
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान

बंगलौर, भारत

Department of Computational and Data Sciences

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

DS286 | 2016-09-16,21

L11-12: Hashmap

Yogesh Simmhan

s i m m h a n @ c d s . i i s c . a c . i n

Slides courtesy Venkatesh Babu, CDS

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.ac.in | Department of Computational and Data Sciences

Ideal Hashing

• Uses a 1D array (or table) table[0:b-1]

 Each position of this array is a bucket

 Capacity of the bucket is b
 A bucket can normally hold only one dictionary pair:
<key, value>

• Uses a hash function h that converts each key k into

an index in the range [0, b-1].
 h(k) is the “home bucket” for key k.

• Every dictionary pair is stored in its home bucket

table[h(item.key)] = item

CDS.IISc.ac.in | Department of Computational and Data Sciences

Ideal Hashing Example

 KVPs are: (22,a), (33,c), (3,d), (73,e), (85,f).

Hash table is table[0:7], b = 8.

Hash function h=key/11

 Pairs are stored in table as below:

•get, put, and remove take O(1) time.

(3,d) (22,a) (33,c) (73,e) (85,f)

CDS.IISc.ac.in | Department of Computational and Data Sciences

(3,d) (22,a) (33,c) (73,e) (85,f)

What Can Go Wrong?

• Where does (99,k) go?

• Hash function causes us to go beyond table size

• Simple fix: do a “mod” with the bucket size by default

• h = (k / 11) % 8

CDS.IISc.ac.in | Department of Computational and Data Sciences

(3,d) (22,a) (33,c) (73,e) (85,f)

What Can Go Wrong?

• Where does (26,g) go?

• Keys 22 and 26 have the same home bucket, are
synonyms with respect to the hash function used.

• The home bucket for (26,g) is already occupied.

CDS.IISc.ac.in | Department of Computational and Data Sciences

(3,d) (22,a) (33,c) (73,e) (85,f)

What Can Go Wrong?

 A collision occurs when the home bucket for a new
pair is occupied by a pair with a different key.

 An overflow occurs when there is no space in the
home bucket for a new pair.
‣ E.g. each bucket in table can hold two values for same

key, and more than 2 values for the key are inserted

When a bucket can hold only one pair, collisions
and overflows together.

Need a method to handle overflows.

CDS.IISc.ac.in | Department of Computational and Data Sciences

Hash Table Issues

• Choice of hash function.

• Overflow handling method.

• Size (number of buckets) of hash table.

CDS.IISc.ac.in | Department of Computational and Data Sciences

Good Hash Function

• Quick to compute

• Distributes keys uniformly throughout the table

• Each bucket has the same probability of the number of
keys in the input range that will be hashed to it

• E.g. h=k%b is a uniform hash function for keys in the
range [0..r] … assuming all keys have equal probability
of occurence

• Buckets get ceil(r/b) or floor(r/b) items

• Difficult to find a good hash function

CDS.IISc.ac.in | Department of Computational and Data Sciences

Hashing non-integer keys

• Find ways to convert the keys to integers

• Eg:

– ASCII to int (add up chars)

• Does not distinguish various permutations

• listen/silent, rescue/secure, live/evil/vile/veil

– Remove special chars (1020SERC1002)

– Shift left and add: h += ci + c(i+1)<<8

CDS.IISc.ac.in | Department of Computational and Data Sciences

Keys to Indices

• Hash function is combination of

– Hash code map [key integer]

– Compression map [integer [0, N-1]]

• A good hash function minimizes the
probability of collisions

CDS.IISc.ac.in | Department of Computational and Data Sciences

Popular Hash-Code Maps

• Integer cast

– For numeric type 32 bits or less: directly interpret
(e.g. after a mod)

– Component sum: For type more than 32 bits (eg.,
long, double), add up the 32 bit components.

– The above is not good for strings

CDS.IISc.ac.in | Department of Computational and Data Sciences

Hash Code Maps

• Polynomial accumulation:

– For strings of natural language, combine the char
values (ASCII or Unicode), by viewing them as the
coefficient of polynomial:

• a0+a1 x+ … + an-1 xn-1

– The choice x=33,37,39,41 gives at most 6
collisions on a vocabulary of 50K English words.

– Polynomial is computed with Horners’s rule at a
fixed value of ‘x’.

CDS.IISc.ac.in | Department of Computational and Data Sciences

Horner’s Rule

• Given the polynomial p(x):

• Write p(x) as:

• Evaluate at x= x0

Why rewrite?

CDS.IISc.ac.in | Department of Computational and Data Sciences

Compression Maps
• Use the remainder

– h(k) = k mod m, k is the key

– m the size of the table. Need to choose m

– E.g. m=be is bad
– If m is the power of 2, h(k) gives the e LSBs of k

– All keys with the same suffix go to same bucket

– m prime (not too close to exact powers of 2) is good

• Helps ensure uniform distribution

• or pick closest prime to fixed bucket size

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example

• Hash table for n=2000 char strings

• Allowed average collisions = 3

• Choose m=701

– A prime near 2000/3

– And not near any power of 2

CDS.IISc.ac.in | Department of Computational and Data Sciences

Open Addressing

• All elements are stored in the hash table
• Elements to store <= capacity of table

• Each table entry contains either an element or
null

• While searching for an element systematically
probe table slots

CDS.IISc.ac.in | Department of Computational and Data Sciences

Open Addressing

• Modify the hash function to take the probe
number i as the second parameter

– h: U x {0,1,…m-1} → {0,1,…m-1}

• Hash function, h, determines the sequence of
slots examined for a given key

• Probe sequence for a given key k is :

– <h(k,0),h(k,1),…h(k,m-1)> - a
permutation of <0,1,…m-1>

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linear Probing
• If the current location is occupied, try the next location

LPInsert(k)

If (table is full) return error

probe = h(k)

while (table[probe] occupied)

probe = (probe+1) mod m

table[probe]=k

• Uses less memory than chaining (later in lecture)
• Slower than chaining: Elements tend to aggregate,

hence insertion time increases proportionally.

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linear Probing – Example
• Home bucket h(k) = k mod 17

• Insert keys: 6, 12, 34, 29, 28, 11, 23, 7, 0, 33, 30, 45

0 4 8 12 16
34 0 6 23 7 28 12 29 11 30 33

0 4 8 12 16
34 0 45 6 23 7 28 12 29 11 30 33

CDS.IISc.ac.in | Department of Computational and Data Sciences

Lookup in Linear Probing

• Search for a key: Go to (k mod 17) and
continue looking at successive locations till we
find k or reach empty location.
• Longer (unsuccessful) lookup time
• Deletion?

0 4 8 12 16
34 0 45 6 23 7 28 12 29 11 30 33

CDS.IISc.ac.in | Department of Computational and Data Sciences

Deletion

• Shift all elements to previous location?
• Costly

• Instead, place marker at vacated location
• neverUsed=false

• Lookup continues till neverUsed=true

• Insert puts element in first location with
neverUsed=true, sets it to false

• Too many markers degrade performance Rehash

CDS.IISc.ac.in | Department of Computational and Data Sciences

Double Hashing & Random Probing
• Uses two hash functions: h, p

• h(k) determines the position in table

• p(k) determines the probe offset on unsuccessful search

• Test locations h(k), (h(k)+p(k))%b, (h(k)+2.p(k))%b,
…, (h(k)+i.p(k))%b

• p(k)=1 for linear probing

• May also use r(i) for ith probe, which is random
probing if r() is a pseudo-random generator

• Test locations h(k), (h(k)+r(1))%b, (h(k)+r(2))%b, …,
(h(k)+ r(i))%b

CDS.IISc.ac.in | Department of Computational and Data Sciences

Double Hashing

DoubleHashingInsert(k)

if (table is full) error

Probe=h(k); offset=p(k)

while (table[probe] occupied)

Probe=(probe+offset) mod m

table[probe] =k

• If m is prime, we will eventually examine every position
in table

• Distributes keys more uniformly than linear probing

CDS.IISc.ac.in | Department of Computational and Data Sciences

Hashing with Chaining

23-Sep-16 25

CDS.IISc.ac.in | Department of Computational and Data Sciences

Hashing with Chaining

 Collisions cause entry to be added to linked list

O(1) insertion cost

O(chain length) lookup, deletion cost

More memory than array (pointers)

 Faster insertion

23-Sep-16 26

CDS.IISc.ac.in | Department of Computational and Data Sciences

Analysis

• Load factor α = n/b is fraction of buckets
occupied

• Assume that every probe looks at a random
location in the table

• linear probing/double hashing

• 1-α fraction of the table is empty

• Expected number of probes to find an empty
spot (unsuccessful search) is 1/(1-α)

CDS.IISc.ac.in | Department of Computational and Data Sciences

Analysis
Expected number of un-
successful trials given α

23-Sep-16 28

Expected number of un-
successful trials for ith insert

Average number of trials for
each of the n inserts

…

Sahni, eqn. 10.5 and 10.6

=
1

𝛼
log𝑒

1

1−𝛼

CDS.IISc.ac.in | Department of Computational and Data Sciences

Expected number of probes

Unsuccessful Successful

Chaining O(1+ α) O(1+α)

Probing O(1/(1-α)) O((1/α) log (1/(1-α))

In chaining, α can be > 1
In probing, α is ≤ 1

CDS.IISc.ac.in | Department of Computational and Data Sciences

Tasks
 Self study (Sahni Textbook)
‣ Check: Have you read Chapter 10.1-10.4 “Dictionary and

Skip Lists”? Solved problems?
‣ Read: Chapter 10.5, Hashing from textbook
‣ Try: Exercise 23, 26, 30 from Chapter 10 of textbook

 Finish Assignment 3 by Wed Sep 28 (75 points)

 26 Sep (Mon) Class instead of tutorial

 30 Sep (Fri) Institute holiday. But can we have class?

Move Midterm from Oct 5 to Oct 7?
‣ All lectures till Trees & Searching will be in syllabus

23-Sep-16 30

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

CDS.IISc.ac.in | Department of Computational and Data Sciences

Questions?

23-Sep-16 31

http://creativecommons.org/licenses/by/4.0/deed.en_US

