
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान
बंगलौर, भारत

Department of Computational and Data Sciences

©Yogesh Simmhan & Partha Talukdar, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

L6:Distributed Graph
Processing

Yogesh Simmhan

DS256:Jan17 (3:1)

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.in | Department of Computational and Data Sciences

Assignment 2 (Storm)
▪ Deadline extension to Apr 8 (Sunday), 11:59PM

‣ Submission instructions

▪No class on Thu 29 Mar

2

Guest Lectures
▪ Robin Thomas, VMWare, Apr 5 4-5pm, CDS 102

‣ Scalability in VMWare’s IoT Architecture

▪NetApp, Apr 10/12 (TBD), 4-5PM, CDS 102
‣ Storage Area Networks and Big Data Platforms

CDS.IISc.in | Department of Computational and Data Sciences

Project
▪ Teams of 1 or 2

▪ Project proposal, teams by Apr 2, 11:59pm
‣ 2 pages, IEEE 2 column format, PDF
‣ Email to simmhan@iisc.ac.in with subject “DS256 Project

Proposal:Lastname1, Lastname2”

1. Motivation

2. Related work

3. Contributions

4. Technical challenges addressed

5. Evaluation: Datasets, Scalability, Platforms, Cluster

▪ Proposal presentation, Apr 3

▪ Final project code, report due by Apr 24

▪ Demo, final presentation, Apr 28 Sat

3

mailto:simmhan@iisc.ac.in

CDS.IISc.in | Department of Computational and Data Sciences

Pregel: a system for
large-scale graph
processing
Malewicz, et al

SIGMOD 2010

4

CDS.IISc.in | Department of Computational and Data Sciences

Graphs are commonplace

▪Web & Social Networks
‣ Web graph, Citation Networks, Twitter, Facebook, Internet

▪ Knowledge networks & relationships
‣ Google’s Knowledge Graph, NELL

▪ Cybersecurity
‣ Telecom call logs, financial transactions, Malware

▪ Internet of Things
‣ Transport, Power, Water networks

▪ Bioinformatics
‣ Gene sequencing, Gene expression networks

5

CDS.IISc.in | Department of Computational and Data Sciences

Graph Algorithms

▪ Traversals: Paths & flows between different parts of
the graph
‣ Breadth First Search, Shortest path, Minimum Spanning

Tree, Eulerian paths, MaxCut

▪ Clustering: Closeness between sets of vertices
‣ Community detection & evolution, Connected

components, K-means clustering, Max Independent Set

▪ Centrality: Relative importance of vertices
‣ PageRank, Betweenness Centrality

6

CDS.IISc.in | Department of Computational and Data Sciences

When Had**p is just not
good enough…
▪Gap in frameworks for dynamic graphs
▪Tuple/row/column-oriented frameworks
‣E.g. Hadoop, Hive, Impala

▪Graph Databases & In-Memory
‣E.g. Flock DB, Neo4J, MSR Trinity, Giraph
‣ Focus on large simple graphs, complex

“queries”, distributed in-memory
▪Parallel Graph Frameworks
‣MPI, parallel computing, steep curve
‣ Specialized HPC/shared-memory hardware

✓Storage & compute are (loosely)coupled

Vertical
Scaling

Horizontal Scaling

8

CDS.IISc.in | Department of Computational and Data Sciences

But, Graphs can be
challenging
▪ Computationally complex algorithms

‣ Shortest Path: O((E+V) log V) ~ O(EV)

‣ Centrality: O(EV) ~ O(V3)

‣ Clustering: O(V) ~ O(V3)

▪ And these are for “shared-memory” algorithms

Graph500.org’s fastest
supercomputer, K
computer with
524,288 cores
performed at 17E+12
TEPS

9

CDS.IISc.in | Department of Computational and Data Sciences

But, Graphs can be
challenging
▪Graphs sizes can be huge

‣ Google’s index contains 50B pages

‣ Facebook has around 1.1B users

‣ Twitter has around 530M users

‣ Google+ has around 570M users

Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April
2014

10

CDS.IISc.in | Department of Computational and Data Sciences

But, Graphs can be
challenging
▪ Shared memory algorithms don’t scale!
▪ Do not fit naturally to Hadoop/MapReduce

‣ Multiple MR jobs (iterative MR)
‣ Topology & Data written to HDFS each time
‣ Tuple, rather than graph-centric, abstraction

▪ Lot of work on parallel graph libraries for HPC
‣ Boost Graph Library, Graph500
‣ Storage & compute are (loosely) coupled, not fault tolerant
‣ But everyone does not have a supercomputer ☺

▪ Processing and querying are different
‣ Graph DBs not suited for analytics
‣ Focus on large simple graphs, complex “queries”
‣ E.g. Neo4J, FlockDB, 4Store, Titan

11

CDS.IISc.in | Department of Computational and Data Sciences

PageRank using MapReduce

2016-03-16 12Lin, Fig 5.8

CDS.IISc.in | Department of Computational and Data Sciences

PageRank using MapReduce
▪ MR run over multiple iterations (typically 30)

‣ The graph structure itself must be passed from iteration to iteration!

▪ Mapper will
‣ Initially, load adjacency list and initialize default PR

• <v1, <v2>+>

‣ Subsequent iterations will load adjacency list and new PR
• <v1, <v2>+, pr1>

‣ Emit two types of messages from Map
• PR messages and Graph Structure Messages

▪ Reduce will
‣ Reconstruct the adjacency list for each vertex
‣ Update the PageRank values for the vertex based on neighbour’s PR

messages
‣ Write adjacency list and new PR values to HDFS, to be used by next

Map iteration
• <v1, <v2>+, pr1’>

2016-03-16 13

CDS.IISc.in | Department of Computational and Data Sciences

Google’s Pregel

▪Google, to overcome, these challenges came up
with Pregel.
‣ Provides scalability

‣ Fault-tolerance

‣ Flexibility to express arbitrary algorithms

▪ The high level organization of Pregel programs is
inspired by Valiant’s Bulk Synchronous Parallel
(BSP) model [1].

Slides courtesy “Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010”
[1] Leslie G. Valiant, A Bridging Model for Parallel Computation. Comm. ACM 33(8), 1990

14

CDS.IISc.in | Department of Computational and Data Sciences

Bulk Synchronous Parallel
(BSP)
▪ Distributed execution model

‣ Compute  Communicate Compute Communicate
 …

‣ Bulk messaging avoids comm. costs

B

A

R

R

I

E

R

B

A

R

R

I

E

R

15

CDS.IISc.in | Department of Computational and Data Sciences

Vertex-centric BSP

▪ Series of iterations (supersteps) .

▪ Each vertex V invokes a function in parallel.

▪ Can read messages sent in previous superstep (S-1).

▪ Can send messages, to be read at the next
superstep (S+1).

▪ Can modify state of outgoing edges.

Input
All Vote
to Halt Output

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010
16

CDS.IISc.in | Department of Computational and Data Sciences

Advantage?
▪ In Vertex-Centric Approach

▪Users focus on a local action
‣ Think of Map method over tuple

▪Processing each item independently.

▪Ensures that Pregel programs are inherently
free of deadlocks and data races common in
asynchronous systems.

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010
17

CDS.IISc.in | Department of Computational and Data Sciences

Apache Giraph
Implements Pregel Abstraction

▪Google’s Pregel, SIGMOD 2010
‣ Vertex-centric Model

‣ Iterative BSP computation

▪ Apache Giraph donated by Yahoo
‣ Feb 6, 2012: Giraph 0.1-incubation

‣ May 6, 2013: Giraph 1.0.0

‣ Nov 19, 2014: Giraph 1.1.0

▪ Built on Hadoop Ecosystem

18

CDS.IISc.in | Department of Computational and Data Sciences

Model of Computation

▪ A Directed Graph is given to Pregel.

▪ It runs the computation at each vertex.

▪Until all nodes vote for halt.

▪ Pregel gives you a directed graph back.

All Vote
to Halt

Output

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010
19

CDS.IISc.in | Department of Computational and Data Sciences

Vertex State Machine

▪ Algorithm termination is based on every vertex
voting to halt.

▪ In superstep 0, every vertex is in the active state.

▪ A vertex deactivates itself by voting to halt.

▪ It can be reactivated by receiving an (external)
message.

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010
20

CDS.IISc.in | Department of Computational and Data Sciences

Vertex Centric
Programming
▪ Vertex Centric Programming Model

‣ Logic written from perspective on a single vertex.
Executed on all vertices.

▪ Vertices know about
‣ Their own value(s)

‣ Their outgoing edges

Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014

21

CDS.IISc.in | Department of Computational and Data Sciences

3 6 2 1

3 6 2 16 2 66

6 6 2 66 6

6 6 6 66

Blue Arrows
are messages.

Blue vertices
have voted to
halt.

6

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010

Vertices

Supersteps

Messages

WorkersEdges

22

CDS.IISc.in | Department of Computational and Data Sciences

Max Vertex

GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics, Simmhan, et al, EuroPar 2014

23

CDS.IISc.in | Department of Computational and Data Sciences

Advantages

▪Makes distributed programming easy
‣ No locks, semaphores, race conditions

‣ Separates computing from communication phase

▪ Vertex-level parallelization
‣ Bulk message passing for efficiency

▪ Stateful (in-memory)
‣ Only messages & checkpoints hit disk

24

CDS.IISc.in | Department of Computational and Data Sciences

Apache Giraph: API
void compute(Iterator<IntWritable> msgs)

getSuperstep()

getVertexValue()

edges = iterator()

sendMsg(sinkVtx, value)

sendMsgToAllEdges(value)

voteToHalt()

25

CDS.IISc.in | Department of Computational and Data Sciences

Message passing

▪No guaranteed message delivery order.

▪Messages are delivered exactly once.

▪ Can send messages to any node.
‣ Though, typically to neighbors

26

CDS.IISc.in | Department of Computational and Data Sciences

public class MaxVertexVertex extends IntIntNullIntVertex {

public void compute(Iterator<IntWritable> messages)

throws IOException {

int currentMax = getVertexValue().get();

// first superstep is special,

// because we can simply look at the neighbors

if (getSuperstep() == 0) {

Iterator<IntWritable> edges = iterator();

while(edges.hasNext()) {

int neighbor = edges.next().get();

if (neighbor > currentMax) {

currentMax = neighbor;

}

} ...

Based on org.apache.giraph.examples.ConnectedComponentsVertex

27

CDS.IISc.in | Department of Computational and Data Sciences

...

// only need to send value if it is not the own id

if (currentMax != getVertexValue().get()) {

setVertexValue(new IntWritable(currentMax));

Iterator<IntWritable> edges = iterator();

while(edges.hasNext()) {

int neighbor = edges.next().get();

if (neighbor < currentMax) {

sendMsg(new IntWritable(neighbor),

getVertexValue());

}

}

}

voteToHalt();

return;

} // end getSuperstep==0

28

CDS.IISc.in | Department of Computational and Data Sciences

boolean changed = false; // getSuperstep != 0

// did we get a smaller id?

while (messages.hasNext()) {

int candidateMax = messages.next().get();

if (candidateMax > currentMax) {

currentMax = candidateMax;

changed = true;

}

}

// propagate new component id to the neighbors

if (changed) {

setVertexValue(new IntWritable(currentMax));

sendMsgToAllEdges(getVertexValue());

}

voteToHalt();

} // end compute()

29

CDS.IISc.in | Department of Computational and Data Sciences

Apache Giraph

Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014

30

CDS.IISc.in | Department of Computational and Data Sciences

Giraph Architecture
Hadoop Map-only Application
ZooKeeper: responsible for computation state
– Partition/worker mapping, global #superstep

Master: responsible for coordination
– Assigns partitions to workers, synchronization

Worker: responsible for vertices
– Invokes active vertices compute() function,

sends, receives and assigns messages

© Sebastian Schelter
31

CDS.IISc.in | Department of Computational and Data Sciences

Giraph Architecture

▪ Checkpointing of supersteps possible

Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014

32

CDS.IISc.in | Department of Computational and Data Sciences

Shortest Path
class ShortestPathVertex

: public Vertex<int, int, int> {

void Compute(MessageIterator* msgs) {

mindist = IsSource(vertex_id()) ? 0 : INF;

while ((m = msgs->Next()) != NULL)

mindist = min(mindist, m->Value());

if (mindist < GetValue()) {

*MutableValue() = mindist;

OutEdgeIterator edges = GetOutEdgeIterator();

while((e = edges.Next()) != NULL)

SendMessageTo(e.Target(),

mindist + e.GetValue());

}

VoteToHalt();

}

};

In the 1st superstep, only
the source vertex will

update its value (from INF
to zero)

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010

33

CDS.IISc.in | Department of Computational and Data Sciences

Shortest Path

Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014

34

CDS.IISc.in | Department of Computational and Data Sciences

Shortest Path

35

CDS.IISc.in | Department of Computational and Data Sciences

Shortest Path

36

CDS.IISc.in | Department of Computational and Data Sciences

Shortest Path

37

CDS.IISc.in | Department of Computational and Data Sciences

PageRank, recursively

▪ P(n) is PageRank for webpage/URL ‘n’
‣ Probability that you’re in vertex ‘n’

▪ |G| is number of URLs (vertices) in graph

▪ α is probability of random jump

▪ L(n) is set of vertices that link to ‘n’

▪ C(m) is out-degree of ‘m’

38

CDS.IISc.in | Department of Computational and Data Sciences

PageRank using MapReduce

Lin, Fig 5.8
39

CDS.IISc.in | Department of Computational and Data Sciences

Application – Page Rank
class PageRankVertex

: public Vertex<double, void, double> {
public:
virtual void Compute(MessageIterator* msgs) {

if (superstep() == 0) *MutableValue() = 1 / NumVertices();
else
if (superstep() >= 1) {

double sum = 0;
while((m = msgs->Next()) != NULL)

sum += m->Value();
*MutableValue() = 0.15 / NumVertices() + 0.85 * sum;

}
if (superstep() < 30) {

const int64 n = GetOutEdgeIterator().size();
SendMessageToAllNeighbors(GetValue() / n);

} else
VoteToHalt();

}
};

Store and carry PageRank

40

CDS.IISc.in | Department of Computational and Data Sciences

Combiners
▪ Sending a message to remote vertex has overhead

‣ Can we merge multiple incoming message into one?

▪User specifies a way to reduce many messages into
one value (ala Reduce in MR)
‣ by overriding the Combine() method.

‣ Must be commutative and associative.

originalMessage =

combine(vid, originalMessage, messageToCombine)

▪ Exceedingly useful in certain contexts (e.g., 4x
speedup on shortest-path computation).
‣ e.g. for MAX, om = om < mtc ? mtc : om

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010
45

CDS.IISc.in | Department of Computational and Data Sciences

MasterCompute

▪ Runs before slave compute()

▪Has a global view

▪ A place for aggregator manipulation

▪ MasterCompute: Executed on master

▪ WorkerContext: Executed per worker

▪ PartitionContext: Executed per partition

© Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014
© Apache Giraph, Roman Shaposhnik 46

CDS.IISc.in | Department of Computational and Data Sciences

Aggregators
▪ A mechanism for global communication,

monitoring, and data.
‣ Each vertex can produce a value in a superstep S for the

Aggregator to use.

‣ The Aggregated value is available to all the vertices in
superstep S+1.

▪ Implemented using Master Compute

▪ Aggregators can be used for statistics and for global
communication.
‣ E.g., Sum applied to out-edge count of each vertex.

• generates the total number of edges in the graph and
communicate it to all the vertices.

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010
47

CDS.IISc.in | Department of Computational and Data Sciences

Partitioner

▪Maps vertices to partitions that are operated by
workers
‣ Default is a hash partitioner

▪ Done once at the start of the application

▪ Called at the end of each superstep, for dynamic
migration of partitions

48

CDS.IISc.in | Department of Computational and Data Sciences

Checkpointing
▪Optionally capture the state of vertex, messages at

periodic supersteps, e.g. 2

▪Globally revert to last checkpoint superstep on
failure

49© Claudio Martella, Apache Giraph

CDS.IISc.in | Department of Computational and Data Sciences

Topology mutations

▪ Some graph algorithms need to change the graph's
topology.
‣ E.g. A clustering algorithm may need to replace a cluster

with a node

▪ Vertices can create / destroy vertices at will.

▪ Resolving conflicting requests:
‣ Partial ordering:

E Remove,V Remove,V Add, E Add.

‣ User-defined handlers:

You fix the conflicts on your own.

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010

50

