Department of Computational and D:

DS286 | 2016-10-05

L17: Sorting Algorithms

Yogesh Simmhan
simmhan@cds.iisc.ac.in

Slides courtesy Venkatesh Babu, CDS ,
@ CDS

Deatment of Cortipn#h and Dagacs

Creative Commons Attribution 4.0 International License

http://creativecommons.org/licenses/by/4.0/deed.en_US

In | Department of Computational &

AOrderingitems based on a particulaelationship
between items

K Ascendinganddescendingrder of sorting

AKeysare used to sorkKey,Value > pairs
K Multiple sort keysare also possible, e.g. fisame+lashame

ANatural orderfor different primitive data types
K Numbers by their larger or smaller values
K Lexical order of English words

ACustom order is possible as well

K aComparatog function that takes (K, K2) and returns if
KI>RK2, KI==K or KI1<K2

AWe will deal with single keys of integer type sorted by
natural order

130¢tl6 2

.ac.in | Department of Computational ¢

Steps:

ASelect the minimum value in the lis

20

10

ASwap it with the value in the first

20

10

position

ARepeat the steps above for the

20

10

remainder of the list (starting at the
second position and advancing
each time)

A Invariant Afteri® step, firsti
elements have the smallesvalues
In sorted

10

10

$29) = CDS.lISc.ac.in | Department of Computational

Example

64 2512 22 11

64 251222 11
11 25 12 22 64
1112 25 22 64
111222 25 64
11122225 64
11 12 22 25 64

CDS.lISc.ac.in | Department of Computational &

Complexity

64 251222 11
1125 12 2264
111225 22 64
111222 25 64
1112 22 25 64

(n-1)
(n-2)
(n-3)
(n-4)
(n-95)

(nb1l)+(nb2)+...+2+1=n(nk1)/ 2

"o)

Worst case performance

Best case performance

Average case performance

.)
.)
.)

http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Best,_worst_and_average_case

CDS.lISc.ac.in | Department of Computational

Insertion sort

AThe outer loop of insertion sort is:
for (outer = 1; outer < a.length; outer++) {...}

AThe invariant is thaall the elements to the left obuter
are sorted with respect to one another
K For all i <outer, j <outer, if 1 <jthenali] <=a]j]
K This doesiot mean they are all in their final correct place; the
remaining array elements may need to be inserted

K When we increaseuter, alouter -1] becomes to its left; we must
keep the invariant true by insertingfouter -1] into its proper
place
K This means:
ACAYRAY3I (GKS StSYSydQa LINRPLISNI LI I

A Making room for the inserted element (by shifting over other
elements)

A Inserting the element

CDS.lISc.ac.in | Department of Computational &

One step of insertion sort

sorted outer: nextto be inserted

4 16

3 7 112114114120(21133|38|10|55| 9 |23|28
less thanl
~1 10
3147 110112]114114(20]121133|38|55| 9 |23|28|16
_ A _

——
sorted

| Department of Computational &

AWe run once through the outer loop, inserting each
of n elements; this is a factor of

AOn average, there ane’2 elements already sorted
KThe inner loop looks at (and moves) half of these
KThis gives a second factoriof!

AHence, the time required for an insertion sort of an
array ofn elements is proportional to?/4

ADiscarding constants, we find that insertion sort is
O(rv)

ACan we reduce cost of element shift?

| Department of Computational &

ACompare each element (except the last one) with its
neighbor to the right
K If they are out of order, swap them
K This puts the largest element at the very end
K The last element is now in the correct and final place

ACompare each element (except the lasb) with its
neighbor to the right
K If they are out of order, swap them
K This puts the second largest element next to last
K The last two elements are now In their correct and final places

ACompare each element (except the lgstee) with its
neighbor to the right

K Continue as above until you have no unsorted elements on the left

9

| Department of Computational &

-
-

-
-

><\l

><(ﬂ

ol

N
o1

><OO

><\l

ol

><OO

10

. CDS.lISc.ac.in | Department of Computational

Code for bubble sort

public static void bubbleSort (int [] a) {
Int outer, inner;
for(outer=a.length -1; outer>0 ; outer --){
/[count down
for (inner=0 ;Iinner < outer; inner++) {
/[bubble up
If (a[inner] > afinner + 1]) {
/[is outof order ?...then swap
Int temp = afinner];
alinner | =alinner + 1];
alinner + 1] = temp;

for (outer = a.length - 1; outer > 0; outer -){
for (inner = O; inner < outer; inner++) {
If (a[inner] > alinner + 1]) {
\ // code for swap omitted

}
}

A Letn = a.length = size of the array
A The outer loop is executedt1 times (callitn 0 KI § Qa Of 24 S

A Each time the outer loop is executed, the inner loop is executed
K Inner loop executes-1 times at first, linearly dropping to just once

K On average, inner loop executes abou? times for each execution of
the outer loop

K In the inner loop, the comparison is always done (constant time), the
swap might be done (also constant time)

A Result i1 * n/2 * k , that is,O(n?)

12

.ac.in | Department of Computational ¢

Q

e

n | Department of Computational ¢

AYou run a loop in order to change things

AOddly enough, what is usually most Important in
understandlng aloop is flndlng an invariant: thatas, _
O2YRAUAZ2Y (KI R2SayQi OKLIFyYy

Aln bubble sort, weut the Iargest elements at the endnd _
2y OS 6S Lizi GKSY GKSNB: 685

KThe variableouter starts at the last index in the array and
decreases t®

KOur invariant is: Every element to the rightaafter is in
the correct place

KThat isfor all j > outer, if i <|, then a][i] <= a]j]

KWhen this is combined withuter == 0, we know thatall
elements of the array are in the correct place

13

AComplexity of bubble sort is Gn

ACan we parallelize?

KL +

S Kl @S WLIQ

Department of Computational ¢

LINEZ ¥pp2a & 2 NA 3

AProblem: Swaps can interfere with each other

V4 81514 712 514 71218 4 71218
X { X

2 81514 7|2 514 71215 4 71218
ASolution

KDo (Or

i 1 phase

K All odds can be tested in parallel in odd phase, same with ever

K Alternate between these two phases

130¢tl6

14

Odditer,
test with pred

Eveniter,
test with succ

Odditer,
test with pred

Eveniter,
test with succ

01/0 0'l><oo/;>

-h(-b/& -b'><\l/&(ﬂ

epartment of Computational ¢

» [2]/T5[c]4
» [2]]7]4]s
D [2[][+]/]s
» [2]4]5] s

Parallellzmg Bubble Sort

public static void bubbleSort (int [] a) {
Int n = a.length ;
for(int phase=0; phase<n; phase++) {
If(phase%?2 == 0) { /Il Even phase

2 for(int i=1; i<n; i+=2) // Testevenw/ prev
5 if (ali -1] > a[i]){
-g Int t=al i];al 1]=ali -1];ai -1]=t;
= }
} else { // Odd phase
2 for(int i=1; i<n-1; i+=2) // Testodd w/ next
g if(a[i] > afi+1]){
£ Int t=a[1];a] 1]=a[i -1];afi - 1]=t;
Q }
}
} 16
}

CSCUA.04806003: ParalleComputing MohamedzZahran NYU

CDS.lISc.ac.in | Department of Computational &

CDS.lISc.ac.in | Department of Computational &

Divide and Conquer

ADivide and Conquer
AMerge Sort

AQuick Sort

17

CDS.lISc.ac.in | Department of Computational &

Divide and Conquer

1.Base Casesolve the problendlirectlyif it is small
enough

2.Dividethe problem into two or moresimilar and
smallersubproblems

3.Recursivelgolve the subproblems

4.Combinesolutions to the subproblems

18

. CDS.lISc.ac.in | Department of Computational

Divide and Conquer - Sort

Problem:
Alnput: Aleft..right] ¢ unsortedarray of integers

AOutput: Alleft..right] ¢ sorted in non-decreasing order

19

.ac.in | Department of Computational ¢

1. Base case
at most oneelement to sort, return

2. DivideAinto two subarrays: FirstPart, SecondPart

Two Subproblems:
sort the FirstPart

sort the SecondPart

3. Recursively
sort FirstPart
sort SecondPart

4. CombinesortedFirstPart andorted SecondPart

20

CDS.lISc.ac.in | Department of Computational &

Overview

ADivide and Conquer
AMerge Sort

AQuick Sort

21

In | Department of Computational &

Divide into o FirstPart SecondPart
two halves
CirstPart SecondPart

A IS sorted!

22

CDS.lISc.ac.in | Department of Computational &

Merge Sort: Algorithm

MergeSort (A, left, right)
if (left >=right) return
else {

middle = Floor(left+right /2)2 Recursive Call

MergeSort (A, left, middle)
MergeSort (A, middle+1, right)
Merge(A, left, middle, right)

23

5c.ac.in | Department of Computational ¢

merge
Sorted Sorted
FirstPart SecondPart

Alleft] A[middle] Alright]

24

. CDS.lISc.ac.in | Department of Computational

Merge -Sort: Merge

A:
L R:
Temporary Arrays

25

CDS.lISc.ac.in | Department of Computational &

Merge -Sort: Merge

A:

1

26

CDS.lISc.ac.in | Department of Computational &

Merge -Sort: Merge

1

k=1

27

CDS.lISc.ac.in | Department of Computational &

28

CDS.lISc.ac.in | Department of Computational &

29

CDS.lISc.ac.in | Department of Computational &

30

CDS.lISc.ac.in | Department of Computational &

31

CDS.lISc.ac.in | Department of Computational &

32

CDS.lISc.ac.in | Department of Computational &

CDS.lISc.ac.in | Department of Computational &

34

DS.lISc.ac.in | Department of Computational ¢

Merge(A, left, middle, right)

n, = middle

n, =right I

create array L[n

for 1 =0ton
forj=0ton
k= 1 =)=0
while I <n,; & j<n
if L[i]<R][]
Alk++] = L] | ++]
else
Alkt+]=R[J++]
while I <n,
A[k++] = L] | ++]
while j<n 5
Alk++] =R[J++]

left + 1
middle

1 RN 5]
-ldolL[i]=A] leftti]
,- 1 do R[j] = A[middle+]]

2

n=n+mn
Space: n

Time : afor some constant ¢

35

CDS.lISc.ac.in | Department of Computational
MergeSort (A, 0,7)
Divide

Alle_ 2 8 4] 3 (37 75 51 1)

36

J CDS.lISc.ac.in | Department of Computational ¢

Merge-Sort(A, 0, 3) , divide
A | s 7 5 1]

e =T Te «)

37

.ac.in | Department of Computational ¢

Merge-Sort(A, 0, 1) , divide
A | s 7 5 1]

38

ac.in | Department of Computational &

Merge-Sort(A,0,0) , base case
A | s 7 5 1]

39

ac.in | Department of Computational ¢

Merge-Sort(A,0, 0), return
A | s 7 5 1]

40

PR, ol - .
) ac.in | Department of Computational

Merge-Sort(A,1,1) , base case
A | s 7 5 1]

41

PR, ol - .
&% ac.in | Department of Computational &

Merge-Sort(A, 1, 1), return
A | s 7 5 1]

4

42

PR, ol - .
&% ac.in | Department of Computational &

Merge(A, O, 0, 1)
A | s 7 5 1]

43

PR, oA - .
&% ac.in | Department of Computational &

Merge-Sort(A, 0, 1), return
A | s 7 5 1]

G)

/
AN

44

Merge-Sort(A, 2, 3) , divide

In | Department of Computational &

|

/

/\

45

PR, ol - .
12°0) in | Department of Computational

Merge-Sort(A, 2, 2), base case
A: [3 7 5 1]

IZON
7o

46

In | Department of Computational &

47

PR, oA - .
12°0) in | Department of Computational

Merge-Sort(A, 3, 3), base case

A |]

/\

48

Merge-Sort(A,3, 3), return

In | Department of Computational &

|

/

/\

49

Merge(A,2, 2, 3)

In | Department of Computational &

|

/

/\

50

PR, ol - .
12°0) in | Department of Computational

Merge-Sort(A,2, 3), return
A | s 7 5 1]

51

PR, oA - .
12°0) in | Department of Computational

Merge(A, O, 1, 3)
A | s 7 5 1]

52

in | Department of Computational

Merge-Sort(A, 0, 3), return

3 00 0 Imeaaaaan)

53

2 | Department of Computational

Merge-Sort(A, 4, 7)

~ (S)

54

| Department of Computational

Merge (A, 4,5, 7)

~ (S

55

2 | Department of Computational

L
G, o

Merge-Sort(A, 4, 7), return

(- : « N : - 7]

56

| Department of Computational

Merge(A, O, 3, 7)

|

57

apartment of Computational &

| n] — cn)
n/2 n/2 —> 2Xxcn/2=cn
/\ /\ > log n levels
n/4 n/4 n/4 n/4 —> 4 xCcn/4 = cn
ﬁ\ ~ ™ ™ ©
EAEEERN VRN /N /N o

> > > — 5 N/2x2c=cn
@ 00 — j
| | | | /ﬂh Total: cn log n
w Total running timeQ(n.logn)
w TotalSpaceQ (n)

58

CDS.lISc.ac.in | Department of Computational &

Merge -Sort Summary

Approach: divide and conquer
Time
K Most of the work is in the merging
K Total time:Q(n log n)

Space:
K Q(n), more space than other sorts.

59

CDS.lISc.ac.in | Department of Computational &

Overview

ADivide and Conquer
AMerge Sort

AQuick Sort

60

dlISc.ac.in | Department of Computational ¢

A Divide
A Pick any elemenp as thepivot, e.g, the first
element

A Partition the remaining elements into

FirstPart, which contains all elements p
SecondPartwhich contains all elements LJ

A Recursivelysort the FirstPartand SecondPart

A Combine no work is necessary since sorting
IS done In place

61

In | Department of Computational &

1) Select pick an element

|I||||“
X
G

2) Divide rearrange elements so
that x goes to itsinal posmor“EI

X

L e

|I|“I||
X

3) Recurse and Conquer
recursively sort

c.in | Department of Computational &

Partition

SecondPart

X <P H P 7K

Recursive call
Sorted Sorted

FirstPart SecondPart

ﬁs—/

orted .

FirstPart

CDS.lISc.ac.in | Department of Computational &

Quick Sort

QuickSort (A, left, right)
If left >= right return
else
middle= Partition (A, left, right)
QuickSort (A, left, middle 1)
QuickSort (A, middle+ 1, right)
end if

64

In | Department of Computational &

65

CDS.lISc.ac.in | Department of Computational &

Partition Example

A::8635172

66

CDS.lISc.ac.in | Department of Computational &

67

CDS.lISc.ac.in | Department of Computational &

68

CDS.lISc.ac.in | Department of Computational &

69

120) = CDS.lISc.ac.in | Department of Computational

Partition Example

Ve
AEEE - 1| 7|
&

J=3

70

CDS.lISc.ac.in | Department of Computational &

71

CDS.lISc.ac.in | Department of Computational &

72

CDS.lISc.ac.in | Department of Computational &

73

CDS.lISc.ac.in | Department of Computational &

Partition Example

|1=2
4
A:
&
]=6

74

CDS.lISc.ac.in | Department of Computational &

Partition Example

21=-3
4
A
i
|=7

75

CDS.lISc.ac.in | Department of Computational &

76

CDS.lISc.ac.in | Department of Computational &

Partition Example

1=3

77

CDS.lISc.ac.in | Department of Computational &

Partition Example

:

H_JH_J

X<4 4 KX

A

78

CDS.lISc.ac.in | Department of Computational &

Partition(A, left, right)

X Y A[l eft]

i Y | eft

for j Y left+1l to right
if A[] <x then

I Y1 +1
swap(A[1], Al

end If
end for |
swap(A[1], Alleft])
return |

© 0N Ok wbhPE

O

_ 79

CDS.lISc.ac.in | Department of Computational &

LOHIck -Sort(A, 0, 7)

Ala_s o] @551 6 77 23]

80

ac.in | Department of Computational &

ey
QuickSort(A,0, 7)

QuickSort(A0,2) , partition

A | O 5 6 7 8l

(O W8)

81

ac.in | Department of Computational &

ey
QuickSort(A, 0, 7)

QuickSort(A, 0, 0) , betsecase

| O 5 6 7 8]

/

B B8 0

82

ac.in | Department of Computational &

ey
QuickSort(A, 0, 7)

QuickSort(A, 1, 1) , base case

[) 5 6 7 8]

[]

83

In | Department of Computational &

chkSort(A 0, 7)

QuickSort(A, 0, 2), return

||...|. 5 6 7 8]

84

{3°9) | Department of Computational

" QuickSort(A, 0, 7)

QuickSort(A, 4, 7) , partition

@ o 0 = J

85

{3°9) | Department of Computational

" QuickSort(A, 0, 7)

QuickSort(A, 5, 7) , partition

0 1

86

{3°9) | Department of Computational ¢

“QuickSort(A, 0, 7)

QuickSort(A, 6, 7) , partition

0 1

87

| Department of Computational &

88

Department of Computational ¢

’-)

89

{3°9) Department of Computational

“QuickSort(A, 0, 7)

QuickSort(A, 5, 7) , return

90

0 &3 Department of Computational

“QuickSort(A, 0, 7)

QuickSort(A, 4, 7) , return

e ® 06 88 0=

N \

91

0 &3 Department of Computational

“QuickSort(A0, 7)

QuickSort(A0,7) ,done!

e ® 06 88 0=

N \

92

