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Latency & Bandwidth

▪ L1 cache reference                           0.5 ns

▪ L2 cache reference                           7   ns

▪ Main memory reference                      100   ns

▪ Send 1K bytes over 1 Gbps network       10,000   ns       10 μs

▪ Read 4K randomly from SSD*             150,000   ns      150 μs

▪ Read 1MB sequentially from memory      250,000   ns      250 μs

▪ Round trip within same datacenter      500,000   ns      500 μs

▪ Read 1MB sequentially from SSD*      1,000,000   ns    1,000 μs    1 ms

▪ Send 1MB over 1 Gbps network                           8,250 μs    8 ms

▪ Disk seek                           10,000,000   ns   10,000 μs   10 ms

▪ Read 1MB sequentially from disk     20,000,000   ns   20,000 μs   20 ms

▪ Send packet CA->NL->CA             150,000,000   ns  150,000 μs  150 ms

https://gist.github.com/jboner/2841832
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Latency in Human Scales

http://www.prowesscorp.com/computer-latency-at-a-human-scale/

1 sec
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Map Reduce

▪Data-parallel execution

▪Move program to data, rather than data to program

▪ Cost for moving data: network, disk, memory, cache

▪ But moves data from disk to memory often
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Downsides of MR
▪NOT Designed for data sharing

‣ the only way to share data across jobs is stable storage  slow!

▪NOT suited for
‣ Complex, multi-‐stage applications (e.g. iterative machine 

learning & graph processing)
‣ Interactive ad hoc queries

© Matei Zaharia
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https://stanford.edu/~rezab/sparkclass/slides/itas_workshop.pdf
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https://stanford.edu/~rezab/sparkclass/slides/itas_workshop.pdf
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Spark: Cluster Computing with Working Sets
Zaharia, Chowdhury, Franklin, Shenker, Stoica
USENIX HotCloud 2010

Resilient Distributed Datasets: A Fault-Tolerant 
Abstraction for In-Memory Cluster Computing
Zaharia, Chowdhury, Das, Dave, Ma, McCauley, 
Franklin, Shenker, Stoica
USENIX NSDI 2012
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Challenge

▪How to design a distributed memory abstraction 
that is both fault-tolerant and efficient?

© Matei Zaharia
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DAG Model

▪More expressive
‣ Iterative Map Reduce

‣ Dryad/DryadLINQ

‣ Pig, Hive
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Working Sets

▪ Reuse same data multiple times
‣ Pregel/Giraph

‣ Parameter sweep in ML

▪Use resulting data immediately as a pipeline
‣ Iterative Map Reduce

▪ Analogous to virtual memory
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RDD

▪ Distributed

▪ Read-only

▪ Can be rebuilt

▪ Can be cached

▪ MR like data-parallel operations

▪ Sweet-spot: Expressivity, Scalability, Reliability

▪ Efficient fault tolerance
‣ Avoid replication, transaction logging
‣ Retain in-memory for performance
‣ Coarse-grained logging of lineage
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RDD

▪Handle to the RDD
‣ Virtual collection of partitions

‣ Recipe to rebuild those partitions from disk

▪ Immutable

▪ Construct
‣ From disk

‣ From memory collection (constant)

‣ By transformation

‣ By loading from persistent RDD
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Cache

▪Hint of retaining in memory. Trade-off: 

▪ cost of in-memory storage, 

▪ speed of access, 

▪ probability of loss, 

▪ cost of recompute
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Parallel Ops

▪ Similar to DryadLINQ

▪ Foreach

▪ Reduce, associative function

▪ Collect

▪No GroupBy yet

▪ Lazy evaluation, pipelining of transformations
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Shared Variables

▪ Broadcast read-only piece of data
‣ Initially used HDFS to broadcast variables

▪ Accumulator, using zero & associative function
‣ Only driver can read

‣ On the workers, a copy of zero’ed accumulator is created 
per thread

‣ After task run, the worker sends a message to the driver 
program containing the updates

‣ Driver folds these 
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Examples
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Lineage
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Persistence

▪ Explicit persistence by developer

▪ Spill to disk if memory full
‣ Priority among RDD’s on memory usage

▪ Persist on disk, replicate
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RDD vs. Distributed Shared 
Mem.
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Trade-off Space

© Matei Zaharia
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Non-goals

▪Does not work for apps with async, fine-grained 
updates to shared state

▪ Suited for batch, data-parallel apps, coarse 
transformations, concise lineage
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Creating RDD

▪ Load external data from distributed storage

▪ Create logical RDD on which you can operate

▪ Support for different input formats
‣ HDFS files, Cassandra, Java serialized, directory, gzipped

▪ Can control the number of partitions in loaded RDD
‣ Default depends on external DFS, e.g. 128MB on HDFS

23
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RDD Operations
▪ Transformations

‣ From one RDD to one or more RDDs

‣ Lazy evaluation…use with care

‣ Executed in a distributed manner

▪ Actions
‣ Perform aggregations on RDD items

‣ Return single (or distributed) results to “driver” code

▪ RDD.collect() brings RDD partitions to single driver 
machine

24
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Anonymous Classes
▪Data-centric model allows functions to be passed

‣ Functions applied to items in the RDD

‣ Typically, on individual partitions in data-parallel

▪ Anonymous class implements interface

25
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Anonymous Classes & 
Lambda Expressions
▪Or Java 8 functions are short-forms for simple code 

fragments to iterate over collections

▪ Caution: Cannot pass “local” driver variables to 
lambda expressions/anonymous classes….only final
‣ Will fail when distributed

26
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RDD and PairRDD

▪ RDD is logically a collection of items with a generic 
type

▪ PairRDD is like a “Map”, where each item in 
collection is a <key,value> pair, each a generic type

▪ Transformation functions use RDD or PairRDD as 
input/output

▪ E.g. Map-Reduce

27
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Transformations

▪ JavaRDD<R> map(Function<T,R> f) : 1:1 mapping 
from input to output. Can be different types.

▪ JavaRDD<T> filter(Function<T,Boolean> f) : 1:0/1 
from input to output, same type.

▪ JavaRDD<U> flatMap(FlatMapFunction<T,U> f) : 
1:N mapping from input to output, different types.

28
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Transformations

▪ Earlier Map and Filter operate on one item at a 
time. No state across calls!

▪ JavaRDD<U> 
mapPartitions(FlatMapFunc<Iterator<T>,U> f)

▪mapPartitions has access to iterator of values in 
entire partition, jot just a single item at a time.

29
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Transformations

▪ JavaRDD<T> sample(boolean withReplacement, 
double fraction): fraction between [0,1] without 
replacement, >0 with replacement

▪ JavaRDD<T> union(JavaRDD<T> other): Items in 
other RDD added to this RDD. Same type. Can have 
duplicate items (i.e. not a ‘set’ union).

30
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Transformations

▪ JavaRDD<T> intersection(JavaRDD<T> other): Does 
a set intersection of the RDDs. Output will not have 
duplicates, even if inputs did. 

▪ JavaRDD<T> distinct(): Returns a new RDD with 
unique elements, eliminating duplicates.

31



CDS.IISc.ac.in  |  Department of Computational and Data Sciences

Transformations: PairRDD

▪ JavaPairRDD<K,Iterable<V>> groupByKey(): Groups values 
for each key into a single iterable.

▪ JavaPairRDD<K,V> reduceByKey(Function2<V,V,V> func) : 
Merge the values for each key into a single value using an 
associative and commutative reduce function. Output value 
is of same type as input.

▪ For aggregate that returns a different type?

▪ numPartitions can be used to generate output RDD with 
different number of partitions than input RDD.

32



CDS.IISc.ac.in  |  Department of Computational and Data Sciences

Transformations

▪ JavaPairRDD<K,U> aggregateByKey(U zeroValue, 
Function2<U,V,U> seqFunc, Function2<U,U,U> combFunc) : 
Aggregate the values of each key, using given combine functions 
and a neutral “zero value”.
‣ SeqOp for merging a V into a U within a partition
‣ CombOp for merging two U's, within/across partitions

▪ JavaPairRDD<K,V> sortByKey(Comparator<K> comp): Global sort 
of the RDD by key
‣ Each partition contains a sorted range, i.e., output RDD is range-

partitioned.
‣ Calling collect will return an ordered list of records

33
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Transformations

▪ JavaPairRDD<K, Tuple2<V,W>> 
join(JavaPairRDD<K,W> other, int numParts): 
Matches keys in this and other. Each output pair is 
(k, (v1, v2)). Performs a hash join across the cluster.

▪ JavaPairRDD<T,U> cartesian(JavaRDDLike<U,?> 
other): Cross product of values in each RDD as a 
pair

34
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Actions

35
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RDD Persistence & Caching

▪ RDDs can be reused in a dataflow
‣ Branch, iteration

▪ But it will be re-evaluated each time it is reused!

▪ Explicitly persist RDD to reuse output of a dataflow 
path multiple times

▪Multiple storage levels for persistence
‣ Disk or memory

‣ Serialized or object form in memory

‣ Partial spill-to-disk possible

‣ Cache indicates “persist” to memory

36
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RePartitioning

37
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Job Scheduling: Static

▪ Apps get excusive set of executors

▪ Standalone Mode: Apps execute in FIFO, try and 
use all cores available. Can bound cores & memory 
per app.

▪ YARN: Can decide executors per app, 
cores/memory per executor

https://spark.apache.org/docs/latest/job-scheduling.html

https://spark.apache.org/docs/latest/job-scheduling.html
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Job Scheduling: Dynamic

▪ Allows in-flight apps to return resources to the cluster
‣ Set a flag
‣ Use an external shuffle service

▪ Heuristic to decide executor request & remove policy
‣ Request if pending tasks waiting beyond timeout. Multiple 

rounds, exponential increase in executors requested
‣ Remove if executor idle for longer than timeout

▪ Remove will delete memory/disk contents of executor
‣ In-flight tasks may rely on shuffle output from it!
‣ External shuffle service copies in the shuffle output
‣ If RDD is cached in an executor, executor will NOT be 

removed!

https://spark.apache.org/docs/latest/job-scheduling.html

https://spark.apache.org/docs/latest/job-scheduling.html
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Jobs within an App

▪ FIFO, first job gets all resources for its stages. Then 
next job, etc.
‣ Heavy jobs can delay later jobs

▪ Fair scheduling of tasks across jobs is possible
‣ Round robin assignment of tasks from jobs to resources


