Department of Computational and Data Sciences

DS286 | 2016-09-16,21

[.11-12: Hashmap

Yogesh Simmhan

simmhan@cds.iisc.ac.in

Slides courtesy Venkatesh Babu, CDS
Creative Commons Attribution 4.0 International License

JCDS

The Department of Computztional and Data Scie

http://creativecommons.org/licenses/by/4.0/deed.en_US

partment of Computational and Data Sciences

 Usesa 1D array (or table) table[0:b-1]

= Each position of this array is a bucket
= Capacity of the bucket is b

= A bucket can normally hold only one dictionary pair:
<key, value>

e Uses a hash function h that converts each key k into

an index in the range [0, b-1].
= h(k) is the “home bucket” for key k.

e Every dictionary pair is stored in its home bucket
table[h(item.key)] = item

rtment of Computational and Data Sciences

= KVPs are: (22,a), (33,c), (3,d), (73,e), (85,1).
= Hash table is table[0:7], b = 8.

» Hash function h=key/11

= Pairs are stored in table as below:

(3,d) (22,a) |(33,c) (73,e)|(85,f)

eget, put, and remove take O(1) time.

Department of Computational and Data Sciences

(3,d) (22,a) |(33,c) (73,e)|(85,f)

 Where does (99,k) go?
e Hash function causes us to go beyond table size

* Simple fix: do a “mod” with the bucket size by default
e h=(k/11)%8

partment of Computational and Data Sciences

(3,d) (22,a) |(33,c)

(73,e)

(85,f)

 Where does (26,g) go?

e Keys 22 and 26 have the same home bucket, are
synonyms with respect to the hash function used.

 The home bucket for (26,g) is already occupied.

2D ment of Computational and Data Sciences

(3,d) (22,a) |(33,c) (73,e)|(85,f)

= A collision occurs when the home bucket for a new
pair is occupied by a pair with a different key.

= An overflow occurs when there is no space in the
home bucket for a new pair.

» E.g. each bucket in table can hold two values for same
key, and more than 2 values for the key are inserted

= When a bucket can hold only one pair, collisions
and overflows together.

= Need a method to handle overflows.

CDS.lISc.ac.in | Department of Computational and Data Sciences

Hash Table Issues

* Choice of hash function.
* Overflow handling method.

e Size (number of buckets) of hash table.

Department of Computational and Data Sciences

* Quick to compute

e Distributes keys uniformly throughout the table

* Each bucket has the same probability of the number of
keys in the input range that will be hashed to it

* E.g. h=k%b is a uniform hash function for keys in the
range [0..r] ... assuming all keys have equal probability
of occurence

* Buckets get ceil(r/b) or floor(r/b) items
 Difficult to find a good hash function

CDS.lISc.ac.in | Department of Computational and Data Sciences

Hashing non-integer keys

* Find ways to convert the keys to integers
* Eg:
— ASCII to int (add up chars)

* Does not distinguish various permutations
* listen/silent, rescue/secure, live/evil/vile/veil

— Remove special chars (1020SERC1002)
— Shift left and add: h +=¢; + ¢;;,,<<8

of Computational and Data Sciences

* Hash function is combination of
— Hash code map [key = integer]
— Compression map [integer = [0, N-1]]

* A good hash function minimizes the
probability of collisions

of Computational and Data Sciences

* |nteger cast

— For numeric type 32 bits or less: directly interpret
(e.g. after a mod)

— Component sum: For type more than 32 bits (eg.,
long, double), add up the 32 bit components.

— The above is not good for strings

omputational and Data Sciences

* Polynomial accumulation:

— For strings of natural language, combine the char
values (ASCIl or Unicode), by viewing them as the
coefficient of polynomial:

* aptay X+ ... +a, x™1

— The choice x=33,37,39,41 gives at most 6

collisions on a vocabulary of 50K English words.

— Polynomial is computed with Horners’s rule at a
fixed value of ‘X’

CDS.lISc.ac.in | Department of Computational and Data Sciences

Horner’s Rule

e Given the polynomial p(x):

p(z) =3 a;x' = ag + a1z + apx® + azz® + - - - + 2",
i=0
* Write p(x) as:
p(x) = ao + z(ay + x(az + - - - + 2(An—1 + anx) - --)).
* Evaluate at x=x,
p(xo) = ao + xo(ay + xo(az + - -+ + xo(@n—1 + bnxo) - --))
= ag + xo(a + xo(az + - -- + xo(bp—-1) - -+))

= ag + xo(by)

Department of Computational and Data Sciences

e Use the remainder
—h(kR) = R mod m, kis the key
— m the size of the table. Need to choose m
— E.g. m=be is bad
— If mis the power of 2, h(k) gives the e LSBs of k

— All keys with the same suffix go to same bucket

— m prime (not too close to exact powers of 2) is good
* Helps ensure uniform distribution
* or pick closest prime to fixed bucket size

CDS.lISc.ac.in | Department of Computational and Data Sciences

Example

* Hash table for n=2000 char strings

* Allowed average collisions = 3

* Choose m=701
— A prime near 2000/3
— And not near any power of 2

Computational and Data Sciences

* All elements are stored in the hash table
* Elements to store <= capacity of table

e Each table entry contains either an element or
null

* While searching for an element systematically
probe table slots

)ymputational and Data Sciences

* Modify the hash function to take the probe
number i as the second parameter
-h: Ux {06,1,.m-1} - {6,1,.m-1}

* Hash function, h, determines the sequence of
slots examined for a given key

* Probe sequence for a given key k is :

—<h(k,0),h(R,1),..h(R,m-1)> -a
permutation of <9, 1,..m-1>

CDS.lISc.ac.in | Department of Computational and Data Sciences

Linear Probing

* If the current location is occupied, try the next location
LPInsert(k)
If (table is full) return error
probe = h(k)
while (table[probe] occupied)
probe = (probe+l) mod m

table[probe]=k

e Uses less memory than chaining (later in lecture)

e Slower than chaining: Elements tend to aggregate,
hence insertion time increases proportionally.

* Home bucket h(k) =k mod 17

* Insert keys: 6,12, 34,29,28,11,23,7, 0,33, 30, 45

ment of Computational and Data Sciences

0 4 8 12 16
34| 0 23| 7 2812 29| 11| 30| 33
0 4 8 12 16
34| 0|45 23| 7 2812 29| 11| 30| 33

Computational and Data Sciences

e Search for a key: Go to (k mod 17) and
continue looking at successive locations till we
find k or reach empty location.

* Longer (unsuccessful) lookup time
* Deletion?

0 4 3 12 16
34| 0 (45 6 (23| 7 2812 129|11|30|33

Computational and Data Sciences

 Shift all elements to previous location?
e Costly

* |Instead, place marker at vacated location
* neverUsed=false

* Lookup continues till neverUsed=true

* Insert puts element in first location with
neverUsed=true, sets it to false

e Too many markers degrade performance = Rehash

partment of Computational and Data

e Uses two hash functions: h, p

* h(k) determines the position in table

Sciences

* p(k) determines the probe offset on unsuccessful search

* Test locations h(k), (h(k)+p(k))%b, (h(k)+2.p(k))%b,
..., (h(k)+i.p(k))%b
* p(k)=1 for linear probing

* May also use r(i) for ith probe, which is random
probing if r() is a pseudo-random generator

* Test locations h(k), (h(k)+r(1))%b, (h(k)+r(2))%b, ..
(h(k)+ r(i))%b

4

CDS.lISc.ac.in | Department of Computational and Data Sciences

Double Hashing

DoubleHashingInsert (k)
if (table is full) error
Probe=h(k); offset=p(k)
while (table[probe] occupied)

Probe=(probe+offset) mod m

table[probe] =k
* If mis prime, we will eventually examine every position
in table

e Distributes keys more uniformly than linear probing

CDS.lISc.ac.in | Department of Computational and Data Sciences

Hashing with Chaining

table
(01.—-(11 {33 =55 ——={ 66 oz
(1] pwors |
(2] |wuLL
(3] 36 | ——=f 69 wuLL
[4)
[5] 16 | ——={ 49 | ——= 82 NuLL

Figure 10.3 A chained hash table

23-Sep-16 05

CDS.lISc.ac.in | Department of Computational and Data Sciences

Hashing with Chaining

= Collisions cause entry to be added to linked list
= O(1) insertion cost

" O(chain length) lookup, deletion cost

" More memory than array (pointers)

= Faster insertion

23-Sep-16

26

Computational and Data Sciences

Load factora = n/b is fraction of buckets
occupied

Assume that every probe looks at a random
location in the table

* linear probing/double hashing
1-a fraction of the table is empty

Expected number of probes to find an empty
spot (unsuccessful search)is 1/(1-a)

CDS.lISc.ac.in | Department of Computational and Data Sciences

Analysis
Expected number of un- U, et 1
successful trials given a p l-a
1
Expected number of un- [l
successful trials for it" insert
_) - 1
Average number of trials for Sn =~ 7T 1
each of the n inserts -
1 1
1 1 o1
o loge 1-a

23-Sep-16 Sahni, eqn. 10.5 and 10.6 28

CDS.lISc.ac.in | Department of Computational and Data Sciences

Expected number of probes

Chaining O(1+ a) O(1+a)

Probing o(1/(1-a)) O((1/a) log (1/(1-a))

In chaining, a can be > 1
In probing, atis <1

,J . CDS.lISc.ac.in | Department of Computational and Data Sciences

Tasks

= Self study (Sahni Textbook)

» Check: Have you read Chapter 10.1-10.4 “Dictionary and
Skip Lists”? Solved problems?

» Read: Chapter 10.5, Hashing from textbook
» Try: Exercise 23, 26, 30 from Chapter 10 of textbook

" Finish Assignment 3 by Wed Sep 28 (75 points)

" 26 Sep (Mon) Class instead of tutorial
= 30 Sep (Fri) Institute holiday. But can we have class?

=" Move Midterm from Oct 5 to Oct 77
» All lectures till Trees & Searching will be in syllabus

23-5ep-16 30

and Data Sciences

Questions?

©Department of Computational and Data Science, 11Sc, 2016 4:-
This work is licensed under a Creative Commons Attribution 4.0 International License K /.
(=

Copyright for external content used with attribution is retained by their original authors

http://creativecommons.org/licenses/by/4.0/deed.en_US

