
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान
बंगलौर, भारत

Department of Computational and Data Sciences

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

CDS
Department of Computational and Data Sciences

L3: Spark & RDD

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.ac.in | Department of Computational and Data Sciences

Latency & Bandwidth

▪ L1 cache reference 0.5 ns

▪ L2 cache reference 7 ns

▪ Main memory reference 100 ns

▪ Send 1K bytes over 1 Gbps network 10,000 ns 10 μs

▪ Read 4K randomly from SSD* 150,000 ns 150 μs

▪ Read 1MB sequentially from memory 250,000 ns 250 μs

▪ Round trip within same datacenter 500,000 ns 500 μs

▪ Read 1MB sequentially from SSD* 1,000,000 ns 1,000 μs 1 ms

▪ Send 1MB over 1 Gbps network 8,250 μs 8 ms

▪ Disk seek 10,000,000 ns 10,000 μs 10 ms

▪ Read 1MB sequentially from disk 20,000,000 ns 20,000 μs 20 ms

▪ Send packet CA->NL->CA 150,000,000 ns 150,000 μs 150 ms

https://gist.github.com/jboner/2841832

CDS.IISc.ac.in | Department of Computational and Data Sciences

Latency in Human Scales

http://www.prowesscorp.com/computer-latency-at-a-human-scale/

1 sec

CDS.IISc.ac.in | Department of Computational and Data Sciences

Map Reduce

▪Data-parallel execution

▪Move program to data, rather than data to program

▪ Cost for moving data: network, disk, memory, cache

▪ But moves data from disk to memory often

CDS.IISc.ac.in | Department of Computational and Data Sciences

Downsides of MR
▪NOT Designed for data sharing

‣ the only way to share data across jobs is stable storage  slow!

▪NOT suited for
‣ Complex, multi-‐stage applications (e.g. iterative machine

learning & graph processing)
‣ Interactive ad hoc queries

© Matei Zaharia

CDS.IISc.ac.in | Department of Computational and Data Sciences

https://stanford.edu/~rezab/sparkclass/slides/itas_workshop.pdf

CDS.IISc.ac.in | Department of Computational and Data Sciences

https://stanford.edu/~rezab/sparkclass/slides/itas_workshop.pdf

CDS.IISc.ac.in | Department of Computational and Data Sciences

Spark: Cluster Computing with Working Sets
Zaharia, Chowdhury, Franklin, Shenker, Stoica
USENIX HotCloud 2010

Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing
Zaharia, Chowdhury, Das, Dave, Ma, McCauley,
Franklin, Shenker, Stoica
USENIX NSDI 2012

CDS.IISc.ac.in | Department of Computational and Data Sciences

Challenge

▪How to design a distributed memory abstraction
that is both fault-tolerant and efficient?

© Matei Zaharia

CDS.IISc.ac.in | Department of Computational and Data Sciences

DAG Model

▪More expressive
‣ Iterative Map Reduce

‣ Dryad/DryadLINQ

‣ Pig, Hive

CDS.IISc.ac.in | Department of Computational and Data Sciences

Working Sets

▪ Reuse same data multiple times
‣ Pregel/Giraph

‣ Parameter sweep in ML

▪Use resulting data immediately as a pipeline
‣ Iterative Map Reduce

▪ Analogous to virtual memory

CDS.IISc.ac.in | Department of Computational and Data Sciences

RDD

▪ Distributed

▪ Read-only

▪ Can be rebuilt

▪ Can be cached

▪ MR like data-parallel operations

▪ Sweet-spot: Expressivity, Scalability, Reliability

▪ Efficient fault tolerance
‣ Avoid replication, transaction logging
‣ Retain in-memory for performance
‣ Coarse-grained logging of lineage

CDS.IISc.ac.in | Department of Computational and Data Sciences

RDD

▪Handle to the RDD
‣ Virtual collection of partitions

‣ Recipe to rebuild those partitions from disk

▪ Immutable

▪ Construct
‣ From disk

‣ From memory collection (constant)

‣ By transformation

‣ By loading from persistent RDD

CDS.IISc.ac.in | Department of Computational and Data Sciences

Cache

▪Hint of retaining in memory. Trade-off:

▪ cost of in-memory storage,

▪ speed of access,

▪ probability of loss,

▪ cost of recompute

CDS.IISc.ac.in | Department of Computational and Data Sciences

Parallel Ops

▪ Similar to DryadLINQ

▪ Foreach

▪ Reduce, associative function

▪ Collect

▪No GroupBy yet

▪ Lazy evaluation, pipelining of transformations

CDS.IISc.ac.in | Department of Computational and Data Sciences

Shared Variables

▪ Broadcast read-only piece of data
‣ Initially used HDFS to broadcast variables

▪ Accumulator, using zero & associative function
‣ Only driver can read

‣ On the workers, a copy of zero’ed accumulator is created
per thread

‣ After task run, the worker sends a message to the driver
program containing the updates

‣ Driver folds these

CDS.IISc.ac.in | Department of Computational and Data Sciences

Examples

CDS.IISc.ac.in | Department of Computational and Data Sciences

Lineage

CDS.IISc.ac.in | Department of Computational and Data Sciences

Persistence

▪ Explicit persistence by developer

▪ Spill to disk if memory full
‣ Priority among RDD’s on memory usage

▪ Persist on disk, replicate

CDS.IISc.ac.in | Department of Computational and Data Sciences

RDD vs. Distributed Shared
Mem.

CDS.IISc.ac.in | Department of Computational and Data Sciences

Trade-off Space

© Matei Zaharia

CDS.IISc.ac.in | Department of Computational and Data Sciences

Non-goals

▪Does not work for apps with async, fine-grained
updates to shared state

▪ Suited for batch, data-parallel apps, coarse
transformations, concise lineage

CDS.IISc.ac.in | Department of Computational and Data Sciences

Creating RDD

▪ Load external data from distributed storage

▪ Create logical RDD on which you can operate

▪ Support for different input formats
‣ HDFS files, Cassandra, Java serialized, directory, gzipped

▪ Can control the number of partitions in loaded RDD
‣ Default depends on external DFS, e.g. 128MB on HDFS

23

CDS.IISc.ac.in | Department of Computational and Data Sciences

RDD Operations
▪ Transformations

‣ From one RDD to one or more RDDs

‣ Lazy evaluation…use with care

‣ Executed in a distributed manner

▪ Actions
‣ Perform aggregations on RDD items

‣ Return single (or distributed) results to “driver” code

▪ RDD.collect() brings RDD partitions to single driver
machine

24

CDS.IISc.ac.in | Department of Computational and Data Sciences

Anonymous Classes
▪Data-centric model allows functions to be passed

‣ Functions applied to items in the RDD

‣ Typically, on individual partitions in data-parallel

▪ Anonymous class implements interface

25

CDS.IISc.ac.in | Department of Computational and Data Sciences

Anonymous Classes &
Lambda Expressions
▪Or Java 8 functions are short-forms for simple code

fragments to iterate over collections

▪ Caution: Cannot pass “local” driver variables to
lambda expressions/anonymous classes….only final
‣ Will fail when distributed

26

CDS.IISc.ac.in | Department of Computational and Data Sciences

RDD and PairRDD

▪ RDD is logically a collection of items with a generic
type

▪ PairRDD is like a “Map”, where each item in
collection is a <key,value> pair, each a generic type

▪ Transformation functions use RDD or PairRDD as
input/output

▪ E.g. Map-Reduce

27

CDS.IISc.ac.in | Department of Computational and Data Sciences

Transformations

▪ JavaRDD<R> map(Function<T,R> f) : 1:1 mapping
from input to output. Can be different types.

▪ JavaRDD<T> filter(Function<T,Boolean> f) : 1:0/1
from input to output, same type.

▪ JavaRDD<U> flatMap(FlatMapFunction<T,U> f) :
1:N mapping from input to output, different types.

28

CDS.IISc.ac.in | Department of Computational and Data Sciences

Transformations

▪ Earlier Map and Filter operate on one item at a
time. No state across calls!

▪ JavaRDD<U>
mapPartitions(FlatMapFunc<Iterator<T>,U> f)

▪mapPartitions has access to iterator of values in
entire partition, jot just a single item at a time.

29

CDS.IISc.ac.in | Department of Computational and Data Sciences

Transformations

▪ JavaRDD<T> sample(boolean withReplacement,
double fraction): fraction between [0,1] without
replacement, >0 with replacement

▪ JavaRDD<T> union(JavaRDD<T> other): Items in
other RDD added to this RDD. Same type. Can have
duplicate items (i.e. not a ‘set’ union).

30

CDS.IISc.ac.in | Department of Computational and Data Sciences

Transformations

▪ JavaRDD<T> intersection(JavaRDD<T> other): Does
a set intersection of the RDDs. Output will not have
duplicates, even if inputs did.

▪ JavaRDD<T> distinct(): Returns a new RDD with
unique elements, eliminating duplicates.

31

CDS.IISc.ac.in | Department of Computational and Data Sciences

Transformations: PairRDD

▪ JavaPairRDD<K,Iterable<V>> groupByKey(): Groups values
for each key into a single iterable.

▪ JavaPairRDD<K,V> reduceByKey(Function2<V,V,V> func) :
Merge the values for each key into a single value using an
associative and commutative reduce function. Output value
is of same type as input.

▪ For aggregate that returns a different type?

▪ numPartitions can be used to generate output RDD with
different number of partitions than input RDD.

32

CDS.IISc.ac.in | Department of Computational and Data Sciences

Transformations

▪ JavaPairRDD<K,U> aggregateByKey(U zeroValue,
Function2<U,V,U> seqFunc, Function2<U,U,U> combFunc) :
Aggregate the values of each key, using given combine functions
and a neutral “zero value”.
‣ SeqOp for merging a V into a U within a partition
‣ CombOp for merging two U's, within/across partitions

▪ JavaPairRDD<K,V> sortByKey(Comparator<K> comp): Global sort
of the RDD by key
‣ Each partition contains a sorted range, i.e., output RDD is range-

partitioned.
‣ Calling collect will return an ordered list of records

33

CDS.IISc.ac.in | Department of Computational and Data Sciences

Transformations

▪ JavaPairRDD<K, Tuple2<V,W>>
join(JavaPairRDD<K,W> other, int numParts):
Matches keys in this and other. Each output pair is
(k, (v1, v2)). Performs a hash join across the cluster.

▪ JavaPairRDD<T,U> cartesian(JavaRDDLike<U,?>
other): Cross product of values in each RDD as a
pair

34

CDS.IISc.ac.in | Department of Computational and Data Sciences

Actions

35

CDS.IISc.ac.in | Department of Computational and Data Sciences

RDD Persistence & Caching

▪ RDDs can be reused in a dataflow
‣ Branch, iteration

▪ But it will be re-evaluated each time it is reused!

▪ Explicitly persist RDD to reuse output of a dataflow
path multiple times

▪Multiple storage levels for persistence
‣ Disk or memory

‣ Serialized or object form in memory

‣ Partial spill-to-disk possible

‣ Cache indicates “persist” to memory

36

CDS.IISc.ac.in | Department of Computational and Data Sciences

RePartitioning

37

CDS.IISc.ac.in | Department of Computational and Data Sciences

Job Scheduling: Static

▪ Apps get excusive set of executors

▪ Standalone Mode: Apps execute in FIFO, try and
use all cores available. Can bound cores & memory
per app.

▪ YARN: Can decide executors per app,
cores/memory per executor

https://spark.apache.org/docs/latest/job-scheduling.html

https://spark.apache.org/docs/latest/job-scheduling.html

CDS.IISc.ac.in | Department of Computational and Data Sciences

Job Scheduling: Dynamic

▪ Allows in-flight apps to return resources to the cluster
‣ Set a flag
‣ Use an external shuffle service

▪ Heuristic to decide executor request & remove policy
‣ Request if pending tasks waiting beyond timeout. Multiple

rounds, exponential increase in executors requested
‣ Remove if executor idle for longer than timeout

▪ Remove will delete memory/disk contents of executor
‣ In-flight tasks may rely on shuffle output from it!
‣ External shuffle service copies in the shuffle output
‣ If RDD is cached in an executor, executor will NOT be

removed!

https://spark.apache.org/docs/latest/job-scheduling.html

https://spark.apache.org/docs/latest/job-scheduling.html

CDS.IISc.ac.in | Department of Computational and Data Sciences

Jobs within an App

▪ FIFO, first job gets all resources for its stages. Then
next job, etc.
‣ Heavy jobs can delay later jobs

▪ Fair scheduling of tasks across jobs is possible
‣ Round robin assignment of tasks from jobs to resources

