
Fault Tolerance and 
Checkpointing

- Sathish Vadhiyar



Introduction

Checkpointing?
 storing application’s state in 

order to resume later



Motivation
 The largest parallel systems in the world have 

from 200,000 to 10 million parallel processing 
elements. (http://www.top500.org)

 Large-scale applications, that can use these 
large number of processes, are continuously 
being built.

 These applications are also long-running
 As the number of processing elements, 

increase the Mean Time Between Failure 
(MTBF) decreases

 So, how can long-running applications execute in 
this highly failure-prone environment? –
checkpointing and fault-tolerance

http://www.top500.org/


Independent checkpointing

 Processors checkpoint periodically 
without coordination

 Can lead to domino effect – each rollback 
of a processor to a previous checkpoint 
forces another processor to rollback 
even further



Checkpointing Methods

1. Coordinated checkpointing

1. All processes coordinate to take a consistent 
checkpoint (e.g. using a barrier)

2. Will always lead to consistent checkpoints

2. Checkpointing with message logging

1. Independent checkpoints are taken by 
processes and a process logs the messages it 
receives after the last checkpoint

2. Thus recovery is by previous checkpoint and 
the logged messages.



Message Logging

 In message-logging protocols, each process 
stores
 message contents and

 sequence number

of all messages it has sent or received into a 
message log

 To trim message logs, a process can also 
periodically checkpoint

 Once a process checkpoints, all messages 
sent/received before this checkpoint can 
be removed from log



Rules for Consistent Checkpointing

 In a parallel program, 
each process has events 
and local state
 An event changes the 

local state of a 
process

 Global state – an 
external view of the 
parallel application (e.g. 
lines S, S’, S’’) – used for 
checkpointing and 
restarting
 Consists of local 

states and messages 
in transit



Rules for Consistent Checkpointing 

 Types of global states

 Consistent global state – from 
where program can be restarted 
correctly

 Inconsistent - Otherwise



Rules for Consistent Checkpointing 

 Chandy & Lamport – 2 rules for consistent global states

 1. if a receive event is part of local state of a process, 
the corresponding send event must be part of the local 
state of the sender.

 2. if a send event is part of the local state of a process 
and the matching receive is not part of the local state of 
the receiver, then the message must be part of the state 
of the network.

 S’’ violates rule 1. Hence cannot lead to consistent 
global state



Checkpointing Performance



Checkpointing Performance

 Checkpoint overhead – time added to the 
running time of the application due to 
checkpointing

 Checkpoint latency hiding
 Checkpoint buffering – during checkpointing, 

copy data to local buffer, store buffer to 
disk in parallel with application progress

 Copy-on-write buffering – only the modified 
pages are copied to a buffer. Other pages 
can be directly stored without copying to 
buffer. Can be implemented using fork() –
forked checkpointing



Checkpointing Performance

 Reducing checkpoint size – memory 
exclusion and checkpoint compression

 Memory exclusion – no need to store 
dead and read-only variables
 A dead variable is one whose current value 

will not be used by the program; The 
variable will not be accessed again by the 
program or it will be overwritten before it is 
read

 Read only variable – whose value has not 
changed since the previous checkpoint



Incremental Checkpointing

 Memory exclusion can be made automatic 
by using incremental checkpointing
 Store only that part of data that have been 

modified from the previous checkpoint

 Following a checkpoint, all pages in memory 
are set to read-only

 When the program attempts to write a page, 
an access violation occurs

 During next checkpoint, only pages that have 
caused access violations are checkpointed



Checkpointing performance –
using compression

 Using a standard compression algorithm

 This is beneficial only if the extra 
processing time for compression is lower 
than the savings that result from writing 
a smaller file to disk



 Redundancy/replication + 
checkpointing for fault tolerance



Replication

 Every node/process N has a shadow 
node/process N’, so that if one of them fail, 
the other can still continue the application –
failure of the primary node no longer stalls 
the application

 Redundancy scales: As more nodes are 
added to the system, the probability of 
failure of both a node and its shadow 
rapidly decreases
 Only one of the remaining n-1 nodes represent a 

shadow node



Replication

 Less overhead for checkpointing
 Higher checkpointing interval/period for 

periodic checkpointing

 Recomputation and restart overheads are 
nearly eliminated

 Still need checkpointing: Why?



Total Redundancy



Partial Redundancy



Replication vs No Replication



References

 James S. Plank, ``An Overview of 
Checkpointing in Uniprocessor and 
Distributed Systems, Focusing on 
Implementation and Performance'', 
University of Tennessee Technical Report CS-
97-372, July, 1997 

 James Plank and Thomason. Processor 
Allocation and Checkpointing Interval 
Selection in Cluster Computing Systems. 
JPDC 2001.

http://www.cs.utk.edu/~plank/plank/papers/CS-97-372.html


References

 MPICH-V: Toward a Scalable Fault Tolerant 
MPI for Volatile Nodes -- George Bosilca, 
Aurélien Bouteiller, Franck Cappello, Samir 
Djilali, Gilles Fédak, Cécile Germain, Thomas 
Hérault, Pierre Lemarinier, Oleg Lodygensky, 
Frédéric Magniette, Vincent Néri, Anton 
Selikhov -- SuperComputing 2002, 
Baltimore USA, November 2002

 MPICH-V2: a Fault Tolerant MPI for Volatile 
Nodes based on the Pessimistic Sender Based 
Message Logging -- Aurélien Bouteiller, 
Franck Cappello, Thomas Hérault, Géraud 
Krawezik, Pierre Lemarinier, Frédéric 
Magniette -- To appear in SuperComputing 
2003, Phoenix USA, November 2003



References

 Vadhiyar, S. and Dongarra, J. “SRS - A 
Framework for Developing 
Malleable and Migratable Parallel 
Applications for Distributed 
Systems”. Parallel Processing Letters, 
Vol. 13, number 2, pp. 291-312, June 
2003. 



References

 Schulz et al. Implementation and 
Evaluation of a Scalable Application-
level Checkpoint-Recovery Scheme 
for MPI Programs. SC 2004.



References for Replication

 Evaluating the viability of process 
replication reliability for exascale 
systems. SC 2011.

 Combining Partial Redundancy and 
Checkpointing for HPC. ICDCS 2012

https://cfwebprod.sandia.gov/cfdocs/CCIM/docs/paper7.pdf

