

DS286 2016-11-07 Midterm Solutions Yogesh Simmhan simmhan@cds.iisc.ac.in

©Department of Computational and Data Science, IISc, 2016 This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u> Copyright for external content used with attribution is retained by their original authors

Delete from Sorted Doubly Linked List

```
Node head;
```

```
void delete(int val) {
```

```
Node curr = head;
```

while(curr != null && curr.item < val) curr = curr.next; if(curr == null || curr.item > val) return; // Not found if(curr.prev == null) head = curr.next; // Delete head else curr.prev.next = curr.next; // Delete internal if(curr.next != null) curr.next.prev = curr.prev; delete curr;

}

Dictionary search using sorted array

int search(int key, Pair[] slist, int s, int e) {

int match = -1;

if (e < s) return match;</pre>

int mid = (s+e)/2;

if (slist[mid].key == key) return slist[mid].val;
else

if (key < slist[mid].key)
 return search(key, slist, s, mid-1);
else // key > slist[mid].key
 return search(key, slist, mid+1, e);

}

Dictionary search complexity

- Best case: O(1)
- Worst case: O(log n)
- Expected case: O(log n)

CDS.IISc.ac.in | **Department of Computational and Data Sciences**

Full Binary Tree of Primes

- Inorder: 7, 3, 11, 2, 13, 5, 17
- Preorder: 2, 3, 7, 11, 5, 13, 17
- Postorder: 7, 11, 3, 13, 17, 5, 2

Levels and Height

- Depth of a Node = Number of edges from the root to that node
- **Height** of a Tree = Number of edges from root to farthest leaf, i.e. Max(depth) over all leaves
- Number of Levels of a Tree = Height + 1

Binary Tree Properties

- The drawing of every binary tree with n elements, n > 0, has exactly n-1 edges.
 - Each node has exactly 1 parent (except root)
- A binary tree of height h, h >= 0, has <u>at least h+1</u> and <u>at most 2^{h+1}-1 elements in it.</u>
 - h+1 levels; at least 1 element at each level → #elements = h+1
 - At most 2^{i-1} elements at i-th level $\rightarrow \Sigma 2^{i-1} = 2^{h+1} 1$ $a+ar^1+ar^2+...+ar^n = a(r^{n+1}-1)/(r-1)$

Note: Some tree definitions differ between computer science & discrete math

Binary Tree Properties

- The height of a binary tree that contains n elements,
 n >= 0, is at least [log₂ n] and at most n-1.
 - − At least one element at each level \rightarrow h_{max} = #elements 1
 - From prev: h_{min} = ceil(log(n+1))

minimum number of elements

maximum number of elements

Full Binary Tree

- A full binary tree of height *h* has exactly 2^{*h*+1}-1 nodes
- Numbering the nodes in a full binary tree
 - Number the nodes 1 through $2^{h+1}-1$
 - Number by levels from top to bottom
 - Within a level, number from left to right

Tree height and nodes

- Maximum nodes in binary tree with *m* leaves
 Infinity!
- But, if assuming "Proper" Binary tree
 - i.e. every node has 0 or 2 children
 - Every pair of leaf has 1 parent
 - Every internal node pair has 1 parent
 - height m+m/2+m/4+...+1=2m-1
 - Does not have to be full/complete
- Minimum height of binary tree with n nodes
 - Minimum height when it is complete
 - $\lfloor \log_2 n \rfloor$
 - Any reasonable answer is given full points for grading.

2

11

3

5

Basket: Insert, lookup

BigBasket

- <u>Space</u>: O(n) <u>Time</u>: **insert()** = $O(n^2)$, $\Omega(n.\log n)$; **lookup()** = $O(n.\log n)$
- Takes less space, suitable for storing large number of items in memory
- Insertion time upper bound is very high and lower bound is low. Large variability between upper and lower bounds
- Lookup time upper bound is medium.
- Well suited when large number of items have to be stored in the ADT, with few insertions but with many lookups that take medium latency.

FastBasket

- <u>Space</u>: $O(n^2)$ <u>Time</u>: **insert()** = $\Theta(n^{1.5})$; **lookup()** = O(n)
- Takes a lot of space and is not suited for storing large number of items
- Insertion time is medium, but it is a tight bound. So good for frequent insertions with deterministic time bound if size does not grow large (need to delete)
- Lookup time upper bound is low, so good for frequent lookups as well.
- Well suited for applications with frequent insertions and lookups with low latency, as long as total size does not grow large and fits within memory.

Complexity

- Specific values of n do not make things good or bad, e.g. n=1000 may be horrible for O(n^2) but n=10^6 may be ok for O(log n)
- Cant directly compare space and time complexities

Application Needs

- Number of items that will be present at a time
- Size of each item
- Memory capacity of machine
- Frequency of inserts and lookups
- How important is low latency for insert & lookup?
- How predictable do you want the latency for operations to be?

Complexity

- Stack.push() as linked list: O(1), insert at head
- BST.search(key): O(log n) expected when balanced, O(n) worst case when skewed