
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान

बंगलौर, भारत

Department of Computational and Data Sciences

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

CDS
Department of Computational and Data Sciences

DS286 | 2016-11-11,16

L25,26: Classes of
Algorithms

© David Matuszek, UPenn, CIT594, Programming Languages & Techniques II

Yogesh Simmhan
s immhan@cds . i i s c . ac . in

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.ac.in | Department of Computational and Data Sciences

Algorithm classification

 Algorithms that use a similar problem-solving
approach can be grouped together
‣ A classification scheme for algorithms

 Classification is neither exhaustive nor disjoint

 The purpose is not to be able to classify an
algorithm as one type or another, but to highlight
the various ways in which a problem can be
attacked

2

CDS.IISc.ac.in | Department of Computational and Data Sciences

A short list of categories

 Algorithm types we will consider include:
1. Simple recursive algorithms

2. Backtracking algorithms

3. Divide and conquer algorithms

4. Dynamic programming algorithms

5. Greedy algorithms

6. Branch and bound algorithms

7. Brute force algorithms

8. Randomized algorithms

3

CDS.IISc.ac.in | Department of Computational and Data Sciences

Simple Recursive Algorithms

 A simple recursive algorithm:
1. Solves the base cases directly

2. Recurs with a simpler subproblem

3. Does some extra work to convert the solution to the
simpler subproblem into a solution to the given problem

 These are “simple” because several of the other
algorithm types are inherently recursive

4

CDS.IISc.ac.in | Department of Computational and Data Sciences

Sample Recursive Algorithms

 To count the number of elements in a list:
‣ If the list is empty, return zero; otherwise,

‣ Step past the first element, and count the remaining
elements in the list

‣ Add one to the result

 To test if a value occurs in a list:
‣ If the list is empty, return false; otherwise,

‣ If the first thing in the list is the given value, return true;
otherwise

‣ Step past the first element, and test whether the value
occurs in the remainder of the list

5

CDS.IISc.ac.in | Department of Computational and Data Sciences

Backtracking
algorithms

Uses a depth-first recursive search
‣Test to see if a solution has been found, and if

so, returns it; otherwise
‣ For each choice that can be made at this

point,
 Make that choice
 Recurse
 If the recursion returns a solution, return it

‣ If no choices remain, return failure

6

start ?

?

dead end

dead end

?
?

dead end

dead end

?

success!

dead end

CDS.IISc.ac.in | Department of Computational and Data Sciences

Sample backtracking algo.
 The Four Color Theorem states that any map on a plane

can be colored with no more than four colors, so that
no two countries with a common border are the same
color

 color(Country n)
‣ If all countries have been colored (n > no. of countries)

return success; otherwise,

‣ For each color c of four colors,
• If country n is not adjacent to a country that has been colored c

o Color country n with color c

o recursively color country n+1

o If successful, return success

‣ If loop exits, return failure

7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Map is a graph. Countries are list of vertices. Adjacency
list has neighboring countries.

mapColors = int[map.length];

int RED=0, GREEN=1, PINK=2, BLUE=3;

boolean explore(int country, int color) {
if (country >= map.length) return true;
if (okToColor(country, color)) {

mapColors[country] = color;
for (int i = RED; i <= BLUE; i++) {

if (explore(country + 1, i)) return
true;

}
}
return false;

}
8

0 1

4
2 3

6
5

CDS.IISc.ac.in | Department of Computational and Data Sciences

Divide and Conquer

 A divide and conquer algorithm consists of two
parts:
‣ Divide the problem into smaller subproblems of the

same type, and solve these subproblems recursively

‣ Combine the solutions to the subproblems into a
solution to the original problem

 Traditionally, an algorithm is only called “divide
and conquer” if it contains at least two recursive
calls

9

CDS.IISc.ac.in | Department of Computational and Data Sciences

Examples

 Quicksort:
‣ Partition the array into two parts (smaller numbers in

one part, larger numbers in the other part)

‣ Quicksort each of the parts

‣ No additional work is required to combine the two
sorted parts

 Mergesort:
‣ Cut the array in half, and mergesort each half

‣ Combine the two sorted arrays into a single sorted
array by merging them

10

CDS.IISc.ac.in | Department of Computational and Data Sciences

Binary search tree lookup?

 Here’s how we look up something in a binary
search tree:
‣ Compare the key to the value in the root

• If the two values are equal, report success

• If the key is less, search the left subtree

• If the key is greater, search the right subtree

 This is not a divide and conquer algorithm because,
although there are two recursive calls, only one is
used at each level of the recursion

11

CDS.IISc.ac.in | Department of Computational and Data Sciences

Fibonacci numbers
 ni = n(i-1) + n(i-2)

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

 To find the nth Fibonacci number:
‣ If n is zero or one, return 1; otherwise,
‣ Compute fibonacci(n-1) and fibonacci(n-2)
‣ Return the sum of these two numbers

 This is an expensive algorithm
‣ It requires O(fibonacci(n)) time
‣ This is equivalent to exponential time, that is, O(2n)

• Binary tree of height ‘n’ with f(n) having two children,
f(n-1), f(n-2)

12

CDS.IISc.ac.in | Department of Computational and Data Sciences

Dynamic Programming (DP)
 A dynamic programming algorithm “remembers” past

results and uses them to find new results

‣ Memoization

 Dynamic programming is generally used for optimization
problems
‣ Multiple solutions exist, need to find the “best” one

‣ Requires “optimal substructure” and “overlapping subproblems”
• Optimal substructure: Optimal solution can be constructed from optimal

solutions to subproblems

• Overlapping subproblems: Solutions to subproblems can be stored and reused
in a bottom-up fashion

 This differs from Divide and Conquer, where subproblems
generally need not overlap

13

CDS.IISc.ac.in | Department of Computational and Data Sciences

Fibonacci numbers again
 To find the nth Fibonacci number:

‣ If n is zero or one, return one; otherwise,
‣ Compute, or look up in a table, fibonacci(n-1) and
fibonacci(n-2)

‣ Find the sum of these two numbers
‣ Store the result in a table and return it

 Since finding the nth Fibonacci number involves finding
all smaller Fibonacci numbers, the second recursive call
has little work to do

 The table may be preserved and used again later

 Other examples: Floyd–Warshall All-Pairs Shortest Path
(APSP) algorithm, Towers of Hanoi, …

14

CDS.IISc.ac.in | Department of Computational and Data Sciences

Greedy algorithms

 An optimization problem is one in which you want
to find, not just a solution, but the best solution

 A “greedy algorithm” sometimes works well for
optimization problems

 A greedy algorithm works in phases: At each phase:
‣ You take the best you can get right now, without regard

for future consequences

‣ You hope that by choosing a local optimum at each step,
you will end up at a global optimum

15

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example: Counting money
 Suppose you want to count out a certain amount of money,

using the fewest possible currency notes and coins

 A greedy algorithm would do this would be:
At each step, take the largest possible note or coin that does
not overshoot
‣ Example: To make ₹639, you can choose:

• a ₹ 500 note

• a ₹ 100 note, to make ₹ 600

• a ₹ 20 note, to make ₹ 620

• A ₹ 10 note, to make ₹ 630

• A ₹ 5 coin, to make ₹ 635

• four ₹ 1 coins, to make ₹ 639

 For INR and US money, the greedy algorithm gives the
optimum solution

16

CDS.IISc.ac.in | Department of Computational and Data Sciences

A failure of the greedy
algorithm
 In some (fictional) monetary system, “krons” come in 1

kron, 7 kron, and 10 kron coins

 Using a greedy algorithm to count out 15 krons, you would
get
‣ A 10 kron piece

‣ Five 1 kron pieces, for a total of 15 krons

‣ This requires six coins

 A better solution would be to use two 7 kron pieces and one
1 kron piece
‣ This only requires three coins

 The greedy algorithm results in a solution, but not in an
optimal solution

17

CDS.IISc.ac.in | Department of Computational and Data Sciences

Other applications of
Greedy Algorithms
1. Shortest path problem

‣ A simple greedy strategy, Dijikstra’s greedy algorithm

‣ Greedily pick the shortest among the vertices touched
so far

2. 0/1 Knapsack problem on combinatorial optimization

‣ Pack a knapsack of weight capacity c

‣ Given n items with weight and profit, select items to
Maximize sum(pixi)

‣ Subject to constraints sum(wixi) <= c

© Sathish Vadhiyar, SERC

© Keenan Pepper

CDS.IISc.ac.in | Department of Computational and Data Sciences

Branch & Bound algorithms
 Branch and bound algorithms are generally used for

optimization problems. Similar to backtracking.
‣ As the algorithm progresses, a tree of subproblems is formed

‣ The original problem is considered the “root problem”

‣ A method is used to construct an upper and lower bound for
a given problem

‣ At each node, apply the bounding methods
• If the bounds match, it is deemed a feasible solution to that

particular subproblem

• If bounds do not match, partition the problem represented by
that node, and make the two subproblems into children nodes

‣ Continue, using the best known feasible solution to trim
sections of the tree, until all nodes have been solved or
trimmed

19

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example branch and bound
algorithm
 “Suppose it is required to minimize an objective function.

Suppose that we have a method for getting a lower bound
on the cost of any solution among those in the set of
solutions represented by some subset. If the best solution
found so far costs less than the lower bound for this subset,
we need not explore this subset at all.”

 Traveling salesman problem: A salesman has to visit each of
n cities once each and return to the original city, while
minimize total distance traveled
‣ Split into two subproblems, whether to take an out edge from a

vertex or not.
‣ If current best solution smaller than the lower bound of a

subset, do not explore.
‣ Lower bound given by 0.5*(sum of tours on two edges, for all

vertices)

20http://lcm.csa.iisc.ernet.in/dsa/node187.html

CDS.IISc.ac.in | Department of Computational and Data Sciences

Node
Least cost

edges
Total cost

a (a, d), (a, b) 2+3=5

b (a, b), (b, e) 3+3=6

c (c, b), (c, a) 4+4=8

d (d, a), (d, c) 2+5=7

e (e, b), (e, d) 3+6=9

Lower Bound = 0.5 * (5 + 6 + 8 + 7 + 9) = 17.5

21
http://lcm.csa.iisc.ernet.in/dsa/node187.html

When we branch, we compute

lower bounds for both children.

If the lower bound for a child is >=

lowest cost found so far, we prune

that child.

3+

0.5*(2+3+8+7+9)=14.5

=17.5

4+

0.5*(2+7+4+7+9)=14.5

=18.5

0.5*(9+7+9+7+9)=20.5

3+4+

0.5*(3+4+7+9)=11.5

=18.5

3+

0.5*(2+3+9+7+9)=15

=18

0.5*(6+7+8+7+9)=18.5

CDS.IISc.ac.in | Department of Computational and Data Sciences

22http://lcm.csa.iisc.ernet.in/dsa/node187.html

If excluding (x, y) makes

it impossible for x or y to

have two adjacent edges

in the tour, include (x, y).

If including (x, y) would

cause x or y to have

more than two edges

adjacent in the tour, or

complete a non-tour

cycle with edges already

included, exclude (x, y).

excluded

excluded

included

included

CDS.IISc.ac.in | Department of Computational and Data Sciences

Brute force algorithm

 A brute force algorithm simply tries all possibilities
until a satisfactory solution is found

 Such an algorithm can be:
‣ Optimizing: Find the best solution. This may require finding all

solutions, or if a value for the best solution is known, it may
stop when any best solution is found
• Example: Finding the best path for a traveling salesman

‣ Satisficing: Stop as soon as a solution is found that is good
enough
• Example: Finding a traveling salesman path that is within 10%

of optimal

23

CDS.IISc.ac.in | Department of Computational and Data Sciences

Improving brute force
algorithms
 Often, brute force algorithms require exponential

time

 Various heuristics and optimizations can be used
‣ Heuristic: A “rule of thumb” that helps you decide which

possibilities to look at first

‣ Optimization: In this case, a way to eliminate certain
possibilities without fully exploring them

24

CDS.IISc.ac.in | Department of Computational and Data Sciences

Randomized algorithms

 A randomized algorithm uses a random number at
least once during the computation to make a
decision
‣ Example: In Quicksort, using a random number to

choose a pivot

‣ Example: Trying to factor a large number by choosing
random numbers as possible divisors

25

CDS.IISc.ac.in | Department of Computational and Data Sciences

Dynamic
Programming
Lecture 11: Dynamic Programming, Avrim Blum

https://www.cs.cmu.edu/~avrim/451f09/lectures/lect1001.pdf

26

CDS.IISc.ac.in | Department of Computational and Data Sciences

Dynamic Programming

 General approach to solving problems
‣ general method like “divide-and-conquer”

 Unlike divide-and-conquer, the subproblems will
typically overlap

 Basic Idea (version 1): take our problem and break
it into a reasonable number of subproblems (O(n2))
that can be optimally solved to give the optimal
solution to the larger one.

 Unlike divide-and-conquer (as in mergesort or
quicksort) it is OK if our subproblems overlap, so
long as there are not too many of them.

27

CDS.IISc.ac.in | Department of Computational and Data Sciences

Longest Common
Subsequence (LCS)
 We are given two strings: string S of length n, and

string T of length m. Our goal is to produce their
longest common subsequence: the longest sequence
of characters that appear left-to-right (but not
necessarily in a contiguous block) in both strings.
‣ Genomics, “diff” in code repositories (edit distance)

28http://www.columbia.edu/~cs2035/courses/csor4231.F11/lcs.pdf

S = ABAZDC
T = BACBAD

LCS = ABAD

CDS.IISc.ac.in | Department of Computational and Data Sciences

LCS

 Say LCS[i,j] is the length of the LCS of S[1..i] with
T[1..j]. How can we solve for LCS[i,j] in terms of the
LCS’s of the smaller problems?

 Case 1: S[i] <> T[j]
‣ The subsequence has to ignore one of S[i] or T[j]
‣ LCS[i, j] = max(LCS[i − 1, j], LCS[i, j − 1])

 Case 2: S[i] = T[j]
‣ The LCS of S[1..i] and T[1..j] might as well match them

up.
‣ A common subsequence that matched S[i] to an earlier

location in T could always match it to T[j] instead
‣ LCS[i, j] = 1 + LCS[i − 1, j − 1]

29

CDS.IISc.ac.in | Department of Computational and Data Sciences

LCS

30
Exponential time!

e.g. no characters match

Traceback
D A B A
and reverse
A B A D

https://en.wikipedia.org/wiki/Longest_common_subsequence_problem

R = (GAC), and C = (AGCAT)

CDS.IISc.ac.in | Department of Computational and Data Sciences

Memoization

 Basic Idea (version 2): Suppose you have a
recurrence where many of the subproblems in the
recursion tree are the same. Then you can get a
savings only if you store your computations so that
you compute each different subproblem just once.

 You can store these solutions in an array or hash
table. This is called memoizing.

31

CDS.IISc.ac.in | Department of Computational and Data Sciences

LCS with Memoization

32

Complexity is O(mn)

(Size of array)

CDS.IISc.ac.in | Department of Computational and Data Sciences

Knapsack Problem

 We are given a set of n items, where each item i is
specified by a size si and a value vi. We are also
given a size bound S (the size of our knapsack).

 The goal is to find the subset of items of maximum
total value such that sum of their sizes is at most S
(they all fit into the knapsack).
‣ Exponential time to try all possible subsets

‣ O(n.S) using DP

33

CDS.IISc.ac.in | Department of Computational and Data Sciences

Knapsack Problem

 0-1 Knapsack:
‣ n items (can be the same or different)

‣ Have only one of each

‣ Must leave or take (i.e. 0-1) each item (e.g. bars of gold)

‣ DP works, greedy does not

 Fractional Knapsack:
‣ n items (can be the same or different)

‣ Can take fractional part of each item (e.g. gold dust)

‣ Greedy works and DP algorithms work

34
http://www.radford.edu/~nokie/classes/360/greedy.html

CDS.IISc.ac.in | Department of Computational and Data Sciences

Greedy Solution 1

 From the remaining objects, select the object with
maximum value that fits into the knapsack

 Does not guarantee an optimal solution

 E.g., n=3, s=[100,10,10], v=[20,15,15], S=105

© Sathish Vadhiyar, SERC

CDS.IISc.ac.in | Department of Computational and Data Sciences

Greedy Solution 2

 Select the one with minimum size that fits into the
knapsack

 Also, does not guarantee optimal solution

 E.g., n=2, s=[10,20], v=[5,100], c=25

© Sathish Vadhiyar, SERC

CDS.IISc.ac.in | Department of Computational and Data Sciences

Greedy Solution 3

 Select the one with the maximum value density vi/si

that fits into the knapsack

 E.g., n=3, s=[20,15,15], v=[40,25,25], c=30

 Greedy works…if fractional items possible!

© Sathish Vadhiyar, SERC

CDS.IISc.ac.in | Department of Computational and Data Sciences

DP for 0-1 Knapsack

38

CDS.IISc.ac.in | Department of Computational and Data Sciences

Reading

 Online resources on algorithm types

 https://www.cs.cmu.edu/~avrim/451f09/lectures/l
ect1001.pdf

39

