
Assignment 04

Sorting numbers using Binary Search tree and

Quick sort

DS286.Aug16 Data Structures and Programming

October 13, 2016

Submission is due on or before Wednesday, October 26, 2016, 11:59pm
IST.

The assignment carries 75 points, which is 7.5% of the course weightage.

1 Question

This assignment requires you to perform sorting of a large list of numbers using
an inorder traversal of a Binary Search Tree (BST) and using Quick sort, and
compare their performances for input lists of different sizes. You will also learn
to use C++ Standard Template Library (STL) using vector, that is like a List

abstract data type.
You are given the code for the main.cpp method and header files for BST.h

and Quick.h. Your first task will be to complete the implementation of the var-
ious methods in these header files in BST.cpp and Quick.cpp files, respectively.
Note that all the methods of BST and QuickSort header files must be imple-
mented even if only some of them are used in the sorting program. We may test
those other methods separately. You can add your own private methods in the
BST.cpp and Quick.cpp files but must not change the signature of the public
methods in the header files. You must not change main.cpp either.

2 Program Outline

You are given two header files BST.h and Quick.h, and the program file main.cpp
with the testing harness. You are also given three sample input files, input1.txt,
input2.txt and input3.txt. Your first task is to implement a Binary Search
tree data structure in the file BST.cpp with all methods present in BST.h. Also
you are required to implement Quick sort in Quick.cpp with all methods present
in Quick.h.

1. The given main file main.cpp accepts a file name as the command line
argument. The file will have some distinct random numbers to be sorted.

1



2. The main() function reads the file line by line and populates a vector

with the numbers.

3. Then the methods BSTsort() and QUICKsort() are called to sort the
numbers stored in the vector and populates another vector with the
sorted numbers.

4. At the end, the main() reports the time taken for sorting by BST and
Quick sort.

5. It also performs sanity checks on whether the sorted lists returned by BST
and Quick sort are indeed sorted or not.

6. Assume that the input file will only have distinct numbers. There will be
no duplicates.

You are also required to submit a short report (≤ 3 pages) that discusses
the computational and storage complexities of these two sorting approaches.
Further, you should also validate if these complexities match the actual sorting
time taken by the two approaches. For this, you will run experiments using
different appropriate input sizes (including the three input files already given).
You should submit a table with three columns: the input size, the time taken
by BSTsort and time taken by QUICKsort. These are generated by the given
main() method. You should also plot these in a graph where the X Axis is
the input size, the Y axis is the observed and expected times for the two ap-
proaches. Describe the system used to generate these results (CPU, memory).
You should also analyze the results, and also discuss the pros and cons of these
implementation approaches in the report.

You have to write the Makefile for this assignment yourself. It
should produce an executable named Sorting.out that corresponds to the
main.cpp that is provided. Note the camel casing.

3 Sample inputs and results

./Sorting.out input1.txt

bst,10000,12.345

quick,10000,1.234

Sorting is successful :-)

4 Submission Instruction

Please follow these instructions carefully. We use automated scripts for evalu-
ation. So a failure to follow these instructions will mean that your submission
will not be evaluated.

2



• Only write your code in the two files: BST.cpp and Quick.cpp. These pro-
gram files should implement the methods from the corresponding header
files.

• Do not modify the other files that are provided.

• Place all your files including source file, executable file and Makefile,
in a single folder whose name is determined as follows. My full name is
“Prateeksha Varshney” where “Prateeksha” is my first name, so the folder
name should be 04Prateeksha for my submission. Please note the capi-
talization of first letter of the first name. The final contents of the folder
would be as follows:

04Prateeksha

|- main.cpp

|- BST.h

|- BST.cpp

|- Quick.h

|- Quick.cpp

|- Sorting.out

|- Makefile

|- report.pdf

• This folder should be compressed using the tar program as follows:
tar -cvf 04Prateeksha.tar 04Prateeksha/

Note: Any other compression format will not be accepted and will be
treated as no submission. Its your responsibility to check if the file can be
properly uncompressed and all files inside are intact.

• Send a separate mail to the TA’s email address prateeksha@grads.cds.iisc.ac.in
with the subject line DS286.Aug16.A04. Do not write anything more or
less in the subject line. Do add any text in the body. Do not send the
assignment as a reply-email to any other mail.

• Only one submission will be accepted. If multiple emails or files are
received, only the first one will be taken as the submission. Only the
submission received before the deadline will be accepted.

• Use only the C++ language for completing this assignment. Make sure the
code compiles and executes correctly on the head node of the turing.cds.iisc.ac.in
server using g++ command. You will need to pass the -std=c++11 flag to
the compiler to use STL’s vector. The code will be compiled and tested
on this machine during evaluation.

• Indent/format the code and add inline comments describing that the code
is supposed to do. This will help you debug better, and give us an insight
on the logic you are using.

3



• It is your responsibility to remove all debug statements you may have
added during development and testing your code. The evaluation of your
submission is done using automated scripts, and your console output will
be tested against a predetermined correct output. If the outputs do not
match exactly, it will be taken as wrong output.

5 Ethics

You should not get assistance from other students or external sources in directly
solving the assignment. Getting help on generic C++ and data structures con-
cepts, e.g., on using lists, strings, libraries, compilation, etc. is accepted. You
are encouraged to post questions to the course mailing list so that the TA, in-
structors or other students can respond. This also ensures you do not have an
unfair advantage/disadvantage over other students. If you have received assis-
tance from other sources, send a separate email to the Instructor and the TA
disclosing the external sources and type of support received.

By making a submission, you are asserting that all code that you submit
was designed and developed by you. Do NOT copy and paste code from anyone
else! All code will be verified using a plagiarism checker, and penalties will be
imposed if plagiarism is found from unattributed sources.

4


