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Introduction

0 Checkpointing?

B storing application’s state in
order to resume later




Motivation

[T The largest parallel systems in the world have

from 200,000 to 10 million parallel processing
elements. (http://www.top500.0rg)

Large-scale applications, that can use these
large number of processes, are continuously
being built.

These applications are also long-running

As the number of processing elements,

increase the Mean Time Befween Failure
(MTBF) decreases

So, how can long-running applications execute in
this highly failure-prone environment? -
checkpointing and Tault-tolerance



http://www.top500.org/

Independent checkpointing

Processors checkpoint periodically
without coordination

Can lead to domino effect - each rollback
of a processor to a previous checkpoint
forces another processor to rollback
even further
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Checkpointing Methods

1. Coordinated checkpointing

1. All processes coordinate to take a consistent
checkpoint (e.g. using a barrier)

2. Will always lead to consistent checkpoints
2. Checkpointing with message logging

1. Independent checkpoints are taken by
processes and a process logs the messages it
receives after the last checkpoint

2. Thus recovery is by previous checkpoint and

the logged messages.



Message Logging

In message-logging protocols, each process
stores

B message contents and
B sequence number

of all messages it has sent or received into a
message log

To trim message logs, a process can also
periodically checkpoint

Once a process checkpoints, all messages

- sent/received before this checkpoint can

be removed from log




Rules for Consistent Checkpointing

O Ina parallel program,
each process has events
and local state

B An event changes the
local state of a
process

0 Global state - an
external view of the
parallel application (e.g.
lines S, S, S") - used for «
checkpointing and |
r‘eSTar‘Ting Figure 1. Global States.

B Consists of local
states and messages
in transit




Rules for Consistent Checkpointing

[0 Types of global states

B Consistent global state - from
where program can be restarted
correctly

B Tnconsistent - Otherwise




Rules for Consistent Checkpointing

O Chandy & Lamport - 2 rules for consistent global states

B 1 if areceive event is part of local state of a process,
the corresponding send event must be part of the local
state of the sender.

B 2 if asend event is part of the local state of a process
and the matching receive is not part of the local state of
the receiver, then the message must be part of the state
of the network.

[0 S" violates rule 1. Hence cannot lead to consistent
global state




Checkpointing Performance




Checkpointing Performance

Checkpoint overhead - time added to the
running time of the application due to
checkpointing

Checkpoint latency hiding

B Checkpoint buffering - during checkpointing,
copy data to local buffer, store buffer to
disk in parallel with application progress

B Copy-on-write buffering - only the modified
pages are copied to a buffer. Other pages
can be directly stored without copying to

buffer. Can be implemented using fork() -
forked checkpointing



Checkpointing Performance

Reducing checkpoint size - memory
exclusion and checkpoint compression

Memory exclusion - no need to store
dead and read-only variables

B A dead variable is one whose current value
will not be used by the program; The
variable will not be accessed again by the
program or it will be overwritten before it is
read

~ B Read only variable - whose value has not

changed since the previous checkpoint




Incremental Checkpointing

Memory exclusion can be made automatic
by using incremental checkpointing

B Store only that part of data that have been
modified from the previous checkpoint

B Following a checkpoint, all pages in memory
are set to read-only

B When the program attempts to write a page,
an access violation occurs

B During next checkpoint, only pages that have

caused access violations are checkpointed



Checkpointing performance -
using compression

Using a standard compression algorithm

This is beneficial only if the extra
processing time for compression is lower
than the savings that result from writing
a smaller file to disk




Redundancy/replication +
checkpointing for fault tolerance




Replication

Every node/process N has a shadow
node/process N', so that if one of them fail,
the other can still continue the application -
failure of the primary node no longer stalls
the application

Redundancy scales: As more nodes are
added to the system, the probability of
failure of both a node and its shadow
rapidly decreases

B Only one of the remaining n-1 nodes represent a

shadow node



Replication

Less overhead for checkpointing

B Higher checkpointing interval/period for
periodic checkpointing

B Recomputation and restart overheads are
nearly eliminated

Still need checkpointing: Why?




Total Redundancy




Partial Redundancy
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Replication vs No Replication
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