or more

reliable?

 But faster at what: Large files? Small files?

Lots of reading? Frequent writers,

occasional readers?

Distributed Filesystems

 Support access to files on remote servers

 Must support concurrency

Make varying guarantees about locking, who

“wins” with concurrent writes, etc...

Must gracefully handle dropped connections

 Can offer support for replication and local

caching

 Different implementations sit in different

places on complexity/feature scale

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

GFS

Motivation
 Google needed a good distributed file system

 Redundant storage of massive amounts of data on

cheap and unreliable computers

 Why not use an existing file system?

 Google’s problems are different from anyone else’s

 Different workload and design priorities

 GFS is designed for Google apps and workloads

 Google apps are designed for GFS

Assumptions

 High component failure rates

 Inexpensive commodity components fail all the

time…seeds for the “Cloud” on commodity clusters

 “Modest” number of HUGE files

 Just a few million

Each is 100MB or larger; multi-GB files typical

 Files are write-once, mostly appended to

Perhaps concurrently

Example?

 Large streaming reads, sequential reads

 High sustained throughput favored over low latency

Web Search
 Crawl the web

Downloads URLs, store them to file

system

Extract page content (words), URL

links

Do BFS traversal

 Index the text content

 Invested index: Word->URL

 Rank the pages

PageRank

Crawler

Crawler

Crawler

Store

Index

Index

Web

Graph

Web

Graph

Page

Rank

Page

Rank

GFS Design Decisions
 Files stored as chunks

 Fixed size (64MB)

 Reliability through replication

 Each chunk replicated across 3+ chunkservers

 Single master to coordinate access, keep metadata

 Simple centralized management, placement decisions

 No data caching

 Little benefit due to large data sets, streaming reads

 Familiar interface, but customize the API

 Simplify the problem; focus on Google apps

 Add snapshot and record append operations

GFS Architecture
 Single master

 Mutiple chunkservers

…Can anyone see a potential weakness in this design?

Single master
 Downsides

 Single point of failure

 Scalability bottleneck

 GFS solutions:
 Shadow masters

 Minimize master involvement
 never move data through it, use only for metadata

 and cache metadata at clients

 large chunk size

 master delegates authority to primary replicas in data mutations
(chunk leases)

Chunks

 Stored as a Linux file on chunk servers

 Default is 64MB…larger than file system

block sizes

Pre-allocates disk space, avoids

fragmentation

Reduces master metadata

Reduces master interaction, allows metadata

caching on client

Persistent TCP connection to chunk server

 Con: hot-spots…need to tune replication

Metadata
 Global metadata is stored on the master

 File and chunk namespaces

 Mapping from files to chunks

 Locations of each chunk’s replicas

 All kept in-memory (64 bytes / chunk)

 Fast

 Easily accessible

 Cheaper to add more memory

Metadata

 Master builds chunk-to-server mapping on boot-

up, from chunk servers

 And on heart-beat

 Avoids sync of chunkservers & master

 Chunkservers can come and go, fail, restart often

 Gives flexibility to manage chunkservers

independently

 Lazy propagation to master

 Chunk server is final authority on whether it has

chunk or not

Metadata
 Metadata should be consistent, and updates

visible to clients only after stable

Once metadata is visible, clients can use/change it

 Master has an operation log for persistent

logging of critical metadata updates

Namespace & file-chunk mapping persisted

 Persistent on local disk as log mutations

 Logical time, order of concurrent ops, single master!

 Replicated, client ack only after replication

 Replay log to recover metadata

 Checkpoints for faster recovery

Chunk Servers

 Master controls chunk placement

 Chunk servers store chunks

 Interacts with clients for file operations

 Heart beat messages to master

 liveliness, list of chunks present

Master’s responsibilities
 Namespace management/locking

 Metadata storage

 Periodic scanning of in-memory metadata

 Periodic communication with chunkservers

 give instructions, collect state, track cluster health

Chunk Management

 Chunk creation, re-replication, rebalancing

 balance space utilization, bandwidth utilization and

access speed/performance

 spread replicas across racks to reduce correlated

failures…across servers, racks

 re-replicate data if redundancy falls below threshold

 rebalance data to smooth out storage and request

load

Master’s responsibilities
 Garbage Collection

 simpler, more reliable than traditional file delete

 master logs the deletion, renames the file to a hidden

name

 lazily garbage collects hidden files

 Stale replica deletion

 detect “stale” replicas using chunk version numbers

Fault Tolerance

 High availability

 fast recovery

 master and chunkservers restartable in a few seconds

 chunk replication

 default: 3 replicas.

 Replication for fault tolerance vs. Replication for performance

 shadow masters

 Data integrity

 checksum every 64KB block in each chunk

Relaxed consistency model

 Namespace updates atomic and serializable

namespace locking guarantees this

 “Consistent” = All replicas have the same value.
Any client reads same value.

 “Defined” = Consistent, and all replicas reflect
the mutation performed. All clients read the
updated value in entirety.

Relaxed consistency model

 Singe successful write leaves region defined

 Concurrent writes leave region consistent, but
possibly undefined
 All clients see same content, but writes may have

happened in fragments/interleaved

 Failed writes leave the region inconsistent
 Different clients see different content at different times

Mutations
 Mutation = write or append

 Write to a specific offset

 Append data, atomically at least once

 Must be done for all replicas

 Returns start offset for defined region

 May pad inconsistent regions, Create duplicates

 Mutated file guaranteed to be defined after successful

mutations…

 Apply mutations to a chunk in the same order on all its replicas

 Use chunk version numbers to detect any stale replica that was

down during a mutation

 Caching of metadata in client can cause stale reads!

Mutations
 Goal: Minimize master involvement

 Lease mechanism for a mutation
 master picks one replica as primary; gives it a “lease” for

mutations from any client (default 60 secs, extensible as part of

heartbeat)

 primary defines a serial order of mutations

 all replicas follow this order

Mutations
 Dataflow decoupled from

control flow

 Forwarding to closest server. Pipeline.

 Fully utilize bandwidth!

 B/T + R.L (Bytes, Thruput, Replicas, Latency)

 Send record to all replicas, any order.

Maintained in buffer by c’server.

 Send “write” to primary with data IDs.

Primary assigns serial numbers to

records. Applies mutations in serial

order.

 Forwards to secondary’s. Applied on them, and acked to primary.

Acked to client.

 Any failures replica leaves inconsistent state. Retry.

 Mutations across chunks are split by client.

Mutations

 Clients need to distinguish between defined and

undefined regions

 Some work has moved into the applications:
 e.g., prefer appends, use self-validating, self-identifying records,

checkpoint

 Use checksums to identify and discard padding

 Use uids to identify duplicate records

 Simple, efficient
 Google apps can live with it

 what about other apps?

Atomic record append

 Concurrent writes to same region not serializable

 In Append, client specifies data. GFS appends it to the

file atomically at least once

 GFS picks the offset. Returns offset to client.

 works for concurrent writers

 Client sends data to all replicas of last chunk of file.

 Primary applies to its end; tells secondaries to apply at

that offset.

 E.g. concurrent appends from different clients…

 Used heavily by Google apps

 e.g., for files that serve as multiple-producer/single-consumer

queues

Snapshot

 Full copies of a file, rapidly

 On snapshot request, NameNode revokes

all primary leases to chunks

 Log opn to disk. Copy metadata to new

file, chunks point to old chunks with

reference count +1

 Copy old chunk to new on write (copy on

write to local chunkserver) if reference

counter > 1

Performance

Performance

Deployment in Google

 50+ GFS clusters

 Each with thousands of storage nodes

 Managing petabytes of data

 GFS is under BigTable, etc.

Conclusion

 GFS demonstrates how to support large-scale

processing workloads on commodity hardware

 design to tolerate frequent component failures

 optimize for huge files that are mostly appended and

read

 feel free to relax and extend FS interface as required

 go for simple solutions (e.g., single master)

 GFS has met Google’s storage needs… it must

be good!

Expected

Failure/year

Observed

Failure/year

Disk failures in the real world: What does an MTTF

of 1,000,000 hours mean to you?, Bianca Schroeder

Garth A. Gibson Usenix FAST 2007

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Hadoop Distributed
File System
Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler,
IEEE Symposium on Mass Storage Systems and Technologies (MSST),
2010

Block Report

 DataNode identifies block replicas in its

possession to the NameNode by sending

a block report

block id, the generation stamp and the length

 First block report is sent immediately after

the DataNode registration. Subsequent

block reports are sent every hour.

Heartbeat

 DataNodes send heartbeats to the NameNode to confirm

that it is up

 Default interval is 3 seconds. After no heartbeat in 10

minutes the NameNode considers it out of service, block

replicas unavailable. Schedules replication.

 Piggyback storage capacity, fraction of storage in use,

data transfers in progress

 NameNode responds to heartbeat with:

 Replicate blocks, remove local replicas, shut down

the node, send immediate block report

Checkpoint Node

 Can take hours to recreate NameNode for 1

week of journal (ops log)

 Periodically combines existing checkpoint &

journal to create a new checkpoint & empty

journal

 Download current checkpoint & journal from the

NameNode, merges them locally, return new

checkpoint to NameNode

 New checkpoint lets NameNode truncate the tail

of the journal

Backup Node

 BackupNode can create periodic checkpoints.

Read-only NameNode!

 Also maintains an in-memory image of

namespace, synchronized with NameNode

 Accepts the journal stream of namespace

transactions from active NameNode, saves them

to its local store, applies them to its own

namespace image in memory

 Creating checkpoints is done locally

Block Creation Pipeline

• The DataNodes form a

pipeline, the order of which

• minimizes the total network

distance from the client to the

last DataNode.

• Data is pushed to the pipeline

as (64 KB) packet buffers

• Async, Max outstanding acks.

• Clients generates checksums

for blocks, DN stores

checksums for each block.

Checksums verified by client

while reading to detect

corruption.

Block Placement

 The distance from a node to its parent node is 1.

Distance between nodes is sum of distances to

their common ancestor.

 Tradeoff between min write cost, and max

reliability, availability & agg read B/W

 1st replica on writer node, the 2nd & 3rd on different

nodes in a different rack

 No Datanode has more than one replica. No rack has

more than two replicas of a block.

 NameNode returns replica location in the order

of its closeness to the reader

Replication

 NameNode detects under- or over-replication

from block report

 Remove replica without reducing the # of racks

hosting replicas, prefer DataNode with least disk

space

 Under-replicated blocks put in priority queue.

Block with 1 replica has highest priority.

 Background thread scans the replication queue,

decide where to place new replicas

Balancer

 Balances disk space usage on an HDFS cluster

based on threshold

 Utilization of a node (used%) differs from the

utilization of cluster by no more than the threshold

value.

 Iteratively moves replicas from nodes with higher

utilization to nodes with lower.

 Maintains data availability, minimizes inter-rack

copying, limits bandwidth consumed

Discussion
 How many sys-admins does it take to run a

system like this?
 much of management is built in

 Google currently has ~450,000 machines
 GFS: only 1/3 of these are “effective”

 that’s a lot of extra equipment, extra cost, extra power,
extra space!

 GFS has achieved availability/performance at a very
low cost, but can you do it for even less?

 Is GFS useful as a general-purpose commercial
product?
 small write performance not good enough?

 relaxed consistency model

