Department of Computational and Data Sciences

L3: Spark & RDD

Q) CDS
Creative Commons Attribution 4.0 International License ®

Department of Computational and Data Sciences

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.lISc.ac.in | Department of Computational and Data Sciences

Latency & Bandwidth

= L1 cache reference 0.5 ns

= |2 cache reference 7 ns

= Main memory reference
= Send 1K bytes over 1 Gbps network
= Read 4K randomly from SSD*

* Round trip within same datacenter

= Disk seek

= Send packet CA->NL->CA

https://gist.github.com/jboner/2841832

CDS.lISc.ac.in | Department of Computational and Data Sciences

Latency in Human Scales

.I

=

100

1,000

10,000

100,000

Scaled latency (seconds)

1,000,000

10,000,000

100,000,000

System Event

1CPY 1 cache L2 cache L3 cache Memory Optana MVe SATA 330D Intemet Intemeat
cycla ACCEss AacCcess acCcess acoess access S30 140 140 HDD 1D SF o NYC SF to HE

- l 1 sec
____________________________ II R R S R I —— -1 1 minute
... — — N R —_— — == 1 hour
-- ----- 1day
___ I I oo A weak
___ I I - - --- 1 month

http://www.prowesscorp.com/computer-latency-at-a-human-scale/

fousye| peeos

CDS.lISc.ac.in | Department of Computational and Data Sciences

Map Reduce

= Data-parallel execution

=" Move program to data, rather than data to program
= Cost for moving data: network, disk, memory, cache
" But moves data from disk to memory often

. CDS.IISc.ac.in | Department of Computational and Data Sciences

Downsides of MR

= NOT Designed for data sharing

» the only way to share data across jobs is stable storage =» slow!

= NOT suited for

» Complex, multi--stage applications (e.g. iterative machine
learning & graph processing)

> Interactive ad hoc queries

HDFS HDFS HDFS HDFS
i read writei read write i
Input

result 1

result 2

result 3

© Matei Zaharia

__ CDS.lISc.ac.in | Department of Computational and Data Sciences

A Brief History: MapReduce

| Pregel ' ‘ Giraph '
1 Dremel | ‘ Drill | ‘ Tez i

MapRed -
M (mpala) (Graphlab)
| Storm i | S4 '

General Batch Processing Specialized Systems:
iterative, interactive, streaming, graph, etc.

https://stanford.edu/~rezab/sparkclass/slides/itas_workshop.pdf

CDS.lISc.ac.in | Department of Computational and Data Sciences

2004 2010
MapReduce paper Spark paper

2002 2008 2014
MapReduce @ Google Hadoop Summit Apache Spark top-level

2006
Hadoop @ Yahoo!

https://stanford.edu/~rezab/sparkclass/slides/itas_workshop.pdf

CDS.lISc.ac.in | Department of Computational and Data Sciences

Spark: Cluster Computing with Working Sets
Zaharia, Chowdhury, Franklin, Shenker, Stoica
USENIX HotCloud 2010

Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing
Zaharia, Chowdhury, Das, Dave, Ma, MicCauley,
Franklin, Shenker, Stoica

USENIX NSDI 2012

CDS.lISc.ac.in | Department of Computational and Data Sciences

Challenge

=" How to design a distributed memory abstraction
that is both fault-tolerant and efficient?

© Matei Zaharia

CDS.lISc.ac.in | Department of Computational and Data Sciences

DAG Model

=" More expressive

> Iterative Map Reduce
» Dryad/DryadLINQ
> Pig, Hive

CDS.lISc.ac.in | Department of Computational and Data Sciences

Working Sets

= Reuse same data multiple times
> Pregel/Giraph
» Parameter sweep in ML

= Use resulting data immediately as a pipeline
> Iterative Map Reduce

= Analogous to virtual memory

An | Department of Computational and Data Sciences

= Distributed

= Read-only

= Can be rebuilt

= Can be cached

= MR like data-parallel operations

= Sweet-spot: Expressivity, Scalability, Reliability

= Ffficient fault tolerance
» Avoid replication, transaction logging
» Retain in-memory for performance
» Coarse-grained logging of lineage

CDS.lISc.ac.in | Department of Computational and Data Sciences

RDD

= Handle to the RDD

» Virtual collection of partitions
» Recipe to rebuild those partitions from disk

" [mmutable

= Construct
> From disk
» From memory collection (constant)
» By transformation
» By loading from persistent RDD

CDS.lISc.ac.in | Department of Computational and Data Sciences

Cache

" Hint of retaining in memory. Trade-off:
= cost of in-memory storage,

= speed of access,

" probability of loss,

= cost of recompute

CDS.lISc.ac.in | Department of Computational and Data Sciences

Parallel Ops

= Similar to DryadLINQ

" Foreach

= Reduce, associative function
= Collect

= No GroupBy yet

" Lazy evaluation, pipelining of transformations

| Department of Computational and Data Sciences

" Broadcast read-only piece of data
> Initially used HDFS to broadcast variables

= Accumulator, using zero & associative function
> Only driver can read

» On the workers, a copy of zero’ed accumulator is created
per thread

» After task run, the worker sends a message to the driver
program containing the updates

» Driver folds these

CDS.lISc.ac.in | Department of Computational and Data Sciences

Examples

val
val

val
val

val

spark.textFile ("hdfs://...")
file.filter(.contains ("ERROR"™))

errs.cache ()
cachedErrs.map(_ => 1)

ones.reduce {_+)

2Ir'rs

cachedErrs
ones

count

CDS.lISc.ac.in | Department of Computational and Data Sciences

Lineage

HdfsTextFile
path = hdfs://._

+

FilteredDataset
func = __contains(...)

*

cachedErrs: CachedDataset

*.

MappedDataset
func=_=>1

file:

LS.

ornesS .

CDS.lISc.ac.in | Department of Computational and Data Sciences

Persistence

= Explicit persistence by developer

= Spill to disk if memory full
» Priority among RDD’s on memory usage

= Persist on disk, replicate

omputational and Data Sciences

Aspect RDDs Distr. Shared Mem.
Reads Coarse- or fine-grained | Fine-grained
Writes Coarse-grained Fine-grained
Consistency Trivial (immutable) Up to app / runtime

Fault recovery |Fine-grained and low- |Requires checkpoints
overhead using lineage | and program rollback

Straggler Possible using backup | Difficult

mitigation tasks

Work Automatic based on Up to app (runtimes
placement data locality aim for transparency)

Behavior 1f not | Similar to existing data | Poor performance
enough RAM | flow systems (swapping?)

CDS.lISc.ac.in | Department of Computational and Data Sciences

Trade-off Space

Network Memory

AN bandwidth bandwidth
Fine , ,
K-V stores, : Best for :
databases, @9 == transactional :
RAMCloud : workloads :
Granularity : |

of Updates E E Best for batch
! §P workloads
HDFS @ 1 RDDs @ !
Coarse E i
>
Low High
Write Throughput

© Matei Zaharia

CDS.lISc.ac.in | Department of Computational and Data Sciences

Non-goals

" Does not work for apps with async, fine-grained
updates to shared state

= Suited for batch, data-parallel apps, coarse
transformations, concise lineage

| Department of Computational and Data Sciences

" Load external data from distributed storage
" Create logical RDD on which you can operate

= Support for different input formats
» HDFS files, Cassandra, Java serialized, directory, gzipped

" Can control the number of partitions in loaded RDD
» Default depends on external DFS, e.g. 128 MB on HDFS

JavaRDD<String> distFile = sc.textFile("data.txt");

(3

| Department of Computational and Data Sciences

" Transformations
» From one RDD to one or more RDDs
» Lazy evaluation...use with care
» Executed in a distributed manner

= Actions
» Perform aggregations on RDD items
» Return single (or distributed) results to “driver” code

= RDD.collect() brings RDD partitions to single driver
machine

24

CDS.IISc.ac.in | Department of Computational and Data Sciences

Anonymous Classes

= Data-centric model allows functions to be passed

» Functions applied to items in the RDD
» Typically, on individual partitions in data-parallel

= Anonymous class implements interface

JavaRDD<String= lines = sc.textFile("data.txt");

JavarDD<Integer> lineLengths = Tines.map(new Function<5tring, Integer=() {
public Integer call(string s) { return s.length(); 7

1);

int totalLength = lineLengths.reduce(new Function2<Integer, Integer, Integer=() {
public Integer call(Integer a, Integer b) { return a + b; }

1)

class GetLength implements Function<String, Integer> {
public Integer call{string s) { return s.length(}; 7}

¥

class sum implements Function2<Integer, Integer, Integer> {
public Integer call{Integer a, Integer b) { return a + b; 7}

¥

JavarRDD<String> lines = sc.textFile("data.txt");
JavarRDD<Integer> lineLengths = Tines.map(new GetLength()});
int totalLength = lineLengths. reduce(new sum()); 25

CDS.lISc.ac.in | Department of Computational and Data Sciences

Anonymous Classes &
Lambda Expressions

" Or Java 8 functions are short-forms for simple code
fragments to iterate over collections

JavarRDD<5tring> lines = sc.textFile("data.txt");
JavarDD<Integer> lineLengths = lines.map(s -> s.length());
int totalLength = lineLengths.reduce((a, b) - a + b);

= Caution: Cannot pass “local” driver variables to
lambda expressions/anonymous classes....only final

» Will fail when distributed

int counter = 0;
JavarDD=Integer> rdd = sc.parallelize(data);

A Wrong: Don't do this!!

rdd. foreach(x -> counter += x);

printin("Counter value: " + counter); ‘b

| Department of Computational and Data Sciences

= RDD is logically a collection of items with a generic
type

= PairRDD is like a “Map”, where each item in
collection is a <key,value> pair, each a generic type

=" Transformation functions use RDD or PairRDD as
input/output

" E.g. Map-Reduce

JavaRDD<String> lines = sc.textFile("data.txt");
JavaPairRDD<5tring, Integer> pairs = lines.mapToPair{s -= new Tuple2(s, 1));
JavaPairRDD<5tring, Integer:= counts = pairs.reduceBykey((a, b) - a + b);

2/

artment of Computational and Data Sciences

Transformation Meaning

map(func) Return a new distributed dataset formed by passing each element of the source through a
function func.

filter(func) Feturn a new dataset formed by selecting those elements of the source on which func returns
true.
flatMap(func) Similar to map, but each input item can be mapped to 0 or more output items (so func should

return a Seq rather than a single item).

= JavaRDD<R> map(Function<T,R> f) : 1:1 mapping
from input to output. Can be different types.

= JavaRDD<T> filter(Function<T,Boolean> f) : 1:0/1
from input to output, same type.

= JavaRDD<U> flatMap(FlatMapFunction<T,U> f) :
1:N mapping from input to output, different types.

28

Qﬁ Department of Computational and Data Sciences

mapPartitions(func) Similar to map, but runs separately on each parfition (block) of the RDD, so func must be of
type lterator<T= == lterator<U= when running on an ROD of type T.

= Earlier Map and Filter operate on one item at a
time. No state across calls!

= JavaRDD<U>
mapPartitions(FlatMapFunc<Iterator<T>,U> f)

" mapPartitions has access to iterator of values in
entire partition, jot just a single item at a time.

29

partment of Computational and Data Sciences

sample(withReplacement, fraction, seed) Sample a fraction fraction of the data, with or without replacement, using a given random
number generator seed.

union(otherDatasef) Return a new dataset that contains the union of the elements in the source dataset and the
argument.

* JavaRDD<T> sample(boolean withReplacement,
double fraction): fraction between [0,1] without
replacement, >0 with replacement

* JavaRDD<T> union(JavaRDD<T> other): Items in
other RDD added to this RDD. Same type. Can have
duplicate items (i.e. not a ‘set’ union).

30

Department of Computational and Data Sciences

intersection(otherDataset) Return a new RDD that contains the intersection of elements in the source dataset and the
argument.
distinct([numTasks])) Return a new dataset that contains the distinct elements of the source dataset.

= JavaRDD<T> intersection(JavaRDD<T> other): Does
a set intersection of the RDDs. Output will not have
duplicates, even if inputs did.

= JavaRDD<T> distinct(): Returns a new RDD with
unique elements, eliminating duplicates.

jl

epartment of Computational and Data Sciences

groupByKey([numTasks]) When called on a dataset of (K, V) pairs, returns a dataset of (K, lterable<V=) pairs.
Note: If you are grouping in order to perform an aggregation (such as a sum or average) over
each key, using reduceBykey or aggregatebykey will yield much better performance.
MNote: By default, the level of parallelism in the output depends on the number of partitions of
the parent RDD. You can pass an oplicnal numtasks argument to set a different number of
tasks.

reduceByKey(func, [numTasks]) When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs where the values
for each key are aggregated using the given reduce function func, which must be of type
(VW) == V. Like in groupeykey, the number of reduce tasks is configurable through an

optional second argument.

= JavaPairRDD<K,Iterable<V>> %roupByKey(): Groups values
for each key into a single iterable.

* JavaPairRDD<K,V> reduceByKey(Function2<V,V,V> func) :
Merge the values for each key into a single value using an
associative and commutative reduce function. Output value
Is of same type as input.

" For aggregate that returns a different type?

= humPartitions can be used to generate output RDD with
different number of partitions than input RDD.

ki

&) partment of Computational and Data Sciences

aggregateByKey(zeroValue)(seqOp, combOp, When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where the values

[num Tasks]) for each key are aggregated using the given combine functions and a neutral "zero" value.
Allows an aggregated value type that is different than the input value type, while avoiding
unnecessary allocations. Like in groupsykey, the number of reduce tasks is configurable
through an optional second argument.

sortByKey([ascending], [num Tasks]) When called on a dataset of (K, V) pairs where K implements Ordered, returns a dataset of

(K, V) pairs sorted by keys in ascending or descending order, as specified in the boolean
ascending argument.

= JavaPairRDD<K,U> aggregateByKey(U zeroValue,
Function2<U,V,U> seqgFunc, Function2<U,U,U> combFunc) :

Aggregate the values of each key, using given combine functions
and a neutral “zero value”.

» SeqOp for merging a V into a U within a partition
» CombOp for merging two U's, within/across partitions
= JavaPairRDD<K,V> sortByKey(Comparator<K> comp): Global sort
of the RDD by key

> Each partition contains a sorted range, i.e., output RDD is range-
partitioned.

» Calling collect will return an ordered list of records

33

@f partment of Computational and Data Sciences

join({otherDataset, [numTasks]) When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (V. W)) pairs with
all pairs of elements for each key. Outer joins are supported through TeftouterJoin,
rightouterJoin, and fullouterJoin.

cartesian({otherDatasel) When called on datasets of types T and U, returns a dataset of (T, U) pairs (all pairs of
elements).

= JavaPairRDD<K, Tuple2<V,W>>
join(JavaPairRDD<K,W> other, int numParts):
Matches keys in this and other. Each output pair is
(k, (v1, v2)). Performs a hash join across the cluster.

= JavaPairRDD<T,U> cartesian(JavaRDDLike<U,?>
other): Cross product of values in each RDD as a
pair

34

@ . CDS.lISc.ac.in | Department of Computational and Data Sciences

Actions

reduce(func) Aggregate the elements of the dataset using a function func (which takes two arguments and returns one).
The function should be commutative and associative so that it can be computed correctly in parallel.

collect() Return all the elements of the dataset as an array at the driver program. This is usually useful after a filter ar
other operation that returns a sufficiently small subset of the data.

count() Return the number of elements in the dataset.
first() Return the first element of the dataset (similar to take(1)).
take(n) Return an array with the first n elements of the dataset.

33

epartment of Computational and Data Sciences

= RDDs can be reused in a dataflow
» Branch, iteration

= But it will be re-evaluated each time it is reused!

= Fxplicitly persist RDD to reuse output of a dataflow
path multiple times

=" Multiple storage levels for persistence
» Disk or memory
» Serialized or object form in memory
» Partial spill-to-disk possible
» Cache indicates “persist” to memory

36

CDS.lISc.ac.in | Department of Computational and Data Sciences

RePartitioning

repartition

public JavaRDD«T> repartition{int numPartitions)
Return a new RDD that has exactly numPartitions partitions.

Can increase or decrease the level of parallelism in this RDD. Internally, this uses a shuffle to redistribute data.

If you are decreasing the number of partitions in this RDD, consider using coales=sce, which can avoid performing a shuffle.

coalesce

public JavaRDD<T> coalesce (int numPartitions,
boolean shuffle)

Return a new RDD that is reduced into numParcicions partitions.

37

CDS.lISc.ac.in | Department of Computational and Data Sciences

Job Scheduling: Static

= Apps get excusive set of executors

= Standalone Mode: Apps execute in FIFO, try and
use all cores available. Can bound cores & memory

per app.

= YARN: Can decide executors per app,
cores/memory per executor

https://spark.apache.org/docs/latest/job-scheduling.html

https://spark.apache.org/docs/latest/job-scheduling.html

Department of Computational and Data Sciences

= Allows in-flight apps to return resources to the cluster
> Set a flag
» Use an external shuffle service

= Heuristic to decide executor request & remove policy

» Request if pending tasks waiting beyond timeout. Multiple
rounds, exponential increase in executors requested

» Remove if executor idle for longer than timeout

= Remove will delete memory/disk contents of executor
> In-flight tasks may rely on shuffle output from it!
» External shuffle service copies in the shuffle output

» |f RDD is cached in an executor, executor will NOT be
removed!

https://spark.apache.org/docs/latest/job-scheduling.html

https://spark.apache.org/docs/latest/job-scheduling.html

CDS.lISc.ac.in | Department of Computational and Data Sciences

Jobs within an App

" FIFOQ, first job gets all resources for its stages. Then
next job, etc.

» Heavy jobs can delay later jobs

" Fair scheduling of tasks across jobs is possible
» Round robin assignment of tasks from jobs to resources

