
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान

बंगलौर, भारत

Department of Computational and Data Sciences

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

DS286 | 2016-09-16,21

L11-12: Hashmap

Yogesh Simmhan

s i m m h a n @ c d s . i i s c . a c . i n

Slides courtesy Venkatesh Babu, CDS

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.ac.in | Department of Computational and Data Sciences

Ideal Hashing

• Uses a 1D array (or table) table[0:b-1]

 Each position of this array is a bucket

 Capacity of the bucket is b
 A bucket can normally hold only one dictionary pair:
<key, value>

• Uses a hash function h that converts each key k into

an index in the range [0, b-1].
 h(k) is the “home bucket” for key k.

• Every dictionary pair is stored in its home bucket

table[h(item.key)] = item

CDS.IISc.ac.in | Department of Computational and Data Sciences

Ideal Hashing Example

 KVPs are: (22,a), (33,c), (3,d), (73,e), (85,f).

Hash table is table[0:7], b = 8.

Hash function h=key/11

 Pairs are stored in table as below:

•get, put, and remove take O(1) time.

(3,d) (22,a) (33,c) (73,e) (85,f)

CDS.IISc.ac.in | Department of Computational and Data Sciences

(3,d) (22,a) (33,c) (73,e) (85,f)

What Can Go Wrong?

• Where does (99,k) go?

• Hash function causes us to go beyond table size

• Simple fix: do a “mod” with the bucket size by default

• h = (k / 11) % 8

CDS.IISc.ac.in | Department of Computational and Data Sciences

(3,d) (22,a) (33,c) (73,e) (85,f)

What Can Go Wrong?

• Where does (26,g) go?

• Keys 22 and 26 have the same home bucket, are
synonyms with respect to the hash function used.

• The home bucket for (26,g) is already occupied.

CDS.IISc.ac.in | Department of Computational and Data Sciences

(3,d) (22,a) (33,c) (73,e) (85,f)

What Can Go Wrong?

 A collision occurs when the home bucket for a new
pair is occupied by a pair with a different key.

 An overflow occurs when there is no space in the
home bucket for a new pair.
‣ E.g. each bucket in table can hold two values for same

key, and more than 2 values for the key are inserted

When a bucket can hold only one pair, collisions
and overflows together.

Need a method to handle overflows.

CDS.IISc.ac.in | Department of Computational and Data Sciences

Hash Table Issues

• Choice of hash function.

• Overflow handling method.

• Size (number of buckets) of hash table.

CDS.IISc.ac.in | Department of Computational and Data Sciences

Good Hash Function

• Quick to compute

• Distributes keys uniformly throughout the table

• Each bucket has the same probability of the number of
keys in the input range that will be hashed to it

• E.g. h=k%b is a uniform hash function for keys in the
range [0..r] … assuming all keys have equal probability
of occurence

• Buckets get ceil(r/b) or floor(r/b) items

• Difficult to find a good hash function

CDS.IISc.ac.in | Department of Computational and Data Sciences

Hashing non-integer keys

• Find ways to convert the keys to integers

• Eg:

– ASCII to int (add up chars)

• Does not distinguish various permutations

• listen/silent, rescue/secure, live/evil/vile/veil

– Remove special chars (1020SERC1002)

– Shift left and add: h += ci + c(i+1)<<8

CDS.IISc.ac.in | Department of Computational and Data Sciences

Keys to Indices

• Hash function is combination of

– Hash code map [key  integer]

– Compression map [integer [0, N-1]]

• A good hash function minimizes the
probability of collisions

CDS.IISc.ac.in | Department of Computational and Data Sciences

Popular Hash-Code Maps

• Integer cast

– For numeric type 32 bits or less: directly interpret
(e.g. after a mod)

– Component sum: For type more than 32 bits (eg.,
long, double), add up the 32 bit components.

– The above is not good for strings

CDS.IISc.ac.in | Department of Computational and Data Sciences

Hash Code Maps

• Polynomial accumulation:

– For strings of natural language, combine the char
values (ASCII or Unicode), by viewing them as the
coefficient of polynomial:

• a0+a1 x+ … + an-1 xn-1

– The choice x=33,37,39,41 gives at most 6
collisions on a vocabulary of 50K English words.

– Polynomial is computed with Horners’s rule at a
fixed value of ‘x’.

CDS.IISc.ac.in | Department of Computational and Data Sciences

Horner’s Rule

• Given the polynomial p(x):

• Write p(x) as:

• Evaluate at x= x0

Why rewrite?

CDS.IISc.ac.in | Department of Computational and Data Sciences

Compression Maps
• Use the remainder

– h(k) = k mod m, k is the key

– m the size of the table. Need to choose m

– E.g. m=be is bad
– If m is the power of 2, h(k) gives the e LSBs of k

– All keys with the same suffix go to same bucket

– m prime (not too close to exact powers of 2) is good

• Helps ensure uniform distribution

• or pick closest prime to fixed bucket size

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example

• Hash table for n=2000 char strings

• Allowed average collisions = 3

• Choose m=701

– A prime near 2000/3

– And not near any power of 2

CDS.IISc.ac.in | Department of Computational and Data Sciences

Open Addressing

• All elements are stored in the hash table
• Elements to store <= capacity of table

• Each table entry contains either an element or
null

• While searching for an element systematically
probe table slots

CDS.IISc.ac.in | Department of Computational and Data Sciences

Open Addressing

• Modify the hash function to take the probe
number i as the second parameter

– h: U x {0,1,…m-1} → {0,1,…m-1}

• Hash function, h, determines the sequence of
slots examined for a given key

• Probe sequence for a given key k is :

– <h(k,0),h(k,1),…h(k,m-1)> - a
permutation of <0,1,…m-1>

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linear Probing
• If the current location is occupied, try the next location

LPInsert(k)

If (table is full) return error

probe = h(k)

while (table[probe] occupied)

probe = (probe+1) mod m

table[probe]=k

• Uses less memory than chaining (later in lecture)
• Slower than chaining: Elements tend to aggregate,

hence insertion time increases proportionally.

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linear Probing – Example
• Home bucket h(k) = k mod 17

• Insert keys: 6, 12, 34, 29, 28, 11, 23, 7, 0, 33, 30, 45

0 4 8 12 16
34 0 6 23 7 28 12 29 11 30 33

0 4 8 12 16
34 0 45 6 23 7 28 12 29 11 30 33

CDS.IISc.ac.in | Department of Computational and Data Sciences

Lookup in Linear Probing

• Search for a key: Go to (k mod 17) and
continue looking at successive locations till we
find k or reach empty location.
• Longer (unsuccessful) lookup time
• Deletion?

0 4 8 12 16
34 0 45 6 23 7 28 12 29 11 30 33

CDS.IISc.ac.in | Department of Computational and Data Sciences

Deletion

• Shift all elements to previous location?
• Costly

• Instead, place marker at vacated location
• neverUsed=false

• Lookup continues till neverUsed=true

• Insert puts element in first location with
neverUsed=true, sets it to false

• Too many markers degrade performance Rehash

CDS.IISc.ac.in | Department of Computational and Data Sciences

Double Hashing & Random Probing
• Uses two hash functions: h, p

• h(k) determines the position in table

• p(k) determines the probe offset on unsuccessful search

• Test locations h(k), (h(k)+p(k))%b, (h(k)+2.p(k))%b,
…, (h(k)+i.p(k))%b

• p(k)=1 for linear probing

• May also use r(i) for ith probe, which is random
probing if r() is a pseudo-random generator

• Test locations h(k), (h(k)+r(1))%b, (h(k)+r(2))%b, …,
(h(k)+ r(i))%b

CDS.IISc.ac.in | Department of Computational and Data Sciences

Double Hashing

DoubleHashingInsert(k)

if (table is full) error

Probe=h(k); offset=p(k)

while (table[probe] occupied)

Probe=(probe+offset) mod m

table[probe] =k

• If m is prime, we will eventually examine every position
in table

• Distributes keys more uniformly than linear probing

CDS.IISc.ac.in | Department of Computational and Data Sciences

Hashing with Chaining

23-Sep-16 25

CDS.IISc.ac.in | Department of Computational and Data Sciences

Hashing with Chaining

 Collisions cause entry to be added to linked list

O(1) insertion cost

O(chain length) lookup, deletion cost

More memory than array (pointers)

 Faster insertion

23-Sep-16 26

CDS.IISc.ac.in | Department of Computational and Data Sciences

Analysis

• Load factor α = n/b is fraction of buckets
occupied

• Assume that every probe looks at a random
location in the table

• linear probing/double hashing

• 1-α fraction of the table is empty

• Expected number of probes to find an empty
spot (unsuccessful search) is 1/(1-α)

CDS.IISc.ac.in | Department of Computational and Data Sciences

Analysis
Expected number of un-
successful trials given α

23-Sep-16 28

Expected number of un-
successful trials for ith insert

Average number of trials for
each of the n inserts

…

Sahni, eqn. 10.5 and 10.6

=
1

𝛼
log𝑒

1

1−𝛼

CDS.IISc.ac.in | Department of Computational and Data Sciences

Expected number of probes

Unsuccessful Successful

Chaining O(1+ α) O(1+α)

Probing O(1/(1-α)) O((1/α) log (1/(1-α))

In chaining, α can be > 1
In probing, α is ≤ 1

CDS.IISc.ac.in | Department of Computational and Data Sciences

Tasks
 Self study (Sahni Textbook)
‣ Check: Have you read Chapter 10.1-10.4 “Dictionary and

Skip Lists”? Solved problems?
‣ Read: Chapter 10.5, Hashing from textbook
‣ Try: Exercise 23, 26, 30 from Chapter 10 of textbook

 Finish Assignment 3 by Wed Sep 28 (75 points)

 26 Sep (Mon) Class instead of tutorial

 30 Sep (Fri) Institute holiday. But can we have class?

Move Midterm from Oct 5 to Oct 7?
‣ All lectures till Trees & Searching will be in syllabus

23-Sep-16 30

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

CDS.IISc.ac.in | Department of Computational and Data Sciences

Questions?

23-Sep-16 31

http://creativecommons.org/licenses/by/4.0/deed.en_US

