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 Usesa 1D array (or table) table[0:b-1]

= Each position of this array is a bucket
= Capacity of the bucket is b

= A bucket can normally hold only one dictionary pair:
<key, value>

e Uses a hash function h that converts each key k into

an index in the range [0, b-1].
= h(k) is the “home bucket” for key k.

e Every dictionary pair is stored in its home bucket
table[h(item.key)] = item
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= KVPs are: (22,a), (33,c), (3,d), (73,e), (85,1).
= Hash table is table[0:7], b = 8.

» Hash function h=key/11

= Pairs are stored in table as below:

(3,d) (22,a) |(33,c) (73,e)|(85,f)

eget, put, and remove take O(1) time.
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(3,d) (22,a) |(33,c) (73,e)|(85,f)

 Where does (99,k) go?
e Hash function causes us to go beyond table size

* Simple fix: do a “mod” with the bucket size by default
e h=(k/11)%8
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(3,d) (22,a) |(33,c)

(73,e)

(85,f)

 Where does (26,g) go?

e Keys 22 and 26 have the same home bucket, are
synonyms with respect to the hash function used.

 The home bucket for (26,g) is already occupied.
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(3,d) (22,a) |(33,c) (73,e)|(85,f)

= A collision occurs when the home bucket for a new
pair is occupied by a pair with a different key.

= An overflow occurs when there is no space in the
home bucket for a new pair.

» E.g. each bucket in table can hold two values for same
key, and more than 2 values for the key are inserted

= When a bucket can hold only one pair, collisions
and overflows together.

= Need a method to handle overflows.
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Hash Table Issues

* Choice of hash function.
* Overflow handling method.

e Size (number of buckets) of hash table.
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* Quick to compute

e Distributes keys uniformly throughout the table

* Each bucket has the same probability of the number of
keys in the input range that will be hashed to it

* E.g. h=k%b is a uniform hash function for keys in the
range [0..r] ... assuming all keys have equal probability
of occurence

* Buckets get ceil(r/b) or floor(r/b) items
 Difficult to find a good hash function
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Hashing non-integer keys

* Find ways to convert the keys to integers
* Eg:
— ASCII to int (add up chars)

* Does not distinguish various permutations
* listen/silent, rescue/secure, live/evil/vile/veil

— Remove special chars (1020SERC1002)
— Shift left and add: h +=¢; + ¢;;,,<<8
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* Hash function is combination of
— Hash code map [key = integer]
— Compression map [integer = [0, N-1] ]

* A good hash function minimizes the
probability of collisions
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* |nteger cast

— For numeric type 32 bits or less: directly interpret
(e.g. after a mod)

— Component sum: For type more than 32 bits (eg.,
long, double), add up the 32 bit components.

— The above is not good for strings
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* Polynomial accumulation:

— For strings of natural language, combine the char
values (ASCIl or Unicode), by viewing them as the
coefficient of polynomial:

* aptay X+ ... +a,  x™1

— The choice x=33,37,39,41 gives at most 6

collisions on a vocabulary of 50K English words.

— Polynomial is computed with Horners’s rule at a
fixed value of ‘X’
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Horner’s Rule

e Given the polynomial p(x):

p(z) =3 a;x' = ag + a1z + apx® + azz® + - - - + 2",
i=0
* Write p(x) as:
p(x) = ao + z(ay + x(az + - - - + 2(An—1 + anx) - --)).
* Evaluate at x=x,
p(xo) = ao + xo(ay + xo(az + - -+ + xo(@n—1 + bnxo) - --))
= ag + xo(a + xo(az + - -- + xo(bp—-1) - -+ ))

= ag + xo(by)
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e Use the remainder
—h(kR) = R mod m, kis the key
— m the size of the table. Need to choose m
— E.g. m=be is bad
— If mis the power of 2, h(k) gives the e LSBs of k

— All keys with the same suffix go to same bucket

— m prime (not too close to exact powers of 2) is good
* Helps ensure uniform distribution
* or pick closest prime to fixed bucket size
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Example

* Hash table for n=2000 char strings

* Allowed average collisions = 3

* Choose m=701
— A prime near 2000/3
— And not near any power of 2
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* All elements are stored in the hash table
* Elements to store <= capacity of table

e Each table entry contains either an element or
null

* While searching for an element systematically
probe table slots
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* Modify the hash function to take the probe
number i as the second parameter
-h: Ux {06,1,.m-1} - {6,1,.m-1}

* Hash function, h, determines the sequence of
slots examined for a given key

* Probe sequence for a given key k is :

—<h(k,0),h(R,1),..h(R,m-1)> -a
permutation of <9, 1,..m-1>
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Linear Probing

* If the current location is occupied, try the next location
LPInsert(k)
If (table is full) return error
probe = h(k)
while (table[probe] occupied)
probe = (probe+l) mod m

table[probe]=k

e Uses less memory than chaining (later in lecture)

e Slower than chaining: Elements tend to aggregate,
hence insertion time increases proportionally.



* Home bucket h(k) =k mod 17

* Insert keys: 6,12, 34,29,28,11,23,7, 0,33, 30, 45
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0 4 8 12 16
34| 0 23| 7 2812 29| 11| 30| 33
0 4 8 12 16
34| 0|45 23| 7 2812 29| 11| 30| 33
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e Search for a key: Go to (k mod 17) and
continue looking at successive locations till we
find k or reach empty location.

* Longer (unsuccessful) lookup time
* Deletion?

0 4 3 12 16
34| 0 (45 6 (23| 7 2812 129|11|30|33
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 Shift all elements to previous location?
e Costly

* |Instead, place marker at vacated location
* neverUsed=false

* Lookup continues till neverUsed=true

* Insert puts element in first location with
neverUsed=true, sets it to false

e Too many markers degrade performance = Rehash



partment of Computational and Data

e Uses two hash functions: h, p

* h(k) determines the position in table

Sciences

* p(k) determines the probe offset on unsuccessful search

* Test locations h(k), (h(k)+p(k))%b, (h(k)+2.p(k))%b,
..., (h(k)+i.p(k))%b
* p(k)=1 for linear probing

* May also use r(i) for ith probe, which is random
probing if r() is a pseudo-random generator

* Test locations h(k), (h(k)+r(1))%b, (h(k)+r(2))%b, ..
(h(k)+ r(i))%b

4
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Double Hashing

DoubleHashingInsert (k)
if (table is full) error
Probe=h(k); offset=p(k)
while (table[probe] occupied)

Probe=(probe+offset) mod m

table[probe] =k
* If mis prime, we will eventually examine every position
in table

e Distributes keys more uniformly than linear probing
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Hashing with Chaining

table
(01.—-(11 {33 =55 ——={ 66 oz
(1] pwors |
(2] |wuLL
(3] 36 | ——=f 69 wuLL
[4)
[5] 16 | ——={ 49 | ——= 82 NuLL

Figure 10.3 A chained hash table

23-Sep-16 05
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Hashing with Chaining

= Collisions cause entry to be added to linked list
= O(1) insertion cost

" O(chain length) lookup, deletion cost

" More memory than array (pointers)

= Faster insertion

23-Sep-16

26
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Load factora = n/b is fraction of buckets
occupied

Assume that every probe looks at a random
location in the table

* linear probing/double hashing
1-a fraction of the table is empty

Expected number of probes to find an empty
spot (unsuccessful search)is 1/(1-a)
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Analysis
Expected number of un- U, et 1
successful trials given a p l-a
1
Expected number of un- [l
successful trials for it" insert
_ ) - 1
Average number of trials for Sn =~ 7T 1
each of the n inserts -
1 1
1 1 o1
o loge 1-a

23-Sep-16 Sahni, eqn. 10.5 and 10.6 28
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Expected number of probes

Chaining O(1+ a) O(1+a)

Probing o(1/(1-a)) O((1/a) log (1/(1-a))

In chaining, a can be > 1
In probing, atis <1
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Tasks

= Self study (Sahni Textbook)

» Check: Have you read Chapter 10.1-10.4 “Dictionary and
Skip Lists”? Solved problems?

» Read: Chapter 10.5, Hashing from textbook
» Try: Exercise 23, 26, 30 from Chapter 10 of textbook

" Finish Assignment 3 by Wed Sep 28 (75 points)

" 26 Sep (Mon) Class instead of tutorial
= 30 Sep (Fri) Institute holiday. But can we have class?

=" Move Midterm from Oct 5 to Oct 77
» All lectures till Trees & Searching will be in syllabus

23-5ep-16 30
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Questions?
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