

DS286 2016-10-05 L17: Sorting Algorithms Yogesh Simmhan simmhan@cds.iisc.ac.in

Slides courtesy Venkatesh Babu, CDS

©Department of Computational and Data Science, IISc, 2016 This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u> Copyright for external content used with attribution is retained by their original authors

Sorting

- Ordering items based on a particular relationship between items
 - Ascending and descending order of sorting
- Keys are used to sort <Key,Value> pairs
 - Multiple sort keys are also possible, e.g. first name+last name
- Natural order for different primitive data types
 - Numbers by their larger or smaller values
 - Lexical order of English words
- Custom order is possible as well
 - "Comparator" function that takes (K1, K2) and returns if K1>K2, K1==K2 or K1<K2
- We will deal with single keys of integer type sorted by natural order

Selection Sorting

Steps:

- Select the minimum value in the list
- Swap it with the value in the first position
- Repeat the steps above for the remainder of the list (starting at the second position and advancing each time)
- Invariant: After ith step, first i elements have the smallest i values in sorted

Example

6425122211642512221111251222641112252264111222256411122225641112222564

Complexity

64	25	12	22	11	(n-1
11	25	12	22	64	(n-2
11	12	25	22	64	(n-3
11	12	22	25	64	(n-4
11	12	22	25	64	(n-5

 $(n-1) + (n-2) + \dots + 2 + 1 = n(n-1) / 2$ $\in \Theta(n^2)$

Worst case performance Best case performance Average case performance $O(n^2)$ $O(n^2)$ $O(n^2)$

Insertion sort

- The outer loop of insertion sort is: for (outer = 1; outer < a.length; outer++) {...}</p>
- The invariant is that all the elements to the left of outer are <u>sorted with respect to one another</u>
 - For all i < outer, j < outer, if i < j then a[i] <= a[j]</p>
 - This does not mean they are all in their final correct place; the remaining array elements may need to be inserted
 - When we increase outer, a[outer-1] becomes to its left; we must keep the invariant true by inserting a[outer-1] into its proper place
 - This means:
 - Finding the element's proper place
 - Making room for the inserted element (by shifting over other elements)
 - Inserting the element

One step of insertion sort

Analysis of insertion sort

- We run once through the outer loop, inserting each of *n* elements; this is a factor of n
- On average, there are n/2 elements already sorted
 - The inner loop looks at (and moves) half of these
 - This gives a second factor of n/4
- Hence, the time required for an insertion sort of an array of n elements is proportional to n²/4
- Discarding constants, we find that insertion sort is O(n²)
- Can we reduce cost of element shift?

Bubble sort

- Compare each element (except the last one) with its neighbor to the right
 - If they are out of order, swap them
 - This puts the largest element at the very end
 - The last element is now in the correct and final place
- Compare each element (except the last *two*) with its neighbor to the right
 - If they are out of order, swap them
 - This puts the second largest element next to last
 - The last two elements are now in their correct and final places
- Compare each element (except the last *three*) with its neighbor to the right
 - Continue as above until you have no unsorted elements on the left

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example of bubble sort

(done)

Code for bubble sort

}

}

}

```
public static void bubbleSort(int[] a) {
   int outer, inner;
   for(outer=a.length-1; outer>0; outer--) {
     // count down
      for (inner = 0; inner < outer; inner++) {</pre>
         // bubble up
         if (a[inner] > a[inner + 1]) {
            // is out of order? ...then swap
            int temp = a[inner];
            a[inner] = a[inner + 1];
            a[inner + 1] = temp;
```

Analysis of bubble sort

```
for (outer = a.length - 1; outer > 0; outer--) {
    for (inner = 0; inner < outer; inner++) {
        if (a[inner] > a[inner + 1]) {
            // code for swap omitted
            }
        }
}
```

- Let n = a.length = size of the array
- The outer loop is executed n-1 times (call it n, that's close enough)
- Each time the outer loop is executed, the inner loop is executed
 - Inner loop executes n-1 times at first, linearly dropping to just once
 - On average, inner loop executes about n/2 times for each execution of the outer loop
 - In the inner loop, the comparison is always done (constant time), the swap might be done (also constant time)
- Result is n * n/2 * k, that is, O(n²)

Loop invariants

- You run a loop in order to change things
- Oddly enough, what is usually most important in understanding a loop is finding an invariant: that is, a condition that doesn't change
- In bubble sort, we put the largest elements at the end, and once we put them there, we don't move them again
 - The variable outer starts at the last index in the array and decreases to 0
 - Our invariant is: Every element to the right of outer is in the correct place
 - That is, for all j > outer, if i < j, then a[i] <= a[j]</p>
 - When this is combined with outer == 0, we know that all elements of the array are in the correct place

Parallelizing Bubble Sort

- Complexity of bubble sort is O(n²)
- Can we parallelize?
 - If we have 'p' processors, can we sort in O(n²/p) ?
- Problem: Swaps can interfere with each other

- Solution
 - Do odd and its predecessor, or even and its successor in 1 phase
 - All odds can be tested in parallel in odd phase, same with even
 - Alternate between these two phases

Parallelizing Bubble Sort

Divide and Conquer

- Divide and Conquer
- Merge Sort
- Quick Sort

Divide and Conquer

1.Base Case, solve the problem directly if it is small enough

2.Divide the problem into two or more similar and smaller subproblems

3. Recursively solve the subproblems

4.Combine solutions to the subproblems

Divide and Conquer - Sort

Problem:

- Input: A[left..right] unsorted array of integers
- Output: A[left..right] sorted in non-decreasing order

Divide and Conquer - Sort

1. Base case

at most one element to sort, return

- 2. Divide A into two subarrays: FirstPart, SecondPart Two Subproblems: sort the FirstPart sort the SecondPart
- 3. Recursively
 - sort FirstPart sort SecondPart

4. Combine sorted FirstPart and sorted SecondPart

Overview

- Divide and Conquer
- Merge Sort
- Quick Sort

Merge Sort: Idea

Merge Sort: Algorithm

```
MergeSort (A, left, right)
  if (left >= right) return
  else {
     middle = Floor(left+right/2)
                                        Recursive Call
     MergeSort(A, left, middle)
     MergeSort(A, middle+1, right)
     Merge(A, left, middle, right)
```


CDS.IISc.ac.in | Department of Computational and Data Sciences

CDS.IISc.ac.in | Department of Computational and Data Sciences

j=4

CDS.IISc.ac.in | **Department of Computational and Data Sciences**

CDS.IISc.ac.in | Department of Computational and Data Sciences

Time : cn for some constant c

Merge(A, left, middle, right)

```
n_1 = middle - left + 1
n_2 = right - middle
create array L[n<sub>1</sub>], R[n<sub>2</sub>]
for i = 0 to n_1-1 do L[i] = A[left+i]
for j = 0 to n_2-1 do R[j] = A[middle+j]
k = i = j = 0
while i < n_1 \& j < n_2
  if L[i] < R[j]
    A[k++] = L[i++]
  else
    A[k++] = R[j++]
while i < n_1
  A[k++] = L[i++]
                                n = n_1 + n_2
while j < n_2
  A[k++] = R[j++]
                                Space: n
```


MergeSort(A, 0, 7)

Divide

Merge-Sort(A, 0, 0), return

Merge-Sort(A, 1, 1), return

Merge-Sort(A, 0, 1), return

Merge-Sort(A, 2, 2), base case A:

Merge-Sort(A, 2, 2), return

Merge-Sort(A, 3, 3), base case

Merge-Sort(A, 3, 3), return

Merge-Sort(A, 2, 3), return A: 3 7 5

Merge-Sort(A, 0, 3), return A: 3 7 5

Merge-Sort(A, 4, 7), return

MergeSort(A, 0, 7) Done!

Merge(A, 0, 3, 7)

CDS.IISc.ac.in | **Department of Computational and Data Sciences**

Merge-Sort Analysis

- Total running time: Θ(n.logn)
- Total Space: Θ (n)

Merge-Sort Summary

Approach: divide and conquer

Time

- Most of the work is in the merging
- Total time: Θ(n log n)

Space:

• $\Theta(n)$, more space than other sorts.

Overview

- Divide and Conquer
- Merge Sort
- Quick Sort

Quick Sort

Divide:

- Pick any element p as the pivot, e.g, the first element
- Partition the remaining elements into FirstPart, which contains all elements < p SecondPart, which contains all elements ≥ p
- Recursively sort the FirstPart and SecondPart
- Combine: no work is necessary since sorting is done in place

Idea of Quick Sort

- 1) Select: pick an element
 2) Divide: rearrange elements so that x goes to its final position E x x
- 3) Recurse and Conquer: recursively sort

Quick Sort

QuickSort(A, left, right)

if left >= right return
else

middle=Partition(A, left, right)
 QuickSort(A, left, middle-1)
 QuickSort(A, middle+1, right)
end if

Partition

Partition Example

Partition Example

Partition Example

Partition(A, left, right)

```
1. \mathbf{x} \leftarrow A[left]
```

```
2. i \leftarrow left
```

- 3. for $j \leftarrow left+1$ to right
- 4. if A[j] < x then
- 5. $i \leftarrow i + 1$
- 6. swap(A[i], A[j])
- 7. end if
- 8. end for j
- 9. swap(A[i], A[left])
- 10. return i

n = right - left +1
Time: cn for some constant c
Space: constant

Quick-Sort(A, 0, 7)

Quick-Sort(A, 0, 2), return

Quick-Sort(A, 0, 7)

Quick-Sort(A, 4, 7) , return

Quick-Sort: Best Case

Balanced Partitions

Quick-Sort: Worst Case

Unbalanced Partition

Quick-Sort: an Average Case

Suppose the split is 1/10 : 9/10

https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/analysis-of-quicksort

Quick-Sort Summary

Time

- Most of the work done in partitioning.
- Average case takes O(n log(n)) time.
- Worst case takes O(n²) time

Space

Sorts in-place, i.e., does not require additional space

Summary

- Divide and Conquer
- Merge-Sort
 - Most of the work done in Merging
 - O(n log(n)) time
 - O(n) space
- Quick-Sort
 - Most of the work done in partitioning
 - Average case takes **\U0068(n log(n))** time
 - Worst case takes **O(n²)** time
 - **O(1)** space

Tasks

- Self study
 - Read: Sorting Algorithms from Khan Academy

https://www.khanacademy.org/computing/computer-science/algorithms#sorting-algorithms

- Finish Assignment 4 by Wed Oct 26 (75 points)
- Make progress on CodeChef (100 points)

Questions?

©Department of Computational and Data Science, IISc, 2016 This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u> Copyright for external content used with attribution is retained by their original authors

