

DS286 2016-09-16,21 **L11-12: Hashmap**

Yogesh Simmhan

simmhan@cds.iisc.ac.in

Slides courtesy Venkatesh Babu, CDS

©Department of Computational and Data Science, IISc, 2016 This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u> Copyright for external content used with attribution is retained by their original autho

Ideal Hashing

- Uses a 1D array (or table) table[0:b-1]
 - Each position of this array is a bucket
 - Capacity of the bucket is b
 - A bucket can normally hold only one dictionary pair.
 <key, value>
- Uses a hash function h that converts each key k into an index in the range [0, b-1].
 h(k) is the "home bucket" for key k.
- Every dictionary pair is stored in its home bucket table[h(item.key)] = item

Ideal Hashing Example

- KVPs are: (22,a), (33,c), (3,d), (73,e), (85,f).
- Hash table is table[0:7], b = 8.
- Hash function h=key/11
- Pairs are stored in table as below:

(3,d)		(22,a)	(33,c)			(73,e)	(85,f)
-------	--	--------	--------	--	--	--------	--------

•get, put, and remove take O(1) time.

What Can Go Wrong?

(3,d) (22,a	a) (33,c)	(73,e) (85,f)
-------------	-----------	---------------

- Where does (99,k) go?
- Hash function causes us to go beyond table size
- **Simple fix**: do a "mod" with the bucket size by default
- h = (k / 11) % 8

What Can Go Wrong?

(3,d) (22,a	a) (33,c)	(73,e) (85,f)
-------------	-----------	---------------

- Where does (26,g) go?
- Keys 22 and 26 have the same home bucket, are synonyms with respect to the hash function used.
- The home bucket for (26,g) is already occupied.

What Can Go Wrong?

(3,d)	(22 <i>,</i> a)	(33,c)			(73 <i>,</i> e)	(85 <i>,</i> f)
-------	-----------------	--------	--	--	-----------------	-----------------

- A collision occurs when the home bucket for a new pair is occupied by a pair with a different key.
- An overflow occurs when there is no space in the home bucket for a new pair.
 - E.g. each bucket in table can hold two values for same key, and more than 2 values for the key are inserted
- When a bucket can hold only one pair, collisions and overflows together.
- Need a method to handle overflows.

Hash Table Issues

- Choice of hash function.
- Overflow handling method.
- Size (number of buckets) of hash table.

Good Hash Function

- Quick to compute
- Distributes keys **uniformly** throughout the table
 - Each bucket has the same probability of the number of keys in the input range that will be hashed to it
 - E.g. h=k%b is a uniform hash function for keys in the range [0..r] ... assuming all keys have equal probability of occurence
 - Buckets get ceil(r/b) or floor(r/b) items
- Difficult to find a good hash function

Hashing non-integer keys

- Find ways to convert the keys to integers
- Eg:
 - ASCII to int (add up chars)
 - Does not distinguish various permutations
 - listen/silent, rescue/secure, live/evil/vile/veil
 - Remove special chars (1020SERC1002)
 - Shift left and add: $h += c_i + c_{(i+1)} << 8$

Keys to Indices

- Hash function is combination of
 - Hash code map [key \rightarrow integer]
 - Compression map [integer \rightarrow [0, N-1]]

A good hash function minimizes the probability of collisions

Popular Hash-Code Maps

- Integer cast
 - For numeric type 32 bits or less: directly interpret (e.g. after a mod)
 - Component sum: For type more than 32 bits (eg., long, double), add up the 32 bit components.
 - The above is not good for strings

Hash Code Maps

- Polynomial accumulation:
 - For strings of natural language, combine the char values (ASCII or Unicode), by viewing them as the coefficient of polynomial:
 - a₀+a₁ x+ ... + a_{n-1} xⁿ⁻¹
 - The choice x=33,37,39,41 gives at most 6 collisions on a vocabulary of 50K English words.
 - Polynomial is computed with Horners's rule at a fixed value of 'x'.

Horner's Rule

• Given the polynomial *p*(*x*):

$$p(x) = \sum_{i=0}^{n} a_i x^i = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n,$$

- Write p(x) as: $p(x) = a_0 + x(a_1 + x(a_2 + \dots + x(a_{n-1} + a_n x) \dots)).$
- Evaluate at $x = x_0$ $p(x_0) = a_0 + x_0(a_1 + x_0(a_2 + \dots + x_0(a_{n-1} + b_n x_0) \dots)))$ $= a_0 + x_0(a_1 + x_0(a_2 + \dots + x_0(b_{n-1}) \dots)))$ \vdots $= a_0 + x_0(b_1)$ $= b_0.$ Why rewrite?

Compression Maps

- Use the remainder
 - $-h(k) = k \mod m, k$ is the key
 - *m* the size of the table. Need to choose *m*
 - $-E.g. m=b^e$ is bad
 - If m is the power of 2, h(k) gives the e LSBs of k
 - All keys with the same suffix go to same bucket
- *m* prime (not too close to exact powers of 2) is good
 - Helps ensure uniform distribution
 - or pick closest prime to fixed bucket size

Example

- Hash table for n=2000 char strings
- Allowed average collisions = 3
- Choose *m*=701
 - A prime near 2000/3
 - And not near any power of 2

Open Addressing

- All elements are stored in the hash table
 - Elements to store <= capacity of table
- Each table entry contains either an element or null
- While searching for an element systematically probe table slots

Open Addressing

• Modify the hash function to take the probe number i as the second parameter $h \cdot U \times \{0, 1, m, 1\} \rightarrow \{0, 1, m, 1\}$

 $-h: U \times \{0, 1, ..., m-1\} \rightarrow \{0, 1, ..., m-1\}$

- Hash function, h, determines the sequence of slots examined for a given key
- Probe sequence for a given key k is :
 <h(k,0),h(k,1),...h(k,m-1)> a permutation of <0,1,...m-1>

Linear Probing

- If the current location is occupied, try the next location
 LPInsert(k)
 - If (table is full) return error
 - probe = h(k)
 - while (table[probe] occupied)

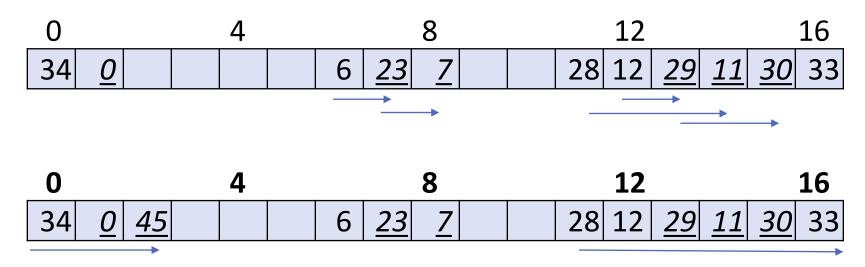
probe = (probe+1) mod m

table[probe]=k

- Uses less memory than *chaining* (later in lecture)
- Slower than *chaining*: Elements tend to aggregate, hence insertion time increases proportionally.

Linear Probing – Example

- Home bucket h(k) = k mod 17
- Insert keys: 6, 12, 34, <u>29</u>, 28, <u>11</u>, <u>23</u>, <u>7</u>, <u>0</u>, 33, <u>30</u>, <u>45</u>



Lookup in Linear Probing

- Search for a key: Go to (k mod 17) and continue looking at successive locations till we find k or reach empty location.
 - Longer (unsuccessful) lookup time
 - Deletion?

0			4			8			12				16
34	0	45		6	23	7		28	12	29	11	30	33

Deletion

- Shift all elements to previous location?
 - Costly
- Instead, place marker at vacated location
 - neverUsed=false
- Lookup continues till neverUsed=true
- Insert puts element in first location with neverUsed=true, sets it to false
- Too many markers degrade performance \rightarrow Rehash

Double Hashing & Random Probing

- Uses two hash functions: h, p
 - *h(k)* determines the position in table
 - *p(k)* determines the probe offset on unsuccessful search
- Test locations h(k), (h(k)+p(k))%b, (h(k)+2.p(k))%b, ..., (h(k)+i.p(k))%b
 - *p(k)*=1 for linear probing
- May also use r(i) for ith probe, which is random probing if r() is a *pseudo-random* generator
- Test locations h(k), (h(k)+r(1))%b, (h(k)+r(2))%b, ..., (h(k)+ r(i))%b

Double Hashing

DoubleHashingInsert(k)

- if (table is full) error
 - Probe=h(k); offset=p(k)
- while (table[probe] occupied)
 Probe=(probe+offset) mod m

table[probe] =k

- If *m* is prime, we will eventually examine every position in table
- Distributes keys more uniformly than linear probing

Hashing with Chaining

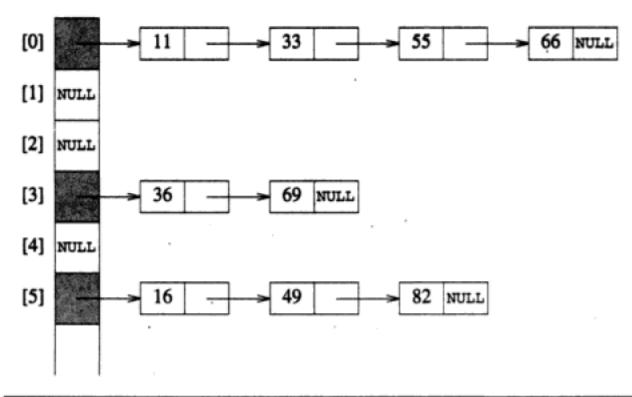


Figure 10.3 A chained hash table

Hashing with Chaining

- Collisions cause entry to be added to linked list
- O(1) insertion cost
- O(chain length) lookup, deletion cost
- More memory than array (pointers)
- Faster insertion

Analysis

- Load factor $\alpha = n/b$ is fraction of buckets occupied
- Assume that every probe looks at a random location in the table
 - linear probing/double hashing
- $1-\alpha$ fraction of the table is empty
- Expected number of probes to find an empty spot (unsuccessful search) is $1/(1-\alpha)$

Analysis

Expected number of unsuccessful trials given α

Expected number of unsuccessful trials for ith insert

Average number of trials for each of the *n* inserts

$$=\frac{1}{\alpha}\log_e\frac{1}{1-\alpha}$$

$$U_n \approx \frac{1}{p} = \frac{1}{1-\alpha}$$
$$\frac{1}{1-\frac{i-1}{b}}$$
$$S_n \approx \frac{1}{n} \sum_{i=1}^n \frac{1}{1-\frac{i-1}{b}}$$
$$= \frac{1}{n} \sum_{i=0}^{n-1} \frac{1}{1-\frac{i}{b}} \dots$$

Expected number of probes

	Unsuccessful	Successful
Chaining	Ο(1+ α)	Ο(1+α)
Probing	Ο(1/(1-α))	$O((1/\alpha) \log (1/(1-\alpha)))$

In chaining, α can be > 1 In probing, α is ≤ 1

Tasks

Self study (Sahni Textbook)

- Check: Have you read Chapter 10.1-10.4 "Dictionary and Skip Lists"? Solved problems?
- **Read**: Chapter 10.5, Hashing from textbook
- Try: Exercise 23, 26, 30 from Chapter 10 of textbook
- Finish Assignment 3 by Wed Sep 28 (75 points)
- 26 Sep (Mon) Class instead of tutorial
- 30 Sep (Fri) Institute holiday. But can we have class?
- Move Midterm from Oct 5 to Oct 7?
 - All lectures till Trees & Searching will be in syllabus

Questions?

©Department of Computational and Data Science, IISc, 2016 This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u> Copyright for external content used with attribution is retained by their original authors

