
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान

बंगलौर, भारत

Department of Computational and Data Sciences

©Yogesh Simmhan & Partha Talukdar, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

CAP Theorem, BASE &
DynamoDB

Yogesh Simmhan

DS256:Jan18 (3:1)

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.in | Department of Computational and Data Sciences

Dynamo: Amazon's
highly available key-
value store
DeCandia G, Hastorun D, Jampani M, Kakulapati G,
Lakshman A, Pilchin A, Sivasubramanian S, Vosshall P,
Vogels W. ACM SIGOPS symposium on Operating
systems principles (SOSP), 2007

43

CDS.IISc.in | Department of Computational and Data Sciences

Distributed Hashtable

 Primary-key only access for read and write
‣ Value is blob, <1MB
‣ Shopping cart, best sellers list, user preferences

 High availability when failures are a given
‣ disks, network, data center
‣ Available across data centers

 E.g. Shopping cart serves 10M requests, 3M
checkouts per day (2007)

 RDBMS: Cost hardware, skilled DBA, consistency
over availability due to replication limits, limited
load balancing

44

CDS.IISc.in | Department of Computational and Data Sciences

45

“build a system where all
customers have a good
experience, rather than just
the majority” (or an average
number)

“SLAs are expressed and
measured at the 99.9th
percentile of the
distribution… based on a
cost-benefit analysis”

Stateless
workflows,
w/ caching

CDS.IISc.in | Department of Computational and Data Sciences

Amazon’s Dynamo DB
 Highly Available

‣ Even the slightest outage has significant financial
consequences

 Service Level Agreements
‣ Guaranteeing response in 300ms for 99.9% of requests at a

peak load of 500 req/sec

 vs. ACID
‣ Weak consistency, no Isolation (since only 1 key op at a

time)

 Non-hostile environment, security not a concern

Dynamo: Amazon’s Highly Available Key-value Store, Giuseppe DeCandia, et al, SOSP, 2007

CDS.IISc.in | Department of Computational and Data Sciences

Design Principles
 Optimistic replication techniques

‣ Changes propagate to replicas in the background,
‣ Server and network failures, Concurrent, disconnected work

is tolerated

 When to perform the process of resolving update
conflicts
‣ Dynamo targets the design space of an “always writeable”

data store
‣ Rejecting customer updates could result in a poor customer

experience
‣ Push the complexity of conflict resolution to the reads

 Who performs the process of conflict resolution
‣ Done by the data store or the application
‣ Application is aware of the data schema, and can select best

conflict resolution method

47

CDS.IISc.in | Department of Computational and Data Sciences

Design Principles

 Incremental scalability (weak scaling)

 Symmetry of nodes’ responsibilities

 Decentralization (P2P)

 Heterogeneity of node’s resources

48

CDS.IISc.in | Department of Computational and Data Sciences

Design Choices

 Sacrifice strong consistency for availability
‣ “always writeable”. No updates are rejected.

‣ Conflict resolution is executed during read instead of
write, i.e. “always writeable”.

 Incremental scalability & decentralization
‣ Symmetry of responsibility

‣ Heterogeneity in capacity

 All nodes are trusted

From external sources

CDS.IISc.in | Department of Computational and Data Sciences

Techniques

Problem Technique Advantage

Partitioning Consistent Hashing Incremental Scalability

High Availability for
writes

Vector clocks with
reconciliation during

reads

Version size is decoupled
from update rates.

Handling temporary
failures

Sloppy Quorum and
hinted handoff

Provides high availability and
durability guarantee when

some of the replicas are not
available.

Recovering from
permanent failures

Anti-entropy using
Merkle trees

Synchronizes divergent
replicas in the background.

Membership and failure
detection

Gossip-based
membership protocol
and failure detection.

Preserves symmetry and
avoids having a centralized

registry for storing
membership and node
liveness information.

From external sources

CDS.IISc.in | Department of Computational and Data Sciences

Partitioning
 Consistent hashing

 Output range of hash func. on
key is a fixed “ring”

 Virtual node is responsible for a
range of hash values (tokens)
‣ Hash value for the key maps to a

virtual node

 Each physical node responsible
for multiple virtual nodes
‣ Allows nodes to arrive and leave

without having to change keys
present in virtual nodes

From external sources

CDS.IISc.in | Department of Computational and Data Sciences

Partitioning and placement of key

 Divide the hash space into Q equally sized
partitions…virtual node or token

 Each physical node assigned Q/S tokens where S is
the number of nodes in the system.
‣ Can also assign variable tokens to physical node based on

machine size

 Adapt to capacity of physical nodes

 Incrementally add/remove physical nodes
‣ When a node leaves the system, its tokens (virtual

nodes) are randomly & uniformly distributed to the
remaining nodes to load balance

‣ When a node joins the system it uniformaly "steals"
tokens from nodes in the system to load balance

From external sources

CDS.IISc.in | Department of Computational and Data Sciences

Replication
 Each data item is replicated at N hosts.

‣ “preference list”: The list of nodes
responsible for storing a particular key.

 Coordinator node (from hashing) stores
first copy
‣ Next copy stored in subsequent virtual

nodes
‣ Skip virtual nodes present on same physical

node

 Gossip protocol
‣ Propagates changes among nodes
‣ Each node contacts a peer at random every

second and the two nodes reconcile their
membership change histories

‣ Eventually consistent view of membership,
mapping from tokens to nodes

‣ “Seeds” to make propagation rapid, avoid
partitioning: all peers know of the seeds

D stores (A, B], (B, C], (C, D]

From external sources

 Permanent node adds and
removes are done centrally and
notified to peers
‣ If a peer cannot reach a another,

it must be a transient error

CDS.IISc.in | Department of Computational and Data Sciences

Key Value Operations

 Add and update items both use put(key, value)
operation

 get(key) returns the value

 Any node may receive the request

 Forwarded to the coordinator node for response

 put() and get() are sent to all N “healthy” replicas, but…

 put() may return to its client before the update is
applied at all replicas
‣ May leave replicas in inconsistent state

 get() may return many versions of same object

54

CDS.IISc.in | Department of Computational and Data Sciences

Sloppy Quorum

 Writes are successful if ‘w’ replicas out of N can be
updated (w<N)
‣ Coordinator forwards requests to all N replicas, and

returns when ‘w’ respond
‣ Vector clock generated at coordinator is forwarded

 Reads return all ‘r’ replica values (r<N)
‣ Coordinator sends requests to all N replicas, and returns

when ‘r’ respond
‣ Coordinator returns causally unrelated copies
‣ Clients need to decide how to use these copies

 Reads & writes dictated by slowest replica
‣ Set r+w > N

From external sources

CDS.IISc.in | Department of Computational and Data Sciences

Data Versioning & Consistency

 put() is treated as append of the updated value
‣ Immutable append to a particular version of the object

‣ Multiple versions can coexist…but system will not internally
“resolve” them

 Challenge
‣ Distinct version sub-histories need to be reconciled.

 Solution
‣ Uses vector clocks to capture causality between different

versions of the same object.

From external sources

CDS.IISc.in | Department of Computational and Data Sciences

Consistency with Vector Clocks

 Vector clock: (node, counter) pair
‣ Every version of every object is

associated with one vector clock.

‣ If the counters on the first object’s clock
are <= all nodes in the second clock,
then the first is an ancestor of the
second and can be forgotten.

‣ i.e. first object happened before second
object

 If get() has multiple replica versions,
return causally “unrelated” versions
‣ i.e. remove partial ordered & only return

causally unordered versions for
reconciliation

 Client writes the reconciled version back
‣ e.g. Sx resolves D3 and D4 into D5 From external sources

CDS.IISc.in | Department of Computational and Data Sciences

Hinted handoff
 Useful for transient failures

 Assume N = 3. When A is
temporarily down or
unreachable during a write,
send replica to D.

 D is hinted thru metadata
that the replica belongs to A
(but A was down)

 D maintains write in a
separate local DB. D will
deliver writes to A when A is
recovered.

 Again: “always writeable”

From external sources

CDS.IISc.in | Department of Computational and Data Sciences

Replica synchronization

 Handles permanent failures
‣ Resolve replica inconsistency faster
‣ Reduce data transfer

 Merkle tree:
‣ a hash tree where leaves are hashes of the values of

individual keys.
‣ Parent nodes higher in the tree are hashes of their respective

children.

 Advantage:
‣ Each branch of the tree can be checked independently

without requiring nodes to download the entire tree.
‣ Help in reducing the amount of data that needs to be

transferred while checking for inconsistencies among replicas.

From external sources

CDS.IISc.in | Department of Computational and Data Sciences

Replica synchronization

 Anti-entropy schemes when hinted hand-off does
not work
‣ Replicas have different subsets of writes

 Build a Merkle tree for common ranges of keys
among replicas
‣ N trees if there are N replicas

 Check root, then children if they don’t match, etc.
‣ Minimizes data transfer

From external sources

