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Algorithm classification

 Algorithms that use a similar problem-solving 
approach can be grouped together
‣ A classification scheme for algorithms

 Classification is neither exhaustive nor disjoint

 The purpose is not to be able to classify an 
algorithm as one type or another, but to highlight 
the various ways in which a problem can be 
attacked
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A short list of categories

 Algorithm types we will consider include:
1. Simple recursive algorithms

2. Backtracking algorithms

3. Divide and conquer algorithms

4. Dynamic programming algorithms

5. Greedy algorithms

6. Branch and bound algorithms

7. Brute force algorithms

8. Randomized algorithms

3



CDS.IISc.ac.in  |  Department of Computational and Data Sciences

Simple Recursive Algorithms

 A simple recursive algorithm:
1. Solves the base cases directly

2. Recurs with a simpler subproblem

3. Does some extra work to convert the solution to the 
simpler subproblem into a solution to the given problem

 These are “simple” because several of the other 
algorithm types are inherently recursive
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Sample Recursive Algorithms

 To count the number of elements in a list:
‣ If the list is empty, return zero; otherwise,

‣ Step past the first element, and count the remaining 
elements in the list

‣ Add one to the result

 To test if a value occurs in a list:
‣ If the list is empty, return false; otherwise,

‣ If the first thing in the list is the given value, return true; 
otherwise

‣ Step past the first element, and test whether the value 
occurs in the remainder of the list
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Backtracking 
algorithms

Uses a depth-first recursive search
‣Test to see if a solution has been found, and if 

so, returns it; otherwise
‣ For each choice that can be made at this 

point,
 Make that choice
 Recurse
 If the recursion returns a solution, return it

‣ If no choices remain, return failure
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Sample backtracking algo.
 The Four Color Theorem states that any map on a plane 

can be colored with no more than four colors, so that 
no two countries with a common border are the same 
color

 color(Country n)
‣ If all countries have been colored (n > no. of countries) 

return success; otherwise,

‣ For each color c of four colors,
• If country n is not adjacent to a country that has been colored c

o Color country n with color c

o recursively color country n+1

o If successful, return success

‣ If loop exits, return failure
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Map is a graph. Countries are list of vertices. Adjacency 
list has neighboring countries.

mapColors = int[map.length]; 

int RED=0, GREEN=1, PINK=2, BLUE=3;

boolean explore(int country, int color) {
if (country >= map.length) return true;
if (okToColor(country, color)) {

mapColors[country] = color;
for (int i = RED; i <= BLUE; i++) {

if (explore(country + 1, i)) return
true;

}
}
return false;

}
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Divide and Conquer

 A divide and conquer algorithm consists of two 
parts:
‣ Divide the problem into smaller subproblems of the 

same type, and solve these subproblems recursively

‣ Combine the solutions to the subproblems into a 
solution to the original problem

 Traditionally, an algorithm is only called “divide 
and conquer” if it contains at least two recursive 
calls
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Examples

 Quicksort:
‣ Partition the array into two parts (smaller numbers in 

one part, larger numbers in the other part)

‣ Quicksort each of the parts

‣ No additional work is required to combine the two 
sorted parts

 Mergesort:
‣ Cut the array in half, and mergesort each half

‣ Combine the two sorted arrays into a single sorted 
array by merging them
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Binary search tree lookup?

 Here’s how we look up something in a binary 
search tree:
‣ Compare the key to the value in the root

• If the two values are equal, report success

• If the key is less, search the left subtree

• If the key is greater, search the right subtree

 This is not a divide and conquer algorithm because, 
although there are two recursive calls, only one is 
used at each level of the recursion

11



CDS.IISc.ac.in  |  Department of Computational and Data Sciences

Fibonacci numbers
 ni = n(i-1) + n(i-2)

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

 To find the nth Fibonacci number:
‣ If n is zero or one, return 1; otherwise,
‣ Compute fibonacci(n-1) and fibonacci(n-2)
‣ Return the sum of these two numbers

 This is an expensive algorithm
‣ It requires O(fibonacci(n)) time
‣ This is equivalent to exponential time, that is, O(2n)

• Binary tree of height ‘n’ with f(n) having two children, 
f(n-1), f(n-2)
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Dynamic Programming (DP)
 A dynamic programming algorithm “remembers” past 

results and uses them to find new results

‣ Memoization

 Dynamic programming is generally used for optimization 
problems
‣ Multiple solutions exist, need to find the “best” one

‣ Requires “optimal substructure” and “overlapping subproblems”
• Optimal substructure: Optimal solution can be constructed from optimal 

solutions to subproblems

• Overlapping subproblems: Solutions to subproblems can be stored and reused 
in a bottom-up fashion

 This differs from Divide and Conquer, where subproblems
generally need not overlap
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Fibonacci numbers again
 To find the nth Fibonacci number:

‣ If n is zero or one, return one; otherwise,
‣ Compute, or look up in a table, fibonacci(n-1) and 
fibonacci(n-2)

‣ Find the sum of these two numbers
‣ Store the result in a table and return it

 Since finding the nth Fibonacci number involves finding 
all smaller Fibonacci numbers, the second recursive call 
has little work to do

 The table may be preserved and used again later

 Other examples: Floyd–Warshall All-Pairs Shortest Path 
(APSP) algorithm, Towers of Hanoi, …
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Greedy algorithms

 An optimization problem is one in which you want 
to find, not just a solution, but the best solution

 A “greedy algorithm” sometimes works well for 
optimization problems

 A greedy algorithm works in phases: At each phase:
‣ You take the best you can get right now, without regard 

for future consequences

‣ You hope that by choosing a local optimum at each step, 
you will end up at a global optimum
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Example: Counting money
 Suppose you want to count out a certain amount of money, 

using the fewest possible currency notes and coins

 A greedy algorithm would do this would be:
At each step, take the largest possible note or coin that does 
not overshoot
‣ Example: To make ₹639, you can choose:

• a ₹ 500 note

• a ₹ 100 note, to make ₹ 600

• a ₹ 20 note, to make ₹ 620

• A ₹ 10 note, to make ₹ 630

• A ₹ 5 coin, to make ₹ 635

• four ₹ 1 coins, to make ₹ 639

 For INR and US money, the greedy algorithm gives the 
optimum solution
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A failure of the greedy 
algorithm
 In some (fictional) monetary system, “krons” come in 1

kron, 7 kron, and 10 kron coins

 Using a greedy algorithm to count out 15 krons, you would 
get
‣ A 10 kron piece

‣ Five 1 kron pieces, for a total of 15 krons

‣ This requires six coins

 A better solution would be to use two 7 kron pieces and one 
1 kron piece
‣ This only requires three coins

 The greedy algorithm results in a solution, but not in an 
optimal solution
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Other applications of 
Greedy Algorithms
1. Shortest path problem

‣ A simple greedy strategy, Dijikstra’s greedy algorithm

‣ Greedily pick the shortest among the vertices touched 
so far

2. 0/1 Knapsack problem on combinatorial optimization

‣ Pack a knapsack of weight capacity c

‣ Given n items with weight and profit, select items to 
Maximize sum(pixi)

‣ Subject to constraints sum(wixi) <= c

© Sathish Vadhiyar, SERC
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Branch & Bound algorithms
 Branch and bound algorithms are generally used for 

optimization problems. Similar to backtracking.
‣ As the algorithm progresses, a tree of subproblems is formed

‣ The original problem is considered the “root problem”

‣ A method is used to construct an upper and lower bound for 
a given problem

‣ At each node, apply the bounding methods
• If the bounds match, it is deemed a feasible solution to that 

particular subproblem

• If bounds do not match, partition the problem represented by 
that node, and make the two subproblems into children nodes

‣ Continue, using the best known feasible solution to trim 
sections of the tree, until all nodes have been solved or 
trimmed
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Example branch and bound 
algorithm
 “Suppose it is required to minimize an objective function. 

Suppose that we have a method for getting a lower bound 
on the cost of any solution among those in the set of 
solutions represented by some subset. If the best solution 
found so far costs less than the lower bound for this subset, 
we need not explore this subset at all.”

 Traveling salesman problem: A salesman has to visit each of 
n cities once each and return to the original city, while 
minimize total distance traveled
‣ Split into two subproblems, whether to take an out edge from a 

vertex or not.
‣ If current best solution smaller than the lower bound of a 

subset, do not explore.
‣ Lower bound given by 0.5*(sum of tours on two edges, for all 

vertices)

20http://lcm.csa.iisc.ernet.in/dsa/node187.html
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Node
Least cost 

edges
Total cost

a (a, d), (a, b) 2+3=5

b (a, b), (b, e) 3+3=6

c (c, b), (c, a) 4+4=8

d (d, a), (d, c) 2+5=7

e (e, b), (e, d) 3+6=9

Lower Bound = 0.5 * (5 + 6 + 8 + 7 + 9) = 17.5

21
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When we branch, we compute 

lower bounds for both children.

If the lower bound for a child is >= 

lowest cost found so far, we prune 

that child.

3+

0.5*(2+3+8+7+9)=14.5

=17.5

4+

0.5*(2+7+4+7+9)=14.5

=18.5

0.5*(9+7+9+7+9)=20.5

3+4+

0.5*(3+4+7+9)=11.5

=18.5

3+

0.5*(2+3+9+7+9)=15

=18

0.5*(6+7+8+7+9)=18.5
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22http://lcm.csa.iisc.ernet.in/dsa/node187.html

If excluding (x, y) makes 

it impossible for x or y to 

have two adjacent edges 

in the tour, include (x, y).

If including (x, y) would 

cause x or y to have 

more than two edges 

adjacent in the tour, or 

complete a non-tour 

cycle with edges already 

included, exclude (x, y).

excluded

excluded

included
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Brute force algorithm

 A brute force algorithm simply tries all possibilities 
until a satisfactory solution is found

 Such an algorithm can be:
‣ Optimizing: Find the best solution. This may require finding all 

solutions, or if a value for the best solution is known, it may 
stop when any best solution is found
• Example: Finding the best path for a traveling salesman

‣ Satisficing: Stop as soon as a solution is found that is good 
enough
• Example: Finding a traveling salesman path that is within 10% 

of optimal
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Improving brute force 
algorithms
 Often, brute force algorithms require exponential 

time

 Various heuristics and optimizations can be used
‣ Heuristic: A “rule of thumb” that helps you decide which 

possibilities to look at first

‣ Optimization: In this case, a way to eliminate certain 
possibilities without fully exploring them
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Randomized algorithms

 A randomized algorithm uses a random number at 
least once during the computation to make a 
decision
‣ Example: In Quicksort, using a random number to 

choose a pivot

‣ Example: Trying to factor a large number by choosing 
random numbers as possible divisors
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Dynamic 
Programming
Lecture 11: Dynamic Programming, Avrim Blum

https://www.cs.cmu.edu/~avrim/451f09/lectures/lect1001.pdf
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Dynamic Programming

 General approach to solving problems
‣ general method like “divide-and-conquer”

 Unlike divide-and-conquer, the subproblems will 
typically overlap

 Basic Idea (version 1): take our problem and break 
it into a reasonable number of subproblems (O(n2)) 
that can be optimally solved to give the optimal 
solution to the larger one. 

 Unlike divide-and-conquer (as in mergesort or 
quicksort) it is OK if our subproblems overlap, so 
long as there are not too many of them.
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Longest Common 
Subsequence (LCS)
 We are given two strings: string S of length n, and 

string T of length m. Our goal is to produce their 
longest common subsequence: the longest sequence 
of characters that appear left-to-right (but not 
necessarily in a contiguous block) in both strings.
‣ Genomics, “diff” in code repositories (edit distance)

28http://www.columbia.edu/~cs2035/courses/csor4231.F11/lcs.pdf

S = ABAZDC
T = BACBAD

LCS = ABAD
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LCS

 Say LCS[i,j] is the length of the LCS of S[1..i] with 
T[1..j]. How can we solve for LCS[i,j] in terms of the 
LCS’s of the smaller problems?

 Case 1: S[i] <> T[j]
‣ The subsequence has to ignore one of S[i] or T[j]
‣ LCS[i, j] = max(LCS[i − 1, j], LCS[i, j − 1])

 Case 2: S[i] = T[j]
‣ The LCS of S[1..i] and T[1..j] might as well match them 

up.
‣ A common subsequence that matched S[i] to an earlier 

location in T could always match it to T[j] instead
‣ LCS[i, j] = 1 + LCS[i − 1, j − 1]
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LCS

30
Exponential time!

e.g. no characters match

Traceback
D A B A
and reverse
A B A D

https://en.wikipedia.org/wiki/Longest_common_subsequence_problem

R = (GAC), and C = (AGCAT)
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Memoization

 Basic Idea (version 2): Suppose you have a 
recurrence where many of the subproblems in the 
recursion tree are the same. Then you can get a 
savings only if you store your computations so that 
you compute each different subproblem just once. 

 You can store these solutions in an array or hash 
table. This is called memoizing.
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LCS with Memoization
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Complexity is O(mn)

(Size of array)
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Knapsack Problem

 We are given a set of n items, where each item i is 
specified by a size si and a value vi. We are also 
given a size bound S (the size of our knapsack).

 The goal is to find the subset of items of maximum 
total value such that sum of their sizes is at most S
(they all fit into the knapsack).
‣ Exponential time to try all possible subsets

‣ O(n.S) using DP
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Knapsack Problem

 0-1 Knapsack: 
‣ n items (can be the same or different) 

‣ Have only one of each 

‣ Must leave or take (i.e. 0-1) each item (e.g. bars of gold) 

‣ DP works, greedy does not

 Fractional Knapsack: 
‣ n items (can be the same or different) 

‣ Can take fractional part of each item (e.g. gold dust) 

‣ Greedy works and DP algorithms work 

34
http://www.radford.edu/~nokie/classes/360/greedy.html



CDS.IISc.ac.in  |  Department of Computational and Data Sciences

Greedy Solution 1

 From the remaining objects, select the object with 
maximum value that fits into the knapsack

 Does not guarantee an optimal solution

 E.g., n=3, s=[100,10,10], v=[20,15,15], S=105

© Sathish Vadhiyar, SERC
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Greedy Solution 2

 Select the one with minimum size that fits into the 
knapsack

 Also, does not guarantee optimal solution

 E.g., n=2, s=[10,20], v=[5,100], c=25

© Sathish Vadhiyar, SERC
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Greedy Solution 3

 Select the one with the maximum value density vi/si

that fits into the knapsack

 E.g., n=3, s=[20,15,15], v=[40,25,25], c=30

 Greedy works…if fractional items possible!

© Sathish Vadhiyar, SERC
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DP for 0-1 Knapsack
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Reading

 Online resources on algorithm types

 https://www.cs.cmu.edu/~avrim/451f09/lectures/l
ect1001.pdf
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