чारतीय विज्ञान संस्थान बंगलौर, भारत **DS286** 2016-08-31,09-02 **T Б Т Б**

Indian Institute of Science

Bangalore, India

L6,7: Time & Space Complexity

Yogesh Simmhan

simmhan@cds.iisc.ac.in

Slides courtesy Venkatesh Babu, CDS

©Department of Computational and Data Science, IISc, 2016 This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u> Copyright for external content used with attribution is retained by their original autho

Algorithm Analysis

- Algorithms can be evaluated on two performance measures
- Time taken to run an algorithm
- Memory space required to run an algorithm
- ...for a given input size

• Why are these important?

Space Complexity

- Space complexity = Estimate of the amount of memory required by an algorithm to run to completion, for a given input size
 - Core dumps = the most often encountered cause is "memory leaks" – the amount of memory required larger than the memory available on a given system
- Some algorithms may be more efficient if data completely loaded into memory

- Need to look also at system limitations

Space Complexity

- Fixed part: The size required to store certain data/variables, that is independent of the size of the problem:
 - e.g., given the definition for every word in a given book
 - Constant size for storing "dictionary", e.g., 50MB
- Variable part: Space needed by variables, whose size is dependent on the size of the problem:
 - e.g., actual book size may vary, 1MB ... 1GB

Analyzing Running Time

- Write program
- Run Program
- Measure actual running time with some methods like System.currentTimeMillis(), gettimeofday()

• Is that good enough as a programmer?

Limitation of Experimental Running Time Measurements

- Need to implement the algorithm.
- Cannot exhaust all possible inputs
 - Experiments can be done only on a limited to set of inputs, and may not be indicative of the running time for other inputs.
- Harder to compare two algorithms
 - Same hardware/environments to be used

Running Time

- Suppose the program includes an *if-then statement* that may execute or not → variable running time
- Typically algorithms are measured by their *worst case*

Develop General Methodology for Analysis

- Uses High Level Description instead of implementation
- Takes into account for all possible inputs
- Allows one to evaluate the efficiency independent of hardware/software environment.

Pseudo-Code

 Mix of natural language and high level programming concepts that describes the main idea behind algorithm

```
arrayMax(A,n)
Max=A[0]
for i=1 to n-1 do
    If Max < A[i] then Max = A[i]
    Return Max</pre>
```


Pseudo-Code

More structured and less formal

- Expressions
 - Standard Math symbols (numeric/boolean)

- Method Declarations
 - Algorithm name(param1,param2)

- Programming Constructs:
 - If ... then ...else
 - While-loop
 - for-loop
 - Array : A[i]; A[I,j]
- Methods
 - Calls: method(args)
 - Returns: return value

Analysis of Algorithms

- Analyze time taken by *Primitive Operations*
- Low level operations independent of programming language
 - Data movement (assign..)
 - Control (branch, subroutine call, return...)
 - Arithmetic/logical operations (add, compare..)
- By inspecting the pseudo-code, we can **count** the number of primitive operations executed by an algorithm

Example: Array Transpose

function **Transpose**(A[][], n) for i = 0 to n-1 do for j = i+1 to n-1 do tmp = A[i][j]A[i][j] = A[j][i]A[j][i] = tmpend end end Estimated time for A[n][n] = (n(n-1)/2).(3+2) + 2.n07-Sep-16 Is this constant for a given 'n'?

	j=0	j=3		
i=0	0,0	0,1	0,2	0,3
	1,0	1,1	1,2	1,3
	2,0	2,1	2,2	2,3
i=3	3,0	3,1	3,2	3,3

13

Example: Sorting

- Correctness:
 - For any given input the algorithm stops with the output {b1 < b2 < b3 ... < bn} which is a permutation of the input {a1, a2, ... an}

- Running time depends on:
 - Number of elements (n)
 - How partially sorted
 - Algorithm used

Insertion Sort

Insertion Sort

Loop invariants and the correctness of insertion sort

Analysis of Insertion Sort

# of Sorted	Best case	Worst case	
Elements			
0	0	0	
1	1	1	
2	1	2	
n-1	1	n-1	
-	n-1	n(n-1)/2	

Asymptotic Analysis

- **Goal**: to simplify analysis of running time by getting rid of 'details' which may be affected by specific implementation and hardware.
 - Like 'rounding': 1001 = 1000
 - $-3n^2=n^2$
- How the running time of an algorithm increases with the size of input in the limit.
 - Asymptotically more efficient algorithms are best *for all but* small inputs.

Asymptotic Notation: "Big O"

Definition 3.1 Let p(n) and q(n) be two nonnegative functions. p(n) is asymptotically bigger (p(n) asymptotically dominates q(n)) than the function q(n) iff

$$\lim_{n \to \infty} \frac{q(n)}{p(n)} = 0$$
 (3.1) *TB, Sahni*

- **O** Notation
 - Asymptotic upper bound
 - f(n)=O(g(n)), if there exists constants c and n₀, s.t.
 - $f(n) \leq c.g(n)$ for $n \geq n_0$
 - f(n) and g(n) are functions over non negative intergers
- Used for worst-case analysis
 - g(n) is the asymptotic upper bound of actual time taken

Asymptotic Notation

- Simple Rule: Drop lower order terms and constant factors
 - $-(n(n-1)/2).(3+2) + 2.n \text{ is } O(n^2)$
 - -23.n.log(n) is **O(n.log(n))**
 - -9n-6 is **O(n)**
 - -6n².log(n) + 3n² + n is **O(n².log(n))**
- Note: It is expected that the approximation should be as small an order as possible

Asymptotic Analysis of Running Time

- Use *O* notation to express number of primitive operations executed as a function of input size.
- Hierarchy of functions

$$1 < \log n < n < n^2 < n^3 < 2^n$$

Better

- Warning! Beware of large constants (say 1M).
 - This might be less efficient than one running in time 2n², which is O(n²)

Example of Asymptotic Analysis

- Input: An array X[n] of numbers.
- Output: An array A[n] of numbers s.t A[k]=mean(X[0]+X[1]+...+X[k-1])

```
for i=0 to (n-1) do
    a=0
    for j=0 to i do
        a = a + X[j]
    end
    A[i] = a/(i+1)
end
return A
```

Analysis: running time is O(n²)

A Better Algorithm

s=0
for i=0 to n do
 s = s + X[i]
 A[i] = s/(i+1)
end
return A

Analysis: running time is O(n)

Asymptotic Notation

- Special Cases of algorithms
 - Logarithmic O(log n)
 - Linear O(n)
 - Quadratic $O(n^2)$
 - Polynomial $O(n^k)$, k >1
 - Exponential O(aⁿ), a>1

log n	n	n log n	n ²	n³	2 ⁿ
0	1	0	1	1	2
1	2	2	4	8	4
2	4	8	16	64	16
3	8	24	64	512	256
4	16	64	256	4096	65536
5	32	160	1024	32768	4294967296

Asymptotic Notation: Lower Bound

- The "big-Omega" Ω notation
 - asymptotic *lower* bound
 - $f(n) = \Omega(g(n))$ if there exists const. c and n_0 s.t.
 - c.g(n) ≤ f(n) for n ≥ n₀
- Used to describe best-case asymptotic running times
 - E.g., lower-bound of *searching* an unsorted array; lower bound for *sorting* an array

Input Size

Asymptotic Notation: Tight Bound

- The "big-Theta" θ-Notation
 - Asymptotically tight bound
 - $f(n) = \theta(g(n)) \text{ if there exists} \\ \text{consts. } c_1, c_2 \text{ and } n_0 \text{ s.t. } c_1 g(n) \\ \leq f(n) \leq c_2 g(n) \text{ for } n \geq n_0$

Input Size

Small "o"

- **o** Notation
 - Asymptotic **strict upper** bound
 - -f(n)=O(g(n)), if there exists constants *c* and n_0 , s.t.
 - f(n) < c.g(n) for $n \ge n_0$

Similarly small omega, $\boldsymbol{\omega}$, is strict lower bound

Asymptotic Notation

- Analogy with real numbers
 - f(n) = O(g(n))
 - $f(n) = \Omega(g(n))$
 - $f(n) = \Theta(g(n))$
 - $f(n) = o(q(n)) \rightarrow f < q$
 - $f(n) = \omega(q(n))$

- $\rightarrow f \leq g$ $\rightarrow f \geq q$
- \rightarrow f = q

 - $\rightarrow f > q$

Polynomial and Intractable Algorithms

- Polynomial Time complexity
 - An algorithm is said to be polynomial if it is O(n^d)
 - for some integer d
 - Polynomial algorithms are said to be efficient
 - They solve problems in reasonable times!
- Intractable Algorithms
 - Algorithms for which there is no known
 - polynomial time algorithm.

Tasks

Submit CodeChef handle & profile link 2 Sep 2016 to mailing list

Self study (Sahni Textbook)

- Check: Have you read Chapters 5 & 6 "Linear Lists— Array & Linked Representations"
- Read: Chapter 3 & 4 "Asymptotic Notation" & "Performance Measurement"
- Try: Exercise 18 from Chapter 3 of textbook
- Finish Assignment 2 by Sun Sep 11 (50 points)
 - All submissions MUST work (compile, run) on turing cluster!

Questions?

©Department of Computational and Data Science, IISc, 2016 This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u> Copyright for external content used with attribution is retained by their original authors

