Department of Computational and Data Sciences

Lé6:Distributed Graph
Processing

Yogesh Simmhan

Creative Commons Attribution 4.0 International License

http://creativecommons.org/licenses/by/4.0/deed.en_US

Department of Computational and Data Sciences

= Deadline extension to Apr 8 (Sunday), 11:59PM

» Submission instructions

= No class on Thu 29 Mar

= Robin Thomas, VMWare, Apr 5 4-5pm, CDS 102
» Scalability in VMWare’s loT Architecture

= NetApp, Apr 10/12 (TBD), 4-5PM, CDS 102

» Storage Area Networks and Big Data Platforms

| Department of Computational and Data Sciences

= Teams of 1 or2

" Project proposal, teams by Apr 2, 11:59pm
» 2 pages, IEEE 2 column format, PDF

» Email to simmhan@iisc.ac.in with subject “DS256 Project
Proposal:Lastnamel, Lastname?2”

Motivation

Related work

Contributions

Technical challenges addressed

Evaluation: Datasets, Scalability, Platforms, Cluster
" Proposal presentation, Apr 3

" Final project code, report due by Apr 24

=" Demo, final presentation, Apr 28 Sat

bk wNeE

mailto:simmhan@iisc.ac.in

CDS.IISc.in | Department of Computational and Data Sciences

Pregel: a system for
large-scale graph
processing

Malewicz, et al
SIGMOD 2010

CDS.IISc.in | Department of Computational and Data Sciences

Graphs are commonplace

= \WWeb & Social Networks
» Web graph, Citation Networks, Twitter, Facebook, Internet

= Knowledge networks & relationships
» Google’s Knowledge Graph, NELL

= Cybersecurity
» Telecom call logs, financial transactions, Malware

" Internet of Things
> Transport, Power, Water networks

= Bioinformatics
» Gene sequencing, Gene expression networks

| Department of Computational and Data Sciences

= Traversals: Paths & flows between different parts of
the graph

» Breadth First Search, Shortest path, Minimum Spanning
Tree, Eulerian paths, MaxCut

= Clustering: Closeness between sets of vertices

» Community detection & evolution, Connected
components, K-means clustering, Max Independent Set

= Centrality: Relative importance of vertices
» PageRank, Betweenness Centrality

partment of Computational and Data Sciences

" Gap in frameworks for dynamic graphs

-oriented frameworks
» E.g. Hadoop, Hive, Impala SeRsea IVertical
» Graph Databases & In-Memory caling
> E.qg. Flock DB, Neo4J, MSR Trinity, Giraph
» Focus on large simple graphs, complex
“queries”, distributed in-memory Horizontal Scaling
Graph Frameworks SO
> MIPI, parallel computing, steep curvé%m/
» Specialized HPC/shared-memory hardware

v'Storage & compute are (loosely)coupled

| Department of Computational and Data Sciences

= Computationally complex algorithms
» Shortest Path: O((E+V) log V) ~ O(EV)
» Centrality: O(EV) ~ O(V3)
» Clustering: O(V) ~ O(V3)

" And these are for “shared-memory” algorithms

Graph500.0rg’s fastest =, .,

supercomputer, K
computer with
524,288 cores
performed at 17E+12
TEPS

1E+13
9E+12
8E+12

Complexity Plots

2 6E+12

£ 5E412

[&]

C;u’ AE+12

£ 3F+12

=
2E+12

1E+12

0.E+00 2 E+05 4 E+05 6.6+05 8 E+05 1.E+06
Number of Vertices (Edges is 10x) g

—-—(e+v)logv —=-ev —-v2 —v3

. CDS.IISc.in | Department of Computational and Data Sciences

But, Graphs can be
challenging

" Graphs sizes can be huge
» Google’s index contains 50B pages
» Facebook has around 1.1B users
» Twitter has around 530M users
» Google+ has around 570M users

Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April

2014
10

| Department of Computational and Data Sciences

= Shared memory algorithms don’t scale!

» Do not fit naturally to Hadoop/MapReduce
> Multiple MR jobs (iterative MR)
» Topology & Data written to HDFS each time
» Tuple, rather than graph-centric, abstraction

= Lot of work on parallel graph libraries for HPC
» Boost Graph Library, Graph500
» Storage & compute are (loosely) coupled, not fault tolerant
» But everyone does not have a supercomputer ©

= Processing and querying are different
» Graph DBs not suited for analytics
» Focus on large simple graphs, complex “queries”
> E.g. Neo4J, FlockDB, 4Store, Titan

11

. CDS.IISc.in | Department of Computational and Data Sciences

PageRank using MapReduce

1: class MAPPER

2 method MAP(nid n,node N)

3: p — N.PACERANK/|N.ADJACENCYLIST|

4 EMIT(nid n,N) > Pass along graph structure
5 for all nodeid m € N.ADJACENCYLIST do

6 EMIT(nid m, p) > Pass PageRank mass to neighbors

1: class REDUCER

2 method REDUCE(nid m, [py, pa, .. .])
3 M — ()

4 for all p € counts [p1,ps,...] do
5: if ISNoDE(p) then
6 M —p > Recover graph structure
7 else

8 S« S+p > Sum incoming PageRank contributions
9

. M.PAGERANK «— s
10: EMIT(nid m,node M)

2016-03-16 Lin, Fig 5.8 12

| Department of Computational and Data Sciences

= MR run over multiple iterations (typically 30)
» The graph structure itself must be passed from iteration to iteration!

= Mapper will
> Initially, load adjacency list and initialize default PR
* <Vvl, <KVv2>+>
» Subsequent iterations will load adjacency list and new PR
* <vl, <v2>+, pril>
» Emit two types of messages from Map
* PR messages and Graph Structure Messages

= Reduce will
» Reconstruct the adjacency list for each vertex

» Update the PageRank values for the vertex based on neighbour’s PR
messages

» Write adjacency list and new PR values to HDFS, to be used by next
Map iteration

e <vl, <v2>+, prl’>
2016-03-16 13

in | Department of Computational and Data Sciences

" Google, to overcome, these challenges came up
with Pregel.
» Provides scalability
» Fault-tolerance
> Flexibility to express arbitrary algorithms

" The high level organization of Pregel programs is
inspired by Valiant’s Bulk Synchronous Parallel
(BSP) model 1,

Slides courtesy “Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010”
[1] Leslie G. Valiant, A Bridging Model for Parallel Computation. Comm. ACM 33(8), 1990

14

. CDS.IISc.in | Department of Computational and Data Sciences

Bulk Synchronous Parallel
(BSP)

= Distributed execution model

» Compute 2 Communicate 2 Compute 2 Communicate
2> ..

» Bulk messaging avoids comm. costs

D - X0 N P> W

13

CDS.IISc.in | Department of Computational and Data Sciences

Vertex-centric BSP
Input** o o ‘*wutput

= Series of iterations (supersteps) .
= Each vertex V invokes a function in parallel.
» Can read messages sent in previous superstep (S-1).

" Can send messages, to be read at the next
superstep (S+1).

= Can modify state of outgoing edges.

16

CDS.IISc.in | Department of Computational and Data Sciences

Advantage?

" |[n Vertex-Centric Approach

m Users focus on a local action
» Think of Map method over tuple

= Processing each item independently.

= Ensures that Pregel programs are inherently
free of deadlocks and data races common in
asynchronous systemes.

17

CDS.IISc.in | Department of Computational and Data Sciences

Apache Giraph

Implements Pregel Abstraction

" Google’s Pregel, SIGMOD 2010
> Vertex-centric Model
> |terative BSP computation

= Apache Giraph donated by Yahoo
» Feb 6, 2012: Giraph 0.1-incubation
> May 6, 2013: Giraph 1.0.0
» Nov 19, 2014: Giraph 1.1.0

" Built on Hadoop Ecosystem

18

CDS.IISc.in | Department of Computational and Data Sciences

Model of Computation

. i #

: All Vote
** ° o O*vtOHalt utput

= A Directed Graph is given to Pregel.

" [t runs the computation at each vertex.
= Until all nodes vote for halt.

= Pregel gives you a directed graph back.

19

| Department of Computational and Data Sciences

Vote to halt

Q_:[Active C{Inact iveaD

Message received

= Algorithm termination is based on every vertex
voting to halt.

" |[n superstep O, every vertex is in the active state.
= A vertex deactivates itself by voting to halt.

" [t can be reactivated by receiving an (external)
message.

20

Department of Computational and Data Sciences

= Vertex Centric Programming Model

» Logic written from perspective on a single vertex.
Executed on all vertices.

= \/ertices know about

» Their own value(s)
» Their outgoing edges

Iteration i Iteration i+|

Al

CDS.IISc.in | Department of Computational and Data Sciences

orkers

Supersteps

Blue Arrows
are messages.

Blue vertices

have voted to
halt.

20

An | Department of Computational and Data Sciences

Algorithm 1 Max Vertex Value using Vertex Centric Model

. procedure CoOMPUTE(Vertex my Vertex, Iterator(Message) M)

1

2: hasChanged = (superstep=1) ? true : false

3: while M.hasNext do Update to max message value
4: Message m +— M.next

3: if m.value > my Vertex.value then

6: my Vertex.value + m.value

T: hasChanged = t rus

8: if hasChanged then Send message to neighbors
0: SENDTOALLNEIGHBORS(myVertex.value)

0: else

l:

VOTETOHALT()

(3

in | Department of Computational and Data Sciences

= Makes distributed programming easy
» No locks, semaphores, race conditions
» Separates computing from communication phase

= Vertex-level parallelization
» Bulk message passing for efficiency

= Stateful (in-memory)
> Only messages & checkpoints hit disk

24

. CDS.IISc.in | Department of Computational and Data Sciences

Apache Giraph: API

void compute(Iterator<IntWritable> msgs)

()

()
edges = ()

sendMsg(sinkVtx, value)
sendMsgToAllEdges(value)
voteToHalt()

&)

CDS.IISc.in | Department of Computational and Data Sciences

Message passing

= No guaranteed message delivery order.
=" Messages are delivered exactly once.

= Can send messages to any node.
» Though, typically to neighbors

26

CDS.IISc.in | Department of Computational and Data Sciences

public class MaxVertexVertex extends IntIntNullIntVertex {

public void (Iterator<IntWritable> messages)
throws IOException {
int currentMax = ().get();

// first superstep is special,
// because we can simply look at the neighbors
if (() == 0) {
Iterator<IntWritable> edges = ();
while(edges.hasNext()) {
int neighbor = edges.next().get();
if (neighbor > currentMax) {
currentMax = neighbor;

Based on org.apache.giraph.examples.ConnectedComponentsVertex

27

CDS.IISc.in | Department of Computational and Data Sciences

// only need to send value if it is not the own id

if (currentMax != ().get()) {
(new IntWritable(currentMax));
Iterator<IntWritable> edges = ();

while(edges.hasNext()) {
int neighbor = edges.next().get();
if (neighbor < currentMax) {
(new IntWritable(neighbor),

());

();

return;
} // end getSuperstep==0

28

CDS.IISc.in | Department of Computational and Data Sciences

boolean changed = false; // getSuperstep != 0
// did we get a smaller id?

while (messages.hasNext()) {
int candidateMax = messages.next().get();
if (candidateMax > currentMax) {
currentMax = candidateMax;
changed = true;

¥

// propagate new component id to the neighbors
if (changed) {

(new IntWritable(currentMax));

(());

OF
} // end compute()

29

CDS.IISc.in | Department of Computational and Data Sciences

Apache Giraph

Loading phase Compute phase Offloading phase
A

K—H — — r—H
Workers call

compute() on the
active vertices and
collect messages

Vertices are loaded Vertices are offloaded

into Giraph through an Ir::re m;i‘; i:d to *‘EE ':';mthtaﬂ
as55a utputForma
InputFormat All data loaded pro |
All vertices halted
and no messages

produced
All vertices computed

Workers compute
All messages sent gggregators, collect
statistics, and wait at
the synchronisation
barrier

Workers finish
exchange messages

Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014

30

of Computational and Data Sciences

Hadoop Map-only Application

ZooKeeper: responsible for computation state
— Partition/worker mapping, global #superstep
Master: responsible for coordination

— Assigns partitions to workers, synchronization
Worker: responsible for vertices

- Invokes active vertices compute() function,
sends, receives and assigns messages

TaskTracker TaskTracker TaskTracker

TaskTracker

ZooKeeper
JobTracker
NameNode

i1

nt of Computational and Data Sciences

Hadoop File System (HDFS)

Master
Coordinator

Compute threads

Vertices

Message Inbox
[

Message Outbox

Netty Netty

Worker 1 Worker 2 Worker N Master
" Checkpointing of supersteps possible

j¢

CDS.IISc.in | Department of Computational and Data Sciences

Shortest Path
In the 1%t superstep, only

class ShortestPathVertex the source vertex will
: public Vertex<int, int, int> { update its value (from INF
void Compute(Messagelterator* msgs) { to zero)

mindist = IsSource(vertex id()) ? © : INF;
while ((m = msgs->Next()) != NULL)

mindist = min(mindist, m->Value());
if (mindist < GetValue()) {

*MutableValue() = mindist;

OutEdgeIlterator edges = GetOutEdgelterator();

while((e = edges.Next()) != NULL)

SendMessageTo(e.Target(),
mindist + e.GetValue());

}
VoteToHalt();

s

33

artment of Computational and Data Sciences

34

artment of Computational and Data Sciences

33

Department of Computational and Data Sciences

36

Department of Computational and Data Sciences

37

CDS.IISc.in | Department of Computational and Data Sciences

PageRank, recursively

P =a () +0-a) 3 50

mELin)
» P(n) is PageRank for webpage/URL ‘n’

» Probability that you’re in vertex ‘n’
»" |G| is number of URLs (vertices) in graph
" o is probability of random jump
= L(n) is set of vertices that link to ‘n’
" C(m) is out-degree of ‘m’

38

. CDS.IISc.in | Department of Computational and Data Sciences

PageRank using MapReduce

1: class MAPPER

2 method MAP(nid n,node N)

3: p — N.PACERANK/|N.ADJACENCYLIST|

4 EMIT(nid n,N) > Pass along graph structure
5 for all nodeid m € N.ADJACENCYLIST do

6 EMIT(nid m, p) > Pass PageRank mass to neighbors

1: class REDUCER

2 method REDUCE(nid m, [py, pa, .. .])
3 M — ()

4 for all p € counts [p1,ps,...] do
5: if ISNoDE(p) then
6 M —p > Recover graph structure
7 else

8 S« S+p > Sum incoming PageRank contributions
9

. M.PAGERANK «— s
10: EMIT(nid m,node M)

Lin, Fig 5.8
39

Department of Computational and Data Sciences

Store and carry PageRank
class PageRankVertex

: public Vertex<double, void, double> {
public:
virtual void Compute(Messagelterator* msgs) {
if (superstep() == ©) *MutableValue() = 1 / NumVertices();
else
if (superstep() »>= 1) {
double sum = ©;
while((m = msgs->Next()) != NULL)
sum += m->Value();
*MutableValue() = 0.15 / NumVertices() + ©.85 * sum;
}
if (superstep() < 30) {
const int64 n = GetOutEdgelterator().size();
SendMessageToAllNeighbors(GetValue() / n);
} else
VoteToHalt();

| Department of Computational and Data Sciences

=" Sending a message to remote vertex has overhead
» Can we merge multiple incoming message into one?

= User specifies a way to reduce many messages into
one value (ala Reduce in MR)

» by overriding the Combine() method.
» Must be commutative and associative.

originalMessage =
combine(vid, originalMessage, messageToCombine)

= Exceedingly useful in certain contexts (e.g., 4x
speedup on shortest-path computation).
» e.g. for MAX, om = om < mtc ? mtc: om

45

CDS.IISc.in | Department of Computational and Data Sciences

MasterCompute

" Runs before slave compute()
" Has a global view
= A place for aggregator manipulation

" MasterCompute: Executed on master
" WorkerContext: Executed per worker
" PartitionContext: Executed per partition

© Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014
© Apache Giraph, Roman Shaposhnik 46

partment of Computational and Data Sciences

= A mechanism for global communication,
monitoring, and data.

» Each vertex can produce a value in a superstep S for the
Aggregator to use.

» The Aggregated value is available to all the vertices in
superstep S+1.
" Implemented using Master Compute

= Aggregators can be used for statistics and for global
communication.

» E.g., Sum applied to out-edge count of each vertex.

e generates the total number of edges in the graph and
communicate it to all the vertices.

47

CDS.IISc.in | Department of Computational and Data Sciences

Partitioner

= Maps vertices to partitions that are operated by
workers
» Default is a hash partitioner

" Done once at the start of the application

= Called at the end of each superstep, for dynamic
migration of partitions

48

. CDS.IISc.in | Department of Computational and Data Sciences

Checkpointing

" Optionally capture the state of vertex, messages at
periodic supersteps, e.g. 2

= Globally revert to last checkpoint superstep on
failure

Worker failure!

Worker failure
after checkpoint

Application
Complete

© Claudio Martella, Apache Giraph

Department of Computational and Data Sciences

=" Some graph algorithms need to change the graph's
topology.
» E.g. A clustering algorithm may need to replace a cluster
with a node
= \ertices can create / destroy vertices at will.

= Resolving conflicting requests:
» Partial ordering:
E Remove,V Remove,V Add, E Add.
» User-defined handlers:
You fix the conflicts on your own.

50

