

Department of Computational and Data Sciences

DS286 | 2016-09-28,30

L15,16: Binary Tree Construction & Search Trees Yogesh Simmhan simmhan@cds.iisc.ac.in

Slides courtesy Venkatesh Babu, CDS

& Sahni textbook

©Department of Computational and Data Science, IISc, 2016 This work is licensed under a **Creative Commons Attribution 4.0 International License**

Copyright for external content used with attribution is retained by their original authors

Tree Construction

Binary Tree Construction

- Can you construct the binary tree based on a given traversal sequence?
- Assume the elements in a binary tree are distinct
- When a traversal sequence has more than one element, the binary tree is not uniquely defined
- Therefore, the tree from which the sequence was obtained cannot be reconstructed uniquely.

Binary Tree Construction

- Can you construct the binary tree, given two traversal sequences?
- Depends on which two sequences are given

Preorder And Postorder

- Preorder and postorder do not uniquely define a binary tree.
- Nor do preorder and level order (same example)
- Nor do postorder and level order (same example)

Inorder And Preorder

- inorder = g d h b e i <u>a</u> f j c
- preorder = <u>a</u> b d g h e i c f j
- Scan the preorder left to right using the inorder to separate left and right subtrees.
- a is the root of the tree; gdhbei are in the left subtree; fjc are in the right subtree

Inorder And Preorder

- inorder = g d h b e i <u>a</u> f j c
- preorder = <u>a</u> b d g h e i c f j
- inorder = g d h <u>b</u> e i a f j c
- preorder = a <u>b</u> d g h e i c f j

Inorder And Postorder

- Scan postorder from right to left using inorder to separate left and right subtrees
- inorder = g d h b e i <u>a</u> f j c
- postorder = g h d i e b j f c <u>a</u>
- Tree root is a; gdhbei are in left subtree; fjc are in right subtree.

Inorder And Level Order

- Scan level order from left to right using inorder to separate left and right subtrees.
- inorder = g d h b e i <u>a</u> f j c
- level order = <u>a</u> b c d e f g h i j
- Tree root is a; gdhbei are in left subtree; fjc are in right subtree.
- Next level roots are b and c; gdh,ei and fj, are in their left,right subtrees

Binary Search Tree (BST)

Binary Search Trees

- Dictionary Operations
 - find(key)
 - insert(key, value)
 - erase(key)
- Additional Operations
 - ascend()

Complexity Of Dictionary Operations find(), insert(), erase()

Given n elements in the dictionary

Data Structure	Worst Case	Expected
Hash Table	O(n)	O(1)
Binary Search Tree	O(n)	O(log n)
Balanced Binary Search Tree	O(log n)	O(log n)

Complexity Of Dictionary Operations delete(), ascend()

Given n elements in the dictionary, b buckets

Data Structure	Worst Case	Expected
Hash Table	O(b+n.log n)	O(b+n.log n)
Binary Search Tree	O(n)	O(n)
Balanced Binary Search Tree	O(n)	O(log n)

Definition Of Binary Search Tree

- A binary tree
- Each node has a (key, value) pair
- For every node x, all keys in the *left subtree* of x are *smaller* than that in x
- For every node x, all keys in the right subtree of x are greater than that in x

Example Binary Search Tree

Only keys are shown.

Complexity is O(height) = O(n), where n is the number of nodes/elements.

Do an inorder traversal. O(n) time.

Insert a pair whose key is 35.

Insert a pair whose key is 7.

Complexity of insert() is O(height).

The Operation delete()

Three cases:

- Element is in a leaf.
- Element is in a degree 1 node.
- Element is in a degree 2 node.

Delete From A Leaf

Delete From A Leaf

Erase a leaf element. key = 35

Delete From Degree 1 Node

Delete From Degree 1 Node

Delete From Degree 2 Node

Delete From Degree 2 Node

Delete From Degree 2 Node

Replace with content from

- <u>largest</u> key in <u>left</u> subtree, or
- <u>smallest</u> in <u>right</u> subtree

Delete From Degree 2 Node

Delete node copied over

 Largest key in left subtree will be a leaf, or degree 1 node.

Delete From Degree 2 Node

<u>largest</u> key in <u>left</u> subtree, or
smallest in right subtree

Delete From Degree 2 Node

Delete node copied over

Delete From Degree 2 Node

Tree Imbalances

- Inserting and Deleting in specific orders can cause tree to be imbalanced
 - E.g. insert in sorted acsending/descending order
 - Height of left and right subtrees are very different, skewed
- Causes complexity to tend to O(n) rather than O(log(n))
- Periodically *rebalance* if skew greater than a threshold
 - More after midterm exams

Tasks

- Self study (Sahni Textbook)
 - Read: Chapter 11.0-11.6, Trees & Binary Trees from textbook
 - Try: Pseudo-code for BST operations (find, insert, delete)
- Finish Assignment 3 by Wed Sep 28 (75 points)
 - Late submissions from Thu-Sun will entail <u>5 points penalty per day</u>
 - Submissions on or after Mon, Oct 3 will not be accepted
- 30 Sep (Fri) Institute holiday. We will have class at 10am.
- Move Midterm from Oct 5 to Oct 7
 - All lectures till Trees & Searching will be in syllabus

05-0ct-16

Questions?

©Department of Computational and Data Science, IISc, 2016 This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u> Copyright for external content used with attribution is retained by their original authors

