
Game of Life

Courtesy: Dr. David Walker, Cardiff 
University



A Dynamical System
- WaTor Courtesy: Dr. David Walker, 

Cardiff

 Tracking evolution of life

 A 2-D ocean in which sharks and fish 
survive

 2 important features

a. Potential conflicts due to updates by 
different processors

b. Need for dynamic load distribution

 Features shared by other advanced 
parallel applications



WaTor – The problem

 Ocean divided into grids

 Each grid cell can be empty or have a 
fish or a shark

 Grid initially populated with fishes 
and sharks in a random manner

 Population evolves over discrete time 
steps according to certain rules



WaTor - Rules

Fish:

 At each time step, a fish tries to 
move to a neighboring empty cell. If 
not empty, it stays

 If a fish reaches a breeding age, 
when it moves, it breeds, leaving 
behind a fish of age 0. Fish cannot 
breed if it doesn’t move.

 Fish never starves



WaTor - Rules

Shark:

 At each time step, if one of the neighboring 
cells has a fish, the shark moves to that cell 
eating the fish. If not and if one of the 
neighboring cells is empty, the shark moves 
there. Otherwise, it stays.

 If a shark reaches a breeding age, when it 
moves, it breeds, leaving behind a shark of 
age 0. shark cannot breed if it doesn’t move.

 Sharks eat only fish. If a shark reaches a 
startvation age (time steps since last eaten), 
it dies.



Inputs and Data Structures
Inputs:
 Size of the grid
 Distribution of sharks and fishes
 Shark and fish breeding ages
 Shark starvation age
Data structures:
A 2-D grid of cells
struct ocean{
int type /* shark or fish or empty */
struct swimmer* occupier;

}ocean[MAXX][MAXY]
A linked list of swimmers
struct swimmer{
int type;
int x,y;
int age;
int last_ate;
int iteration;
swimmer* prev;
swimmer* next;

} *List;

Sequential Code Logic

•Initialize ocean array and 
swimmers list

•In each time step, go through 
the swimmers in the order in 
which they are stored and 
perform updates



Towards a Parallel Code

 2-D data distribution similar to 
Laplace and molecular dynamics is 
used. Each processor holds a grid of 
ocean cells.

 For communication, each processor 
needs data from 4 neighboring 
processors.

 2 new challenges – potential for 
conflicts, load balancing



1st Challenge – Potential for 
Conflicts

 Unlike previous problems, 
border cells may change 
during updates due to fish or 
shark movement

 Border cells need to be 
communicated back to the 
original processor. Hence 
update step involves 
communication

 In the meantime, the original 
processor may have updated 
the border cell. Hence 
potential conflicts

Time T

Time T+1

S F S

F

F F

F

F

F

F

S

F

F

S

F

F

F

F

F

S



2 Techniques

 Rollback updates for those particles 
(fish or shark) that have crossed 
processor boundary and are in 
potential conflicts.

 May lead to several rollbacks until a 
free space is found.

 2nd technique is synchronization
during updates to avoid conflicts in 
the first place.



2 Techniques

 During update, a processor x 
sends its data first to 
processor y, allows y to 
perform its updates, get the 
updates from y, and then 
performs its own updates.

 Synchronization can be done 
by sub-partitioning.

 Divide a grid owned by a 
processor into sub-grids.

 This way, some parallelism is 
achieved in neighbor updates

1 2

3 4

1 2

3 4

update



Load Imbalance

 The workload distribution changes 
over time

 2-D block distribution is not optimal

Techniques:

Static load balancing by a different 
data distribution

Dynamic load balancer



Static Data Distribution

 Using cyclic or block-cyclic

Problems: 
Increase in boundary data; increase in 
communication



Dynamic load balancing

 Performed at each time step

 Orthogonal Recursive Bisection (ORB)

Problems: Complexity in finding the neighbors and data for 
communication



 END



Dynamic Load Balancing


