
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान

बंगलौर, भारत

Department of Computational and Data Sciences

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

CDS
Department of Computational and Data Sciences

Department of Computational and Data Sciences

L1:Google File System
Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung

ACM SOSP, 2003

Yogesh Simmhan
9 , 1 1 , 1 6 J a n , 2 0 1 8

DS256:Jan18 (3:1)

http://creativecommons.org/licenses/by/4.0/deed.en_US

 The following slides are based on:

“Distributed Filesystems”, CSE 490h –

Introduction to Distributed Computing, Spring

2007, © Aaron Kimball
 https://courses.cs.washington.edu/courses/cse490h/07sp/

Google File System, Alex Moshchuk

Credits

https://courses.cs.washington.edu/courses/cse490h/07sp/

File Systems Overview
 System that permanently stores data

 Usually layered on top of a lower-level

physical storage medium

 Divided into logical units called “files”

Addressable by a filename (“foo.txt”)

Usually supports hierarchical nesting

(directories)

 A file path joins file & directory names into

a relative or absolute address to identify a

file (“/home/aaron/foo.txt”)

What Gets Stored
 User data itself is the bulk of the file

system's contents

 Also includes meta-data on a drive-wide

and per-file basis:
Drive-wide:

Available space

Formatting info

character set

...

Per-file:

name

owner

modification date

physical layout...

High-Level Organization

 Files are organized in a “tree” structure
made of nested directories

 One directory acts as the “root”

 “links” (symlinks, shortcuts, etc) provide

simple means of providing multiple access

paths to one file

 Other file systems can be “mounted” and

dropped in as sub-hierarchies (other

drives, network shares)

Low-Level Organization (1/2)

 File data and meta-data stored separately

 File descriptors + meta-data stored in

inodes

Large tree or table at designated location on

disk

Tells how to look up file contents

 Meta-data may be replicated to increase

system reliability

Low-Level Organization (2/2)
 “Standard” read-write medium is a hard

drive (other media: CDROM, tape, ...)

 Viewed as a sequential array of blocks

 Must address ~1 KB chunk at a time

 Tree structure is “flattened” into blocks

 Overlapping reads/writes/deletes can

cause fragmentation: files are often not

stored with a linear layout

 inodes store all block numbers related to file

Fragmentation

A B C (free space)

A B C (free space)A

A (free space) C (free space)A

A D C (free)A D

Design Considerations
 Smaller inode size reduces amount of

wasted space

 Larger inode size increases speed of

sequential reads (may not help random

access)

 Should the file system be faster or more

reliable?

 But faster at what: Large files? Small files?

Lots of reading? Frequent writers,

occasional readers?

Distributed Filesystems

 Support access to files on remote servers

 Must support concurrency

Make varying guarantees about locking, who

“wins” with concurrent writes, etc...

Must gracefully handle dropped connections

 Can offer support for replication and local

caching

 Different implementations sit in different

places on complexity/feature scale

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

GFS

Motivation
 Google needed a good distributed file system

 Redundant storage of massive amounts of data on

cheap and unreliable computers

 Why not use an existing file system?

 Google’s problems are different from anyone else’s

 Different workload and design priorities

 GFS is designed for Google apps and workloads

 Google apps are designed for GFS

Assumptions

 High component failure rates

 Inexpensive commodity components fail all the

time…seeds for the “Cloud” on commodity clusters

 “Modest” number of HUGE files

 Just a few million

Each is 100MB or larger; multi-GB files typical

 Files are write-once, mostly appended to

Perhaps concurrently

Example?

 Large streaming reads, sequential reads

 High sustained throughput favored over low latency

Web Search
 Crawl the web

Downloads URLs, store them to file

system

Extract page content (words), URL

links

Do BFS traversal

 Index the text content

 Invested index: Word->URL

 Rank the pages

PageRank

Crawler

Crawler

Crawler

Store

Index

Index

Web

Graph

Web

Graph

Page

Rank

Page

Rank

GFS Design Decisions
 Files stored as chunks

 Fixed size (64MB)

 Reliability through replication

 Each chunk replicated across 3+ chunkservers

 Single master to coordinate access, keep metadata

 Simple centralized management, placement decisions

 No data caching

 Little benefit due to large data sets, streaming reads

 Familiar interface, but customize the API

 Simplify the problem; focus on Google apps

 Add snapshot and record append operations

GFS Architecture
 Single master

 Mutiple chunkservers

…Can anyone see a potential weakness in this design?

Single master
 Downsides

 Single point of failure

 Scalability bottleneck

 GFS solutions:
 Shadow masters

 Minimize master involvement
 never move data through it, use only for metadata

 and cache metadata at clients

 large chunk size

 master delegates authority to primary replicas in data mutations
(chunk leases)

Chunks

 Stored as a Linux file on chunk servers

 Default is 64MB…larger than file system

block sizes

Pre-allocates disk space, avoids

fragmentation

Reduces master metadata

Reduces master interaction, allows metadata

caching on client

Persistent TCP connection to chunk server

 Con: hot-spots…need to tune replication

Metadata
 Global metadata is stored on the master

 File and chunk namespaces

 Mapping from files to chunks

 Locations of each chunk’s replicas

 All kept in-memory (64 bytes / chunk)

 Fast

 Easily accessible

 Cheaper to add more memory

Metadata

 Master builds chunk-to-server mapping on boot-

up, from chunk servers

 And on heart-beat

 Avoids sync of chunkservers & master

 Chunkservers can come and go, fail, restart often

 Gives flexibility to manage chunkservers

independently

 Lazy propagation to master

 Chunk server is final authority on whether it has

chunk or not

Metadata
 Metadata should be consistent, and updates

visible to clients only after stable

Once metadata is visible, clients can use/change it

 Master has an operation log for persistent

logging of critical metadata updates

Namespace & file-chunk mapping persisted

 Persistent on local disk as log mutations

 Logical time, order of concurrent ops, single master!

 Replicated, client ack only after replication

 Replay log to recover metadata

 Checkpoints for faster recovery

Chunk Servers

 Master controls chunk placement

 Chunk servers store chunks

 Interacts with clients for file operations

 Heart beat messages to master

 liveliness, list of chunks present

Master’s responsibilities
 Namespace management/locking

 Metadata storage

 Periodic scanning of in-memory metadata

 Periodic communication with chunkservers

 give instructions, collect state, track cluster health

Chunk Management

 Chunk creation, re-replication, rebalancing

 balance space utilization, bandwidth utilization and

access speed/performance

 spread replicas across racks to reduce correlated

failures…across servers, racks

 re-replicate data if redundancy falls below threshold

 rebalance data to smooth out storage and request

load

Master’s responsibilities
 Garbage Collection

 simpler, more reliable than traditional file delete

 master logs the deletion, renames the file to a hidden

name

 lazily garbage collects hidden files

 Stale replica deletion

 detect “stale” replicas using chunk version numbers

Fault Tolerance

 High availability

 fast recovery

 master and chunkservers restartable in a few seconds

 chunk replication

 default: 3 replicas.

 Replication for fault tolerance vs. Replication for performance

 shadow masters

 Data integrity

 checksum every 64KB block in each chunk

Relaxed consistency model

 Namespace updates atomic and serializable

namespace locking guarantees this

 “Consistent” = All replicas have the same value.
Any client reads same value.

 “Defined” = Consistent, and all replicas reflect
the mutation performed. All clients read the
updated value in entirety.

Relaxed consistency model

 Singe successful write leaves region defined

 Concurrent writes leave region consistent, but
possibly undefined
 All clients see same content, but writes may have

happened in fragments/interleaved

 Failed writes leave the region inconsistent
 Different clients see different content at different times

Mutations
 Mutation = write or append

 Write to a specific offset

 Append data, atomically at least once

 Must be done for all replicas

 Returns start offset for defined region

 May pad inconsistent regions, Create duplicates

 Mutated file guaranteed to be defined after successful

mutations…

 Apply mutations to a chunk in the same order on all its replicas

 Use chunk version numbers to detect any stale replica that was

down during a mutation

 Caching of metadata in client can cause stale reads!

Mutations
 Goal: Minimize master involvement

 Lease mechanism for a mutation
 master picks one replica as primary; gives it a “lease” for

mutations from any client (default 60 secs, extensible as part of

heartbeat)

 primary defines a serial order of mutations

 all replicas follow this order

Mutations
 Dataflow decoupled from

control flow

 Forwarding to closest server. Pipeline.

 Fully utilize bandwidth!

 B/T + R.L (Bytes, Thruput, Replicas, Latency)

 Send record to all replicas, any order.

Maintained in buffer by c’server.

 Send “write” to primary with data IDs.

Primary assigns serial numbers to

records. Applies mutations in serial

order.

 Forwards to secondary’s. Applied on them, and acked to primary.

Acked to client.

 Any failures replica leaves inconsistent state. Retry.

 Mutations across chunks are split by client.

Mutations

 Clients need to distinguish between defined and

undefined regions

 Some work has moved into the applications:
 e.g., prefer appends, use self-validating, self-identifying records,

checkpoint

 Use checksums to identify and discard padding

 Use uids to identify duplicate records

 Simple, efficient
 Google apps can live with it

 what about other apps?

Atomic record append

 Concurrent writes to same region not serializable

 In Append, client specifies data. GFS appends it to the

file atomically at least once

 GFS picks the offset. Returns offset to client.

 works for concurrent writers

 Client sends data to all replicas of last chunk of file.

 Primary applies to its end; tells secondaries to apply at

that offset.

 E.g. concurrent appends from different clients…

 Used heavily by Google apps

 e.g., for files that serve as multiple-producer/single-consumer

queues

Snapshot

 Full copies of a file, rapidly

 On snapshot request, NameNode revokes

all primary leases to chunks

 Log opn to disk. Copy metadata to new

file, chunks point to old chunks with

reference count +1

 Copy old chunk to new on write (copy on

write to local chunkserver) if reference

counter > 1

Performance

Performance

Deployment in Google

 50+ GFS clusters

 Each with thousands of storage nodes

 Managing petabytes of data

 GFS is under BigTable, etc.

Conclusion

 GFS demonstrates how to support large-scale

processing workloads on commodity hardware

 design to tolerate frequent component failures

 optimize for huge files that are mostly appended and

read

 feel free to relax and extend FS interface as required

 go for simple solutions (e.g., single master)

 GFS has met Google’s storage needs… it must

be good!

Expected

Failure/year

Observed

Failure/year

Disk failures in the real world: What does an MTTF

of 1,000,000 hours mean to you?, Bianca Schroeder

Garth A. Gibson Usenix FAST 2007

CDS.IISc.ac.in | Department of Computational and Data SciencesCDS.IISc.in | Department of Computational and Data Sciences

Hadoop Distributed
File System
Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler,
IEEE Symposium on Mass Storage Systems and Technologies (MSST),
2010

Block Report

 DataNode identifies block replicas in its

possession to the NameNode by sending

a block report

block id, the generation stamp and the length

 First block report is sent immediately after

the DataNode registration. Subsequent

block reports are sent every hour.

Heartbeat

 DataNodes send heartbeats to the NameNode to confirm

that it is up

 Default interval is 3 seconds. After no heartbeat in 10

minutes the NameNode considers it out of service, block

replicas unavailable. Schedules replication.

 Piggyback storage capacity, fraction of storage in use,

data transfers in progress

 NameNode responds to heartbeat with:

 Replicate blocks, remove local replicas, shut down

the node, send immediate block report

Checkpoint Node

 Can take hours to recreate NameNode for 1

week of journal (ops log)

 Periodically combines existing checkpoint &

journal to create a new checkpoint & empty

journal

 Download current checkpoint & journal from the

NameNode, merges them locally, return new

checkpoint to NameNode

 New checkpoint lets NameNode truncate the tail

of the journal

Backup Node

 BackupNode can create periodic checkpoints.

Read-only NameNode!

 Also maintains an in-memory image of

namespace, synchronized with NameNode

 Accepts the journal stream of namespace

transactions from active NameNode, saves them

to its local store, applies them to its own

namespace image in memory

 Creating checkpoints is done locally

Block Creation Pipeline

• The DataNodes form a

pipeline, the order of which

• minimizes the total network

distance from the client to the

last DataNode.

• Data is pushed to the pipeline

as (64 KB) packet buffers

• Async, Max outstanding acks.

• Clients generates checksums

for blocks, DN stores

checksums for each block.

Checksums verified by client

while reading to detect

corruption.

Block Placement

 The distance from a node to its parent node is 1.

Distance between nodes is sum of distances to

their common ancestor.

 Tradeoff between min write cost, and max

reliability, availability & agg read B/W

 1st replica on writer node, the 2nd & 3rd on different

nodes in a different rack

 No Datanode has more than one replica. No rack has

more than two replicas of a block.

 NameNode returns replica location in the order

of its closeness to the reader

Replication

 NameNode detects under- or over-replication

from block report

 Remove replica without reducing the # of racks

hosting replicas, prefer DataNode with least disk

space

 Under-replicated blocks put in priority queue.

Block with 1 replica has highest priority.

 Background thread scans the replication queue,

decide where to place new replicas

Balancer

 Balances disk space usage on an HDFS cluster

based on threshold

 Utilization of a node (used%) differs from the

utilization of cluster by no more than the threshold

value.

 Iteratively moves replicas from nodes with higher

utilization to nodes with lower.

 Maintains data availability, minimizes inter-rack

copying, limits bandwidth consumed

Discussion
 How many sys-admins does it take to run a

system like this?
 much of management is built in

 Google currently has ~450,000 machines
 GFS: only 1/3 of these are “effective”

 that’s a lot of extra equipment, extra cost, extra power,
extra space!

 GFS has achieved availability/performance at a very
low cost, but can you do it for even less?

 Is GFS useful as a general-purpose commercial
product?
 small write performance not good enough?

 relaxed consistency model

