Fault Tolerance and
Checkpointing

- Sathish Vadhiyar



Introduction

0 Checkpointing?

B storing application’s state in
order to resume later




Motivation

[T The largest parallel systems in the world have

from 200,000 to 10 million parallel processing
elements. (http://www.top500.0rg)

Large-scale applications, that can use these
large number of processes, are continuously
being built.

These applications are also long-running

As the number of processing elements,

increase the Mean Time Befween Failure
(MTBF) decreases

So, how can long-running applications execute in
this highly failure-prone environment? -
checkpointing and Tault-tolerance



http://www.top500.org/

Independent checkpointing

Processors checkpoint periodically
without coordination

Can lead to domino effect - each rollback
of a processor to a previous checkpoint
forces another processor to rollback
even further

CINSNINSNT




Checkpointing Methods

1. Coordinated checkpointing

1. All processes coordinate to take a consistent
checkpoint (e.g. using a barrier)

2. Will always lead to consistent checkpoints
2. Checkpointing with message logging

1. Independent checkpoints are taken by
processes and a process logs the messages it
receives after the last checkpoint

2. Thus recovery is by previous checkpoint and

the logged messages.



Message Logging

In message-logging protocols, each process
stores

B message contents and
B sequence number

of all messages it has sent or received into a
message log

To trim message logs, a process can also
periodically checkpoint

Once a process checkpoints, all messages

- sent/received before this checkpoint can

be removed from log




Rules for Consistent Checkpointing

O Ina parallel program,
each process has events
and local state

B An event changes the
local state of a
process

0 Global state - an
external view of the
parallel application (e.g.
lines S, S, S") - used for «
checkpointing and |
r‘eSTar‘Ting Figure 1. Global States.

B Consists of local
states and messages
in transit




Rules for Consistent Checkpointing

[0 Types of global states

B Consistent global state - from
where program can be restarted
correctly

B Tnconsistent - Otherwise




Rules for Consistent Checkpointing

O Chandy & Lamport - 2 rules for consistent global states

B 1 if areceive event is part of local state of a process,
the corresponding send event must be part of the local
state of the sender.

B 2 if asend event is part of the local state of a process
and the matching receive is not part of the local state of
the receiver, then the message must be part of the state
of the network.

[0 S" violates rule 1. Hence cannot lead to consistent
global state




Checkpointing Performance




Checkpointing Performance

Checkpoint overhead - time added to the
running time of the application due to
checkpointing

Checkpoint latency hiding

B Checkpoint buffering - during checkpointing,
copy data to local buffer, store buffer to
disk in parallel with application progress

B Copy-on-write buffering - only the modified
pages are copied to a buffer. Other pages
can be directly stored without copying to

buffer. Can be implemented using fork() -
forked checkpointing



Checkpointing Performance

Reducing checkpoint size - memory
exclusion and checkpoint compression

Memory exclusion - no need to store
dead and read-only variables

B A dead variable is one whose current value
will not be used by the program; The
variable will not be accessed again by the
program or it will be overwritten before it is
read

~ B Read only variable - whose value has not

changed since the previous checkpoint




Incremental Checkpointing

Memory exclusion can be made automatic
by using incremental checkpointing

B Store only that part of data that have been
modified from the previous checkpoint

B Following a checkpoint, all pages in memory
are set to read-only

B When the program attempts to write a page,
an access violation occurs

B During next checkpoint, only pages that have

caused access violations are checkpointed



Checkpointing performance -
using compression

Using a standard compression algorithm

This is beneficial only if the extra
processing time for compression is lower
than the savings that result from writing
a smaller file to disk




Redundancy/replication +
checkpointing for fault tolerance




Replication

Every node/process N has a shadow
node/process N', so that if one of them fail,
the other can still continue the application -
failure of the primary node no longer stalls
the application

Redundancy scales: As more nodes are
added to the system, the probability of
failure of both a node and its shadow
rapidly decreases

B Only one of the remaining n-1 nodes represent a

shadow node



Replication

Less overhead for checkpointing

B Higher checkpointing interval/period for
periodic checkpointing

B Recomputation and restart overheads are
nearly eliminated

Still need checkpointing: Why?




Total Redundancy




Partial Redundancy

MP|_Recvi(A)




Replication vs No Replication

100

"o Replaton
a0 Rep!

a0

70

&

50

% Efficency

a0

an

20

10

a

B ?%vl%%ﬁqb%qb%qb@%wﬁ%

Application-visible System Sockets




References

James S. Plank, = An Overview of
Checkpointing in Uniprocessor and
Distributed Systems, Focusing on
Implementation and Performance"

University of Tennessee Technical Report CS-
97-372, July, 1997

James Plank and Thomason. Processor
Allocation and Checkpointing Interval
Selection in Cluster Computing Systems.
JPDC 2001.



http://www.cs.utk.edu/~plank/plank/papers/CS-97-372.html

References

MPICH-V: Toward a Scalable Fault Tolerant
MPI for Volatile Nodes -- George Bosilca,
Aurélien Bouteiller, Franck Cappello, Samlr
Djilali, Gilles Fedak Cecile Germain, Thomas
Herault Pierre Lemarlnler Oleg Lodygensky,
Frédéric Magniette, Vincent Néri, Anton
Selikhov -- SuperCom uting 2002
Baltimore USA, November 2002

MPICH-V2: a Fault Tolerant MPI for Volatile
Nodes based on the Pessimistic Sender Based
Message Logging -- Aurelien Bouteiller,
Franck Cappello, Thomas Heérault, Géraud
Krawezik, Pierre Lemarinier, Frédéric

Magnlette -- To appear in SuperComputing
2003, Phoenix USA, November 2003




References

Vadhiyar, S. and Dongarra, J. "SRS - A
Framework for Developing
Malleable and Migratable Parallel
Applications for Distributed
Systems”. Parallel Processing Letters,
\2/86313' number 2, pp. 291-312, June




References

Schulz et al. Implementation and
Evaluation of a Scalable Application-
level Checkpoint-Recovery Scheme
for MPI Programs. SC 2004.




References for Replication

Evaluating the viability of process
replication reliability for exascale
systems. SC 2011.

Combining Partial Redundancy and
Checkpointing for HPC. ICDCS 2012



https://cfwebprod.sandia.gov/cfdocs/CCIM/docs/paper7.pdf

