
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान

बंगलौर, भारत

Department of Computational and Data Sciences

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

DS286 | 2016-08-31,09-02

L6,7: Time &
Space Complexity

Yogesh Simmhan
s i m m h a n @ c d s . i i s c . a c . i n

Slides courtesy Venkatesh Babu, CDS

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.ac.in | Department of Computational and Data Sciences

Algorithm Analysis

• Algorithms can be evaluated on two
performance measures

• Time taken to run an algorithm

• Memory space required to run an algorithm

• …for a given input size

• Why are these important?

CDS.IISc.ac.in | Department of Computational and Data Sciences

Space Complexity

• Space complexity = Estimate of the amount
of memory required by an algorithm to run
to completion, for a given input size
– Core dumps = the most often encountered

cause is “memory leaks” – the amount of
memory required larger than the memory
available on a given system

• Some algorithms may be more efficient if
data completely loaded into memory
– Need to look also at system limitations

CDS.IISc.ac.in | Department of Computational and Data Sciences

Space Complexity

• Fixed part: The size required to store certain
data/variables, that is independent of the size
of the problem:
– e.g., given the definition for every word in a given

book

– Constant size for storing “dictionary”, e.g., 50MB

• Variable part: Space needed by variables,
whose size is dependent on the size of the
problem:
– e.g., actual book size may vary, 1MB … 1GB

CDS.IISc.ac.in | Department of Computational and Data Sciences

Analyzing Running Time

• Write program

• Run Program

• Measure actual running time with some methods
like System.currentTimeMillis(), gettimeofday()

• Is that good enough as a programmer?

CDS.IISc.ac.in | Department of Computational and Data Sciences

Limitation of Experimental
Running Time Measurements

• Need to implement the algorithm.

• Cannot exhaust all possible inputs

– Experiments can be done only on a limited to
set of inputs, and may not be indicative of the
running time for other inputs.

• Harder to compare two algorithms

– Same hardware/environments to be used

CDS.IISc.ac.in | Department of Computational and Data Sciences

Running Time

• Suppose the program includes an if-then statement
that may execute or not variable running time

• Typically algorithms are measured by their worst
case

CDS.IISc.ac.in | Department of Computational and Data Sciences

Develop General Methodology for
Analysis
• Uses High Level Description instead of

implementation

• Takes into account for all possible inputs

• Allows one to evaluate the efficiency
independent of hardware/software environment.

CDS.IISc.ac.in | Department of Computational and Data Sciences

Pseudo-Code

• Mix of natural language and high level
programming concepts that describes the main
idea behind algorithm

arrayMax(A,n)

Max=A[0]

for i=1 to n-1 do

If Max < A[i] then Max = A[i]

Return Max

CDS.IISc.ac.in | Department of Computational and Data Sciences

Pseudo-Code

• More structured and less formal

• Expressions

– Standard Math symbols (numeric/boolean)

• Method Declarations

– Algorithm name(param1,param2)

CDS.IISc.ac.in | Department of Computational and Data Sciences

Pseudo Code

• Programming Constructs:

– If … then …else

– While-loop

– for-loop

– Array : A[i]; A[I,j]

• Methods

– Calls: method(args)

– Returns: return value

CDS.IISc.ac.in | Department of Computational and Data Sciences

Analysis of Algorithms

• Analyze time taken by Primitive Operations

• Low level operations independent of
programming language
– Data movement (assign..)
– Control (branch, subroutine call, return…)
– Arithmetic/logical operations (add, compare..)

• By inspecting the pseudo-code, we can count
the number of primitive operations executed by
an algorithm

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example: Array Transpose

function Transpose(A[][], n)

for i = 0 to n-1 do

for j = i+1 to n-1 do

tmp = A[i][j]

A[i][j] = A[j][i]

A[j][i] = tmp

end

end

end

07-Sep-16 13

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

i=0

i=3

j=0 j=3

Estimated time for A[n][n] = (n(n-1)/2).(3+2) + 2.n
Is this constant for a given ‘n’?

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example: Sorting

• Correctness:
– For any given input the algorithm stops with the

output {b1 < b2 < b3 … < bn} which is a
permutation of the input {a1, a2, … an}

• Running time depends on:
– Number of elements (n)

– How partially sorted

– Algorithm used

CDS.IISc.ac.in | Department of Computational and Data Sciences

Insertion Sort

CDS.IISc.ac.in | Department of Computational and Data Sciences

Insertion Sort

(N-1) times

Tj times

CDS.IISc.ac.in | Department of Computational and Data Sciences

Analysis of Insertion Sort

of Sorted

Elements

Best case Worst case

0 0 0

1 1 1

2 1 2

… … …

n-1 1 n-1

n-1 n(n-1)/2

CDS.IISc.ac.in | Department of Computational and Data Sciences

Asymptotic Analysis

• Goal: to simplify analysis of running time
by getting rid of ‘details’ which may be
affected by specific implementation and
hardware.
– Like ‘rounding’: 1001 = 1000
– 3n2=n2

• How the running time of an algorithm
increases with the size of input in the limit.
– Asymptotically more efficient algorithms are

best for all but small inputs.

CDS.IISc.ac.in | Department of Computational and Data Sciences

Asymptotic Notation: “Big O”

• O Notation
– Asymptotic upper bound

– f(n)=O(g(n)), if there exists
constants c and n0, s.t.

 f(n) ≤ c.g(n) for n ≥ n0

– f(n) and g(n) are functions over
non negative intergers

• Used for worst-case analysis
• g(n) is the asymptotic upper bound of

actual time taken

c.g(n)

f(n)

Input Size

TB, Sahni

CDS.IISc.ac.in | Department of Computational and Data Sciences

Asymptotic Notation

• Simple Rule: Drop lower order terms
and constant factors

– (n(n-1)/2).(3+2) + 2.n is O(n2)

– 23.n.log(n) is O(n.log(n))

– 9n-6 is O(n)

– 6n2.log(n) + 3n2 + n is O(n2.log(n))

• Note: It is expected that the approximation
should be as small an order as possible

CDS.IISc.ac.in | Department of Computational and Data Sciences

Asymptotic Analysis of
Running Time

• Use O notation to express number of primitive
operations executed as a function of input size.

• Hierarchy of functions

1 < log n < n < n2 < n3 < 2n

• Warning! Beware of large constants (say 1M).

• This might be less efficient than one running in time 2n2,

which is O(n2)

Better

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example of Asymptotic Analysis

• Input: An array X[n] of numbers.

• Output: An array A[n] of numbers s.t A[k]=mean(X[0]+X[1]+…+X[k-1])

for i=0 to (n-1) do

a=0

for j=0 to i do

a = a + X[j]

end

A[i] = a/(i+1)

end

return A

Analysis: running time is O(n2)

CDS.IISc.ac.in | Department of Computational and Data Sciences

A Better Algorithm

s=0

for i=0 to n do

s = s + X[i]

A[i] = s/(i+1)

end

return A

 Analysis: running time is O(n)

CDS.IISc.ac.in | Department of Computational and Data Sciences

Asymptotic Notation

• Special Cases of algorithms
– Logarithmic O(log n)

– Linear O(n)

– Quadratic O(n2)

– Polynomial O(nk), k >1

– Exponential O(an), a>1

CDS.IISc.ac.in | Department of Computational and Data Sciences

Comparison

CDS.IISc.ac.in | Department of Computational and Data Sciences

Asymptotic Notation: Lower
Bound

• The “big-Omega” Ω
notation
– asymptotic lower bound

– f(n) = Ω(g(n)) if there exists const. c
and n0 s.t.

 c.g(n) ≤ f(n) for n ≥ n0

– Used to describe best-case
asymptotic running times
• E.g., lower-bound of searching an

unsorted array; lower bound for
sorting an array

c.g(n)

Input Size

f(n)

CDS.IISc.ac.in | Department of Computational and Data Sciences

Asymptotic Notation: Tight
Bound

• The “big-Theta” θ-
Notation

– Asymptotically tight bound

– f(n) = θ(g(n)) if there exists
consts. c1, c2 and n0 s.t. c1 g(n)
≤ f(n) ≤ c2 g(n) for n ≥ n0

• f(n) = θ (g(n)) iff

f(n)=O(g(n)) and f(n)=Ω(g(n))

c .g(n)1

Input Size

f(n)

c2.g(n)

CDS.IISc.ac.in | Department of Computational and Data Sciences

Small “o”

• o Notation

– Asymptotic strict upper bound

– f(n)=O(g(n)), if there exists constants c and
n0, s.t.

 f(n) < c.g(n) for n ≥ n0

Similarly small omega, ω, is strict lower bound

07-Sep-16 28

CDS.IISc.ac.in | Department of Computational and Data Sciences

Asymptotic Notation

• Analogy with real numbers

 f(n) =O(g(n)) f ≤ g

 f(n) =Ω(g(n)) f ≥ g

 f(n) =θ(g(n)) f = g

 f(n) =o(g(n)) f < g

 f(n) =ω(g(n)) f > g

CDS.IISc.ac.in | Department of Computational and Data Sciences

Polynomial and Intractable
Algorithms

• Polynomial Time complexity
– An algorithm is said to be polynomial if it is O(
nd)

 for some integer d

– Polynomial algorithms are said to be efficient
• They solve problems in reasonable times!

• Intractable Algorithms
– Algorithms for which there is no known

 polynomial time algorithm.

CDS.IISc.ac.in | Department of Computational and Data Sciences

Tasks
 Submit CodeChef handle & profile link 2 Sep 2016

to mailing list

 Self study (Sahni Textbook)
‣ Check: Have you read Chapters 5 & 6 “Linear Lists—

Array & Linked Representations”
‣ Read: Chapter 3 & 4 “Asymptotic Notation” &

“Performance Measurement”
‣ Try: Exercise 18 from Chapter 3 of textbook

 Finish Assignment 2 by Sun Sep 11 (50 points)
‣ All submissions MUST work (compile, run) on turing

cluster!

07-Sep-16 31

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

CDS.IISc.ac.in | Department of Computational and Data Sciences

Questions?

07-Sep-16 32

http://creativecommons.org/licenses/by/4.0/deed.en_US

