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AOrderingitems based on a particulaelationship
between items

K Ascendinganddescendingrder of sorting

AKeysare used to sorkKey,Value > pairs
K Multiple sort keysare also possible, e.g. fisame+lashame

ANatural orderfor different primitive data types
K Numbers by their larger or smaller values
K Lexical order of English words

ACustom order is possible as well

K aComparatog function that takes (K, K2) and returns if
KI>RK2, KI==K or KI1<K2

AWe will deal with single keys of integer type sorted by
natural order
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Steps:

ASelect the minimum value in the lis

20

10

ASwap it with the value in the first

20

10

position

ARepeat the steps above for the

20

10

remainder of the list (starting at the
second position and advancing
each time)

A Invariant Afteri® step, firsti
elements have the smallesvalues
In sorted

10

10
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Example

64 2512 22 11

64 251222 11
11 25 12 22 64
1112 25 22 64
111222 25 64
11122225 64
11 12 22 25 64
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Complexity

64 251222 11
1125 12 2264
111225 22 64
111222 25 64
1112 22 25 64

(n-1)
(n-2)
(n-3)
(n-4)
(n-95)

(nb1l)+(nb2)+...+2+1=n(nk1)/ 2

"o )

Worst case performance

Best case performance

Average case performance
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http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Best,_worst_and_average_case
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Insertion sort

AThe outer loop of insertion sort is:
for (outer = 1; outer < a.length; outer++) {...}

AThe invariant is thaall the elements to the left obuter
are sorted with respect to one another
K For all i <outer, j <outer, if 1 <jthenali] <=a]j]
K This doesiot mean they are all in their final correct place; the
remaining array elements may need to be inserted

K When we increaseuter, alouter -1] becomes to its left; we must
keep the invariant true by insertingfouter -1] into its proper
place
K This means:
ACAYRAY3I (GKS StSYSydQa LINRPLISNI LI I

A Making room for the inserted element (by shifting over other
elements)

A Inserting the element
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One step of insertion sort

sorted outer: nextto be inserted

4 16

3 7 112114114120(21133|38|10|55| 9 |23|28
less thanl
~1 10
3147 110112]114114(20]121133|38|55| 9 |23|28|16
_ A _

——
sorted
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AWe run once through the outer loop, inserting each
of n elements; this is a factor of

AOn average, there ane’2 elements already sorted
KThe inner loop looks at (and moves) half of these
KThis gives a second factoriof!

AHence, the time required for an insertion sort of an
array ofn elements is proportional to?/4

ADiscarding constants, we find that insertion sort is
O(rv)

ACan we reduce cost of element shift?
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ACompare each element (except the last one) with its
neighbor to the right
K If they are out of order, swap them
K This puts the largest element at the very end
K The last element is now in the correct and final place

ACompare each element (except the lasb) with its
neighbor to the right
K If they are out of order, swap them
K This puts the second largest element next to last
K The last two elements are now In their correct and final places

ACompare each element (except the lgstee) with its
neighbor to the right

K Continue as above until you have no unsorted elements on the left
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Code for bubble sort

public static void bubbleSort (int [] a) {
Int outer, inner;
for(outer=a.length -1; outer>0 ; outer --){
/[ count  down
for ( inner=0 ;Iinner < outer; inner++) {
/[ bubble up
If (a[inner] > afinner + 1]) {
/[is outof order ?...then swap
Int temp = afinner];
alinner | =alinner + 1];
alinner + 1] = temp;




for (outer = a.length - 1; outer > 0; outer - ){
for (inner = O; inner < outer; inner++) {
If (a[inner] > alinner + 1]) {
\ // code for swap omitted

}
}

A Letn = a.length = size of the array
A The outer loop is executedt1 times (callitn 0 KI § Qa Of 24 S

A Each time the outer loop is executed, the inner loop is executed
K Inner loop executes-1 times at first, linearly dropping to just once

K On average, inner loop executes abou? times for each execution of
the outer loop

K In the inner loop, the comparison is always done (constant time), the
swap might be done (also constant time)

A Result i1 * n/2 * k , that is,O(n?)

12
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AYou run a loop in order to change things

AOddly enough, what is usually most Important in
understandlng aloop is flndlng an invariant: thatas, _
O2YRAUAZ2Y (KI R2SayQi OKLIFyYy

Aln bubble sort, weut the Iargest elements at the endnd  _
2y OS 6S Lizi GKSY GKSNB: 685

KThe variableouter starts at the last index in the array and
decreases t®

KOur invariant is: Every element to the rightaafter is in
the correct place

KThat isfor all j > outer, if i <|, then a][i] <= a]j]

KWhen this is combined withuter == 0, we know thatall
elements of the array are in the correct place

13



AComplexity of bubble sort is Gn

ACan we parallelize?
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LINEZ ¥pp2a & 2 NA 3

AProblem: Swaps can interfere with each other

V4 81514 712 514 71218 4 71218
X { X

2 81514 7|2 514 71215 4 71218
ASolution

KDo (Or

i 1 phase

K All odds can be tested in parallel in odd phase, same with ever

K Alternate between these two phases

130¢tl6
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Odditer,
test with pred

Eveniter,
test with succ

Odditer,
test with pred

Eveniter,
test with succ

01/0 0'l><oo/;>
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Parallellzmg Bubble Sort

public static void bubbleSort (int [] a) {
Int n = a.length ;
for( int phase=0; phase<n; phase++) {
If(phase%?2 == 0) { /Il Even phase

2 for( int i=1; i<n; i+=2) // Testevenw/ prev
5 if (ali -1] > a[i]){
-g Int t=al i];al 1]=ali -1];ai -1]=t;
= }
} else { // Odd phase
2 for( int i=1; i<n-1; i+=2) // Testodd  w/ next
g if( a[i] > afi+1]){
£ Int t=a[ 1];a] 1]=a[i -1];afi - 1]=t;
Q }
}
} 16
}

CSCUA.04806003: ParalleComputing MohamedzZahran NYU
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Divide and Conquer

ADivide and Conquer
AMerge Sort

AQuick Sort

17
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Divide and Conquer

1.Base Casesolve the problendlirectlyif it is small
enough

2.Dividethe problem into two or moresimilar and
smallersubproblems

3.Recursivelgolve the subproblems

4.Combinesolutions to the subproblems

18
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Divide and Conquer - Sort

Problem:
Alnput:  Aleft..right] ¢ unsortedarray of integers

AOutput: Alleft..right] ¢ sorted in non-decreasing order

19
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1. Base case
at most oneelement to sort, return

2. DivideAinto two subarrays: FirstPart, SecondPart

Two Subproblems:
sort the FirstPart

sort the SecondPart

3. Recursively
sort FirstPart
sort SecondPart

4. CombinesortedFirstPart andorted SecondPart

20
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Overview

ADivide and Conquer
AMerge Sort

AQuick Sort

21
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Divide into o FirstPart SecondPart
two halves
CirstPart SecondPart

A IS sorted!

22
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Merge Sort: Algorithm

MergeSort (A, left, right)
if (left >=right ) return
else {

middle = Floor( left+right /2)2 Recursive Call

MergeSort (A, left, middle)
MergeSort (A, middle+1, right)
Merge(A, left, middle, right)

23
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merge
Sorted Sorted
FirstPart SecondPart

Alleft] A[middle] Alright]

24
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Merge -Sort: Merge

A:
L R:
Temporary Arrays

25
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Merge -Sort: Merge

A:

1

26
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Merge -Sort: Merge

1

k=1
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Merge(A, left, middle, right)

n, = middle

n, =right I

create array L[n

for 1 =0ton
forj=0ton
k= 1 =)=0
while I <n,; & j<n
if L[i]<R][]
Alk++] = L] | ++]
else
Alkt+]=R[  J++ ]
while I <n,
A[k++] = L] | ++]
while j<n 5
Alk++] =R[  J++ ]

left + 1
middle

1 RN 5]
-ldolL[ i]=A] leftti ]
,- 1 do R[j] = A[ middle+] ]

2

n=n+mn
Space: n

Time : afor some constant ¢

35
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MergeSort (A, 0,7)
Divide

Alle_ 2 8 4] 3 (37 75 51 1)
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Merge-Sort(A, 0, 3) , divide
A | s 7 5 1]

e =T Te «)
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Merge-Sort(A, 0, 1) , divide
A | s 7 5 1]

38
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Merge-Sort(A,0,0) , base case
A | s 7 5 1]
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Merge-Sort(A,0, 0), return
A | s 7 5 1]
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Merge-Sort(A,1,1) , base case
A | s 7 5 1]
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Merge-Sort(A, 1, 1), return
A | s 7 5 1]

4
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Merge(A, O, 0, 1)
A | s 7 5 1]

43



PR, oA - .
&% ac.in | Department of Computational &

Merge-Sort(A, 0, 1), return
A | s 7 5 1]

G )

/
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Merge-Sort(A, 2, 3) , divide
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Merge-Sort(A, 2, 2), base case
A: [ 3 7 5 1 ]

___
IZON
7o
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Merge-Sort(A, 3, 3), base case

A | ]

/\
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Merge-Sort(A,3, 3), return
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Merge(A,2, 2, 3)
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Merge-Sort(A,2, 3), return
A | s 7 5 1]
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Merge(A, O, 1, 3)
A | s 7 5 1]
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Merge-Sort(A, 0, 3), return

3 00 0 Imeaaaaan)
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Merge-Sort(A, 4, 7)

~ (S )
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Merge (A, 4,5, 7)

~ (S
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Merge-Sort(A, 4, 7), return

(- : « N : - 7]
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Merge(A, O, 3, 7)

|
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| n ] — cn )
n/2 n/2 —> 2Xxcn/2=cn
/\ /\ > log n levels
n/4 n/4 n/4 n/4 —> 4 xCcn/4 = cn
ﬁ\ ~ ™ ™ ©
EAEEERN VRN /N /N o

> > > — 5 N/2x2c=cn
@ 00 — j
| | | | /ﬂh Total: cn log n
w Total running timeQ(n.logn)
w TotalSpaceQ (n)
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Merge -Sort Summary

Approach: divide and conquer
Time
K Most of the work is in the merging
K Total time:Q(n log n)

Space:
K Q(n), more space than other sorts.

59
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Overview

ADivide and Conquer
AMerge Sort

AQuick Sort

60
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A Divide
A Pick any elemenp as thepivot, e.g, the first
element

A Partition the remaining elements into

FirstPart, which contains all elements p
SecondPartwhich contains all elements LJ

A Recursivelysort the FirstPartand SecondPart

A Combine no work is necessary since sorting
IS done In place

61
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1) Select pick an element

|I||||“
X
G

2) Divide rearrange elements so
that x goes to itsinal posmor“EI

X

L e

|I|“I||
X

3) Recurse and Conquer
recursively sort
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Partition

SecondPart

X <P H P 7K

Recursive call
Sorted Sorted

FirstPart SecondPart

ﬁs—/

orted .

FirstPart
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Quick Sort

QuickSort (A, left, right)
If left >= right return
else
middle= Partition (A, left, right)
QuickSort (A, left, middle 1)
QuickSort (A, middle+ 1, right)
end if

64
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Partition Example

A::8635172

66
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Partition Example

Ve
AEEE - 1| 7|
&

J=3

70
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Partition Example

|1=2
4
A:
&
]=6
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Partition Example

21=-3
4
A
i
|=7
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Partition Example

1=3

77



CDS.lISc.ac.in | Department of Computational &

Partition Example

:

H_JH_J

X<4 4 KX

A

78
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Partition(A, left, right)

X Y A[l eft]

i Y | eft

for j Y left+1l to right
if  A[] <x then

I Y1 +1
swap(A[ 1], Al

end If
end for |
swap(A[ 1 ], Alleft])
return |

© 0N Ok wbhPE

O
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LOHIck -Sort(A, 0, 7)

Ala_s o] @551 6 77 23]
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ey
QuickSort(A,0, 7)

QuickSort(A0,2) , partition

A | O 5 6 7 8l

(O W8)
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ey
QuickSort(A, 0, 7)

QuickSort(A, 0, 0) , betsecase

| O 5 6 7 8]

/

B B8 0
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ey
QuickSort(A, 0, 7)

QuickSort(A, 1, 1) , base case

[ ) 5 6 7 8]

[ ]
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chkSort(A 0, 7)

QuickSort(A, 0, 2), return

||...|. 5 6 7 8]
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" QuickSort(A, 0, 7)

QuickSort(A, 4, 7) , partition

@ o 0 = J
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" QuickSort(A, 0, 7)

QuickSort(A, 5, 7) , partition

0 1
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“QuickSort(A, 0, 7)

QuickSort(A, 6, 7) , partition

0 1

87
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“QuickSort(A, 0, 7)

QuickSort(A, 5, 7) , return

90
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“QuickSort(A, 0, 7)

QuickSort(A, 4, 7) , return

e ® 06 88 0=

N \
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“QuickSort(A0, 7)

QuickSort(A0,7) ,done!

e ® 06 88 0=

N \
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