
Fault Tolerance and 
Checkpointing

- Sathish Vadhiyar



Introduction

Checkpointing?
 storing application’s state in 

order to resume later



Motivation
 The largest parallel systems in the world have 

from 200,000 to 10 million parallel processing 
elements. (http://www.top500.org)

 Large-scale applications, that can use these 
large number of processes, are continuously 
being built.

 These applications are also long-running
 As the number of processing elements, 

increase the Mean Time Between Failure 
(MTBF) decreases

 So, how can long-running applications execute in 
this highly failure-prone environment? –
checkpointing and fault-tolerance

http://www.top500.org/


Independent checkpointing

 Processors checkpoint periodically 
without coordination

 Can lead to domino effect – each rollback 
of a processor to a previous checkpoint 
forces another processor to rollback 
even further



Checkpointing Methods

1. Coordinated checkpointing

1. All processes coordinate to take a consistent 
checkpoint (e.g. using a barrier)

2. Will always lead to consistent checkpoints

2. Checkpointing with message logging

1. Independent checkpoints are taken by 
processes and a process logs the messages it 
receives after the last checkpoint

2. Thus recovery is by previous checkpoint and 
the logged messages.



Message Logging

 In message-logging protocols, each process 
stores
 message contents and

 sequence number

of all messages it has sent or received into a 
message log

 To trim message logs, a process can also 
periodically checkpoint

 Once a process checkpoints, all messages 
sent/received before this checkpoint can 
be removed from log



Rules for Consistent Checkpointing

 In a parallel program, 
each process has events 
and local state
 An event changes the 

local state of a 
process

 Global state – an 
external view of the 
parallel application (e.g. 
lines S, S’, S’’) – used for 
checkpointing and 
restarting
 Consists of local 

states and messages 
in transit



Rules for Consistent Checkpointing 

 Types of global states

 Consistent global state – from 
where program can be restarted 
correctly

 Inconsistent - Otherwise



Rules for Consistent Checkpointing 

 Chandy & Lamport – 2 rules for consistent global states

 1. if a receive event is part of local state of a process, 
the corresponding send event must be part of the local 
state of the sender.

 2. if a send event is part of the local state of a process 
and the matching receive is not part of the local state of 
the receiver, then the message must be part of the state 
of the network.

 S’’ violates rule 1. Hence cannot lead to consistent 
global state



Checkpointing Performance



Checkpointing Performance

 Checkpoint overhead – time added to the 
running time of the application due to 
checkpointing

 Checkpoint latency hiding
 Checkpoint buffering – during checkpointing, 

copy data to local buffer, store buffer to 
disk in parallel with application progress

 Copy-on-write buffering – only the modified 
pages are copied to a buffer. Other pages 
can be directly stored without copying to 
buffer. Can be implemented using fork() –
forked checkpointing



Checkpointing Performance

 Reducing checkpoint size – memory 
exclusion and checkpoint compression

 Memory exclusion – no need to store 
dead and read-only variables
 A dead variable is one whose current value 

will not be used by the program; The 
variable will not be accessed again by the 
program or it will be overwritten before it is 
read

 Read only variable – whose value has not 
changed since the previous checkpoint



Incremental Checkpointing

 Memory exclusion can be made automatic 
by using incremental checkpointing
 Store only that part of data that have been 

modified from the previous checkpoint

 Following a checkpoint, all pages in memory 
are set to read-only

 When the program attempts to write a page, 
an access violation occurs

 During next checkpoint, only pages that have 
caused access violations are checkpointed



Checkpointing performance –
using compression

 Using a standard compression algorithm

 This is beneficial only if the extra 
processing time for compression is lower 
than the savings that result from writing 
a smaller file to disk



 Redundancy/replication + 
checkpointing for fault tolerance



Replication

 Every node/process N has a shadow 
node/process N’, so that if one of them fail, 
the other can still continue the application –
failure of the primary node no longer stalls 
the application

 Redundancy scales: As more nodes are 
added to the system, the probability of 
failure of both a node and its shadow 
rapidly decreases
 Only one of the remaining n-1 nodes represent a 

shadow node



Replication

 Less overhead for checkpointing
 Higher checkpointing interval/period for 

periodic checkpointing

 Recomputation and restart overheads are 
nearly eliminated

 Still need checkpointing: Why?



Total Redundancy



Partial Redundancy



Replication vs No Replication



References

 James S. Plank, ``An Overview of 
Checkpointing in Uniprocessor and 
Distributed Systems, Focusing on 
Implementation and Performance'', 
University of Tennessee Technical Report CS-
97-372, July, 1997 

 James Plank and Thomason. Processor 
Allocation and Checkpointing Interval 
Selection in Cluster Computing Systems. 
JPDC 2001.

http://www.cs.utk.edu/~plank/plank/papers/CS-97-372.html


References

 MPICH-V: Toward a Scalable Fault Tolerant 
MPI for Volatile Nodes -- George Bosilca, 
Aurélien Bouteiller, Franck Cappello, Samir 
Djilali, Gilles Fédak, Cécile Germain, Thomas 
Hérault, Pierre Lemarinier, Oleg Lodygensky, 
Frédéric Magniette, Vincent Néri, Anton 
Selikhov -- SuperComputing 2002, 
Baltimore USA, November 2002

 MPICH-V2: a Fault Tolerant MPI for Volatile 
Nodes based on the Pessimistic Sender Based 
Message Logging -- Aurélien Bouteiller, 
Franck Cappello, Thomas Hérault, Géraud 
Krawezik, Pierre Lemarinier, Frédéric 
Magniette -- To appear in SuperComputing 
2003, Phoenix USA, November 2003



References

 Vadhiyar, S. and Dongarra, J. “SRS - A 
Framework for Developing 
Malleable and Migratable Parallel 
Applications for Distributed 
Systems”. Parallel Processing Letters, 
Vol. 13, number 2, pp. 291-312, June 
2003. 



References

 Schulz et al. Implementation and 
Evaluation of a Scalable Application-
level Checkpoint-Recovery Scheme 
for MPI Programs. SC 2004.



References for Replication

 Evaluating the viability of process 
replication reliability for exascale 
systems. SC 2011.

 Combining Partial Redundancy and 
Checkpointing for HPC. ICDCS 2012

https://cfwebprod.sandia.gov/cfdocs/CCIM/docs/paper7.pdf

