
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान

बंगलौर, भारत

Department of Computational and Data Sciences

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

CDS
Department of Computational and Data Sciences

DS286 | 2016-10-05

L17: Sorting Algorithms

Yogesh Simmhan
s immhan@cds . i i s c . ac . in

Slides courtesy Venkatesh Babu, CDS

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.ac.in | Department of Computational and Data Sciences

Sorting
 Ordering items based on a particular relationship

between items
‣ Ascending and descending order of sorting

 Keys are used to sort <Key,Value> pairs
‣ Multiple sort keys are also possible, e.g. first name+last name

 Natural order for different primitive data types
‣ Numbers by their larger or smaller values
‣ Lexical order of English words

 Custom order is possible as well
‣ “Comparator” function that takes (K1, K2) and returns if

K1>K2, K1==K2 or K1<K2

 We will deal with single keys of integer type sorted by
natural order

13-Oct-16 2

CDS.IISc.ac.in | Department of Computational and Data Sciences

Selection Sorting

Steps:

 Select the minimum value in the list

 Swap it with the value in the first
position

 Repeat the steps above for the
remainder of the list (starting at the
second position and advancing
each time)

 Invariant: After ith step, first i
elements have the smallest i values
in sorted

20 8 5 10 7

5 8 20 10 7

5 7 20 10 8

5 7 8 10 20

5 7 8 10 20

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example

64 25 12 22 11
64 25 12 22 11
11 25 12 22 64
11 12 25 22 64
11 12 22 25 64
11 12 22 25 64
11 12 22 25 64

CDS.IISc.ac.in | Department of Computational and Data Sciences

Complexity
64 25 12 22 11 (n-1)
11 25 12 22 64 (n-2)
11 12 25 22 64 (n-3)
11 12 22 25 64 (n-4)
11 12 22 25 64 (n-5)

(n − 1) + (n − 2) + ... + 2 + 1 = n(n − 1) / 2

∈ Θ(n2)

Worst case performance О(n2)
Best case performance О(n2)
Average case performance О(n2)

http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Best,_worst_and_average_case

CDS.IISc.ac.in | Department of Computational and Data Sciences

6

Insertion sort
 The outer loop of insertion sort is:

for (outer = 1; outer < a.length; outer++) {...}

 The invariant is that all the elements to the left of outer
are sorted with respect to one another
‣ For all i < outer, j < outer, if i < j then a[i] <= a[j]

‣ This does not mean they are all in their final correct place; the
remaining array elements may need to be inserted

‣ When we increase outer, a[outer-1] becomes to its left; we must
keep the invariant true by inserting a[outer-1] into its proper
place

‣ This means:
• Finding the element’s proper place

• Making room for the inserted element (by shifting over other
elements)

• Inserting the element

CDS.IISc.ac.in | Department of Computational and Data Sciences

7

One step of insertion sort

3 4 7 12 14 14 20 21 33 38 10 55 9 23 28 16

sorted outer: next to be inserted

3 4 7 55 9 23 28 16

10

temp

3833212014141210

sorted

less than 10

CDS.IISc.ac.in | Department of Computational and Data Sciences

8

Analysis of insertion sort
We run once through the outer loop, inserting each

of n elements; this is a factor of n

On average, there are n/2 elements already sorted
‣ The inner loop looks at (and moves) half of these

‣ This gives a second factor of n/4

Hence, the time required for an insertion sort of an
array of n elements is proportional to n2/4

Discarding constants, we find that insertion sort is
O(n2)

 Can we reduce cost of element shift?

CDS.IISc.ac.in | Department of Computational and Data Sciences

9

Bubble sort
 Compare each element (except the last one) with its

neighbor to the right
‣ If they are out of order, swap them

‣ This puts the largest element at the very end

‣ The last element is now in the correct and final place

 Compare each element (except the last two) with its
neighbor to the right
‣ If they are out of order, swap them

‣ This puts the second largest element next to last

‣ The last two elements are now in their correct and final places

 Compare each element (except the last three) with its
neighbor to the right
‣ Continue as above until you have no unsorted elements on the left

CDS.IISc.ac.in | Department of Computational and Data Sciences

10

Example of bubble sort

7 2 8 5 4

2 7 8 5 4

2 7 8 5 4

2 7 5 8 4

2 7 5 4 8

2 7 5 4 8

2 5 7 4 8

2 5 4 7 8

2 7 5 4 8

2 5 4 7 8

2 4 5 7 8

2 5 4 7 8

2 4 5 7 8

2 4 5 7 8

(done)

CDS.IISc.ac.in | Department of Computational and Data Sciences

11

Code for bubble sort
public static void bubbleSort(int[] a) {

int outer, inner;
for(outer=a.length-1; outer>0; outer--) {

// count down
for (inner = 0; inner < outer; inner++) {

// bubble up
if (a[inner] > a[inner + 1]) {

// is out of order? ...then swap
int temp = a[inner];
a[inner] = a[inner + 1];
a[inner + 1] = temp;

}

}
}

}

CDS.IISc.ac.in | Department of Computational and Data Sciences

Analysis of bubble sort

for (outer = a.length - 1; outer > 0; outer--) {
for (inner = 0; inner < outer; inner++) {

if (a[inner] > a[inner + 1]) {
// code for swap omitted

}
}

}

 Let n = a.length = size of the array

 The outer loop is executed n-1 times (call it n, that’s close enough)

 Each time the outer loop is executed, the inner loop is executed
‣ Inner loop executes n-1 times at first, linearly dropping to just once
‣ On average, inner loop executes about n/2 times for each execution of

the outer loop
‣ In the inner loop, the comparison is always done (constant time), the

swap might be done (also constant time)

 Result is n * n/2 * k, that is, O(n2)

12

CDS.IISc.ac.in | Department of Computational and Data Sciences

Loop invariants

 You run a loop in order to change things

 Oddly enough, what is usually most important in
understanding a loop is finding an invariant: that is, a
condition that doesn’t change

 In bubble sort, we put the largest elements at the end, and
once we put them there, we don’t move them again
‣ The variable outer starts at the last index in the array and

decreases to 0
‣ Our invariant is: Every element to the right of outer is in

the correct place
‣ That is, for all j > outer, if i < j, then a[i] <= a[j]

‣ When this is combined with outer == 0, we know that all
elements of the array are in the correct place

13

CDS.IISc.ac.in | Department of Computational and Data Sciences

Parallelizing Bubble Sort
 Complexity of bubble sort is O(n2)

 Can we parallelize?
‣ If we have ‘p’ processors, can we sort in O(n2/p) ?

 Problem: Swaps can interfere with each other

13-Oct-16 14

7 2 8 5 4 7 2 8 5 4 7 2 8 5 4 7 2 8 5 4

2 7 8 5 4 7 2 8 5 4 7 2 5 8 4 7 2 8 4 5 ???

 Solution
‣ Do odd and its predecessor, or even and its successor in 1 phase

‣ All odds can be tested in parallel in odd phase, same with even

‣ Alternate between these two phases

CDS.IISc.ac.in | Department of Computational and Data Sciences

Parallelizing Bubble Sort
7 2 8 5 4 7 2 8 5 4

2 7 8 5 4 7 2 5 8 4 2 7 5 8 4

2 7 5 8 4 2 7 5 8 4

Odd iter,
test with pred

Even iter,
test with succ

2 5 7 8 4 2 7 5 4 8 2 5 7 4 8

2 5 7 4 8 2 5 7 4 8

2 5 7 4 8 2 5 4 7 8 2 5 4 7 8

Odd iter,
test with pred

Even iter,
test with succ

2 5 4 7 8 2 5 4 7 8

2 4 5 7 8 2 5 4 7 8 2 4 5 7 8

CDS.IISc.ac.in | Department of Computational and Data Sciences
D

o
 in

 P
ar

al
le

l
D

o
 in

 P
ar

al
le

l

16

Parallelizing Bubble Sort
public static void bubbleSort(int[] a) {

int n = a.length;
for(int phase=0; phase<n; phase++) {

if(phase%2 == 0) { // Even phase
for(int i=1; i<n; i+=2) // Test even w/ prev

if (a[i-1] > a[i]) {
int t=a[i]; a[i]=a[i-1]; a[i-1]=t;

}
} else { // Odd phase

for(int i=1; i<n-1; i+=2) // Test odd w/ next
if (a[i] > a[i+1]) {

int t=a[i]; a[i]=a[i-1]; a[i-1]=t;
}

}
}

} CSCI-UA.0480-003: Parallel Computing, Mohamed Zahran, NYU

CDS.IISc.ac.in | Department of Computational and Data Sciences

Divide and Conquer

Divide and Conquer

Merge Sort

Quick Sort

17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Divide and Conquer

1.Base Case, solve the problem directly if it is small
enough

2.Divide the problem into two or more similar and
smaller subproblems

3.Recursively solve the subproblems

4.Combine solutions to the subproblems

18

CDS.IISc.ac.in | Department of Computational and Data Sciences

Divide and Conquer - Sort

Problem:

 Input: A[left..right] – unsorted array of integers

 Output: A[left..right] – sorted in non-decreasing order

19

CDS.IISc.ac.in | Department of Computational and Data Sciences

Divide and Conquer - Sort

1. Base case
at most one element to sort, return

2. Divide A into two subarrays: FirstPart, SecondPart
Two Subproblems:

sort the FirstPart
sort the SecondPart

3. Recursively
sort FirstPart
sort SecondPart

4. Combine sorted FirstPart and sorted SecondPart

20

CDS.IISc.ac.in | Department of Computational and Data Sciences

Overview

Divide and Conquer

Merge Sort

Quick Sort

21

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge Sort: Idea

22

Merge

Recursively sort

Divide into
two halves

FirstPart SecondPart

FirstPart SecondPart

A

A is sorted!

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge Sort: Algorithm

MergeSort (A, left, right)

if (left >= right) return

else {

middle = Floor(left+right/2)

MergeSort(A, left, middle)

MergeSort(A, middle+1, right)

Merge(A, left, middle, right)

}

}

23

Recursive Call

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge-Sort: Merge

24
A[middle]A[left]

Sorted

FirstPart

Sorted

SecondPart

A[right]

merge

A:

A:

Sorted

CDS.IISc.ac.in | Department of Computational and Data Sciences

25

6 10 14 223 5 15 28

L: R:

Temporary Arrays

5 15 28 30 6 10 1452 3 7 8 1 4 5 6A:

Merge-Sort: Merge

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge-Sort: Merge

26

3 5 15 28 30 6 10 14

L:

A:

3 15 28 30 6 10 14 22

R:

i=0 j=0

k=0

2 3 7 8 1 4 5 6

1

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge-Sort: Merge

27

1 5 15 28 30 6 10 14

L:

A:

3 5 15 28 6 10 14 22

R:

k=1

2 3 7 8 1 4 5 6

2

i=0 j=1

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge-Sort: Merge

28

1 2 15 28 30 6 10 14

L:

A:

6 10 14 22

R:

i=1

k=2

2 3 7 8 1 4 5 6

3

j=1

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge-Sort: Merge

29

1 2 3 6 10 14

L:

A:

6 10 14 22

R:

i=2 j=1

k=3

2 3 7 8 1 4 5 6

4

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge-Sort: Merge

30

1 2 3 4 6 10 14

L:

A:

6 10 14 22

R:

j=2

k=4

2 3 7 8 1 4 5 6

i=2

5

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge-Sort: Merge

31

1 2 3 4 5 6 10 14

L:

A:

6 10 14 22

R:

i=2 j=3

k=5

2 3 7 8 1 4 5 6

6

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge-Sort: Merge

32

1 2 3 4 5 6 14

L:

A:

6 10 14 22

R:

k=6

2 3 7 8 1 4 5 6

7

i=2 j=4

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge-Sort: Merge

33

1 2 3 4 5 6 7 14

L:

A:

3 5 15 28 6 10 14 22

R:

2 3 7 8 1 4 5 6

8

i=3 j=4

k=7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge-Sort: Merge

34

1 2 3 4 5 6 7 8

L:

A:

3 5 15 28 6 10 14 22

R:

2 3 7 8 1 4 5 6

i=4 j=4

k=8

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge(A, left, middle, right)

n1 = middle – left + 1

n2 = right – middle

create array L[n1], R[n2]

for i = 0 to n1-1 do L[i] = A[left+i]

for j = 0 to n2-1 do R[j] = A[middle+j]

k = i = j = 0

while i < n1 & j < n2

if L[i] < R[j]

A[k++] = L[i++]

else

A[k++] = R[j++]

while i < n1

A[k++] = L[i++]

while j < n2

A[k++] = R[j++]

35

n = n1+n2

Space: n

Time : cn for some constant c

CDS.IISc.ac.in | Department of Computational and Data Sciences

MergeSort(A, 0, 7)

36

6 2 8 4 3 7 5 16 2 8 4 3 7 5 1

Divide

A:

CDS.IISc.ac.in | Department of Computational and Data Sciences

37

6 2 8 4

3 7 5 1

6 2 8 4

Merge-Sort(A, 0, 3) , divide

A:

CDS.IISc.ac.in | Department of Computational and Data Sciences

38

3 7 5 1

8 4

6 26 2

Merge-Sort(A, 0, 1) , divide

A:

CDS.IISc.ac.in | Department of Computational and Data Sciences

39

3 7 5 1

8 4

6

2

Merge-Sort(A, 0, 0) , base case

A:

CDS.IISc.ac.in | Department of Computational and Data Sciences

40

3 7 5 1

8 4

6 2

Merge-Sort(A, 0, 0), return

A:

CDS.IISc.ac.in | Department of Computational and Data Sciences

41

3 7 5 1

8 4

6

2

Merge-Sort(A, 1, 1) , base case

A:

CDS.IISc.ac.in | Department of Computational and Data Sciences

42

3 7 5 1

8 4

6 2

Merge-Sort(A, 1, 1), return

A:

CDS.IISc.ac.in | Department of Computational and Data Sciences

43

3 7 5 1

8 4

2 6

Merge(A, 0, 0, 1)

A:

CDS.IISc.ac.in | Department of Computational and Data Sciences

44

3 7 5 1

8 42 6

Merge-Sort(A, 0, 1), return

A:

CDS.IISc.ac.in | Department of Computational and Data Sciences

45

3 7 5 1

8 4

2 6

Merge-Sort(A, 2, 3)

48

, divide

A:

CDS.IISc.ac.in | Department of Computational and Data Sciences

46

3 7 5 1

4

2 6

8

Merge-Sort(A, 2, 2), base case

A:

CDS.IISc.ac.in | Department of Computational and Data Sciences

47

3 7 5 1

4

2 6

8

Merge-Sort(A, 2, 2), return

A:

CDS.IISc.ac.in | Department of Computational and Data Sciences

48

4

2 6

8

Merge-Sort(A, 3, 3), base case

A:

CDS.IISc.ac.in | Department of Computational and Data Sciences

49

3 7 5 1

4

2 6

8

Merge-Sort(A, 3, 3), return

A:

CDS.IISc.ac.in | Department of Computational and Data Sciences

50

3 7 5 1

2 6

4 8

Merge(A, 2, 2, 3)

A:

CDS.IISc.ac.in | Department of Computational and Data Sciences

51

3 7 5 1

2 6 4 8

Merge-Sort(A, 2, 3), return

A:

CDS.IISc.ac.in | Department of Computational and Data Sciences

52

3 7 5 1

2 4 6 8

Merge(A, 0, 1, 3)

A:

CDS.IISc.ac.in | Department of Computational and Data Sciences

53

3 7 5 12 4 6 8

Merge-Sort(A, 0, 3), return

A:

CDS.IISc.ac.in | Department of Computational and Data Sciences

54

3 7 5 1

2 4 6 8

Merge-Sort(A, 4, 7)

A:

CDS.IISc.ac.in | Department of Computational and Data Sciences

55

1 3 5 7

2 4 6 8A:

Merge (A, 4, 5, 7)

CDS.IISc.ac.in | Department of Computational and Data Sciences

56

1 3 5 72 4 6 8

Merge-Sort(A, 4, 7), return

A:

CDS.IISc.ac.in | Department of Computational and Data Sciences

57

1 2 3 4 5 6 7 8

Merge(A, 0, 3, 7)

A:

MergeSort(A, 0, 7) Done!

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge-Sort Analysis

58

cn

2 × cn/2 = cn

4 × cn/4 = cn

n/2 × 2c = cn

log n levels

• Total running time: (n.logn)
• Total Space:  (n)

Total: cn log n

n

n/2 n/2

n/4 n/4 n/4 n/4

2 2 2

CDS.IISc.ac.in | Department of Computational and Data Sciences

Merge-Sort Summary

Approach: divide and conquer

Time
‣ Most of the work is in the merging

‣ Total time: (n log n)

Space:
‣ (n), more space than other sorts.

59

CDS.IISc.ac.in | Department of Computational and Data Sciences

Overview

Divide and Conquer

Merge Sort

Quick Sort

60

CDS.IISc.ac.in | Department of Computational and Data Sciences

Quick Sort

 Divide:
• Pick any element p as the pivot, e.g, the first

element
• Partition the remaining elements into

FirstPart, which contains all elements < p
SecondPart, which contains all elements ≥ p

 Recursively sort the FirstPart and SecondPart

 Combine: no work is necessary since sorting

is done in place
61

CDS.IISc.ac.in | Department of Computational and Data Sciences

Idea of Quick Sort

1) Select: pick an element

2) Divide: rearrange elements so
that x goes to its final position E

3) Recurse and Conquer:
recursively sort

CDS.IISc.ac.in | Department of Computational and Data Sciences

Quick Sort

63

x < p p p ≤ x

Partition
FirstPart SecondPart

p

pivot

A:

Recursive call

x < p p p ≤ x

Sorted

FirstPart
Sorted

SecondPart

Sorted

CDS.IISc.ac.in | Department of Computational and Data Sciences

Quick Sort

QuickSort(A, left, right)

if left >= right return

else

middle=Partition(A, left, right)

QuickSort(A, left, middle–1)

QuickSort(A, middle+1, right)

end if

64

CDS.IISc.ac.in | Department of Computational and Data Sciences

Partition

65

p

p x < p p ≤ x

p p ≤ xx < p

A:

A:

A:

p

CDS.IISc.ac.in | Department of Computational and Data Sciences

Partition Example

66

A: 4 8 6 3 5 1 7 2

CDS.IISc.ac.in | Department of Computational and Data Sciences

Partition Example

67

A: 4 8 6 3 5 1 7 2

i=0

j=1

CDS.IISc.ac.in | Department of Computational and Data Sciences

Partition Example

68

A:

j=1

4 8 6 3 5 1 7 2

i=0

8

CDS.IISc.ac.in | Department of Computational and Data Sciences

Partition Example

69

A: 4 8 6 3 5 1 7 26

i=0

j=2

CDS.IISc.ac.in | Department of Computational and Data Sciences

Partition Example

70

A: 4 8 6 3 5 1 7 2

i=0

383

j=3

i=1

CDS.IISc.ac.in | Department of Computational and Data Sciences

Partition Example

71

A: 4 3 6 8 5 1 7 2

i=1

5

j=4

CDS.IISc.ac.in | Department of Computational and Data Sciences

Partition Example

72

A: 4 3 6 8 5 1 7 2

i=1

1

j=5

CDS.IISc.ac.in | Department of Computational and Data Sciences

Partition Example

73

A: 4 3 6 8 5 1 7 2

i=2

1 6

j=5

CDS.IISc.ac.in | Department of Computational and Data Sciences

Partition Example

74

A: 4 3 8 5 7 2

i=2

1 6 7

j=6

CDS.IISc.ac.in | Department of Computational and Data Sciences

Partition Example

75

A: 4 3 8 5 7 2

i=2

1 6 22 8

i=3

j=7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Partition Example

76

A: 4 3 2 6 7 8

i=3

1 5

j=8

CDS.IISc.ac.in | Department of Computational and Data Sciences

Partition Example

77

A: 4 1 6 7 8

i=3

2 542 3

CDS.IISc.ac.in | Department of Computational and Data Sciences

Partition Example

78

A: 3 6 7 81 542

x < 4 4 ≤ x

pivot in
correct position

CDS.IISc.ac.in | Department of Computational and Data Sciences

Partition(A, left, right)

1. x ← A[left]

2. i ← left

3. for j ← left+1 to right

4. if A[j] < x then

5. i ← i + 1

6. swap(A[i], A[j])

7. end if

8. end for j

9. swap(A[i], A[left])

10. return i

79

n = right – left +1
Time: cn for some constant c
Space: constant

CDS.IISc.ac.in | Department of Computational and Data Sciences

Quick-Sort(A, 0, 7)

80

4 8 6 3 5 1 7 22 3 1 5 6 7 84

Partition

A:

CDS.IISc.ac.in | Department of Computational and Data Sciences

81

2 3 1

5 6 7 84

2 1 3

Quick-Sort(A, 0, 7)

Quick-Sort(A, 0, 2)

A:

, partition

CDS.IISc.ac.in | Department of Computational and Data Sciences

82

2

5 6 7 84

1

1 3

Quick-Sort(A, 0, 7)

Quick-Sort(A, 0, 0) , base case, return

CDS.IISc.ac.in | Department of Computational and Data Sciences

83

2

5 6 7 84

1

33

Quick-Sort(A, 0, 7)

Quick-Sort(A, 1, 1) , base case

CDS.IISc.ac.in | Department of Computational and Data Sciences

84

5 6 7 842 1 3

2 1 3

Quick-Sort(A, 0, 7)

Quick-Sort(A, 2, 2), returnQuick-Sort(A, 0, 2), return

CDS.IISc.ac.in | Department of Computational and Data Sciences

85

42 1 3

5 6 7 86 7 85

Quick-Sort(A, 0, 7)

Quick-Sort(A, 2, 2), returnQuick-Sort(A, 4, 7) , partition

CDS.IISc.ac.in | Department of Computational and Data Sciences

86

4

5

6 7 87 866

2 1 3

Quick-Sort(A, 0, 7)

Quick-Sort(A, 5, 7) , partition

CDS.IISc.ac.in | Department of Computational and Data Sciences

87

4

5

6

7 887

2 1 3

Quick-Sort(A, 0, 7)

Quick-Sort(A, 6, 7) , partition

CDS.IISc.ac.in | Department of Computational and Data Sciences

88

4

5

6

7

2 1 3

Quick-Sort(A, 0, 7)

Quick-Sort(A, 7, 7)

8

, return, base case

8

CDS.IISc.ac.in | Department of Computational and Data Sciences

89

4

5

6 87

2 1 3

Quick-Sort(A, 0, 7)

Quick-Sort(A, 6, 7) , return

CDS.IISc.ac.in | Department of Computational and Data Sciences

90

4

5

2 1 3

Quick-Sort(A, 0, 7)

Quick-Sort(A, 5, 7) , return

6 87

CDS.IISc.ac.in | Department of Computational and Data Sciences

91

42 1 3

Quick-Sort(A, 0, 7)

Quick-Sort(A, 4, 7) , return

5 6 87

CDS.IISc.ac.in | Department of Computational and Data Sciences

92

42 1 3

Quick-Sort(A, 0, 7)

Quick-Sort(A, 0, 7) , done!

5 6 87

CDS.IISc.ac.in | Department of Computational and Data Sciences

Quick-Sort: Best Case

93

 Balanced Partitions

Total time: Ɵ(n.log n)

cn

2 × cn/2 = cn

4 × c/4 = cn

n/3 × 3c = cn

log n levels

n

n/2 n/2

n/4

3 3 3

n/4n/4n/4

https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/analysis-of-quicksort

CDS.IISc.ac.in | Department of Computational and Data Sciences

Quick-Sort: Worst Case

94

cn

c(n-1)

3c

2c

n

n-1

n-2

3

2

c(n-2)

Happens only if

 input is sorted

 input is reversely sorted

 Unbalanced Partition

Total time: Ɵ(n2)

How to choose the pivot?
• Random
• Median of 3

https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/analysis-of-quicksort

CDS.IISc.ac.in | Department of Computational and Data Sciences

Quick-Sort: an Average Case
 Suppose the split is 1/10 : 9/10

95

cn

cn

cn

≤cn

n

0.1n 0.9n

0.01n 0.09n 0.09n

Total time: Ɵ(n log n)

0.81n

2

2

log10n

log10/9n
=
21.log10n

≤cn

https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/analysis-of-quicksort

10/9 size
of child

CDS.IISc.ac.in | Department of Computational and Data Sciences

Quick-Sort Summary

 Time
‣ Most of the work done in partitioning.

‣ Average case takes Ɵ(n log(n)) time.

‣ Worst case takes Ɵ(n2) time

Space
‣ Sorts in-place, i.e., does not require additional space

96

CDS.IISc.ac.in | Department of Computational and Data Sciences

Summary

Divide and Conquer

Merge-Sort
‣ Most of the work done in Merging
‣ Ɵ(n log(n)) time
‣ Ɵ(n) space

Quick-Sort
‣ Most of the work done in partitioning
‣ Average case takes Ɵ(n log(n)) time
‣ Worst case takes Ɵ(n2) time
‣ Ɵ(1) space

97

CDS.IISc.ac.in | Department of Computational and Data Sciences

Tasks
 Self study
‣ Read: Sorting Algorithms from Khan Academy
https://www.khanacademy.org/computing/computer-science/algorithms#sorting-algorithms

 Finish Assignment 4 by Wed Oct 26 (75 points)

Make progress on CodeChef (100 points)

14-Oct-16 98

https://www.khanacademy.org/computing/computer-science/algorithms#sorting-algorithms

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

CDS.IISc.ac.in | Department of Computational and Data Sciences

Department of Computational and Data Sciences

Questions?

13-Oct-16 101

http://creativecommons.org/licenses/by/4.0/deed.en_US

