
Game of Life

Courtesy: Dr. David Walker, Cardiff 
University



A Dynamical System
- WaTor Courtesy: Dr. David Walker, 

Cardiff

 Tracking evolution of life

 A 2-D ocean in which sharks and fish 
survive

 2 important features

a. Potential conflicts due to updates by 
different processors

b. Need for dynamic load distribution

 Features shared by other advanced 
parallel applications



WaTor – The problem

 Ocean divided into grids

 Each grid cell can be empty or have a 
fish or a shark

 Grid initially populated with fishes 
and sharks in a random manner

 Population evolves over discrete time 
steps according to certain rules



WaTor - Rules

Fish:

 At each time step, a fish tries to 
move to a neighboring empty cell. If 
not empty, it stays

 If a fish reaches a breeding age, 
when it moves, it breeds, leaving 
behind a fish of age 0. Fish cannot 
breed if it doesn’t move.

 Fish never starves



WaTor - Rules

Shark:

 At each time step, if one of the neighboring 
cells has a fish, the shark moves to that cell 
eating the fish. If not and if one of the 
neighboring cells is empty, the shark moves 
there. Otherwise, it stays.

 If a shark reaches a breeding age, when it 
moves, it breeds, leaving behind a shark of 
age 0. shark cannot breed if it doesn’t move.

 Sharks eat only fish. If a shark reaches a 
startvation age (time steps since last eaten), 
it dies.



Inputs and Data Structures
Inputs:
 Size of the grid
 Distribution of sharks and fishes
 Shark and fish breeding ages
 Shark starvation age
Data structures:
A 2-D grid of cells
struct ocean{
int type /* shark or fish or empty */
struct swimmer* occupier;

}ocean[MAXX][MAXY]
A linked list of swimmers
struct swimmer{
int type;
int x,y;
int age;
int last_ate;
int iteration;
swimmer* prev;
swimmer* next;

} *List;

Sequential Code Logic

•Initialize ocean array and 
swimmers list

•In each time step, go through 
the swimmers in the order in 
which they are stored and 
perform updates



Towards a Parallel Code

 2-D data distribution similar to 
Laplace and molecular dynamics is 
used. Each processor holds a grid of 
ocean cells.

 For communication, each processor 
needs data from 4 neighboring 
processors.

 2 new challenges – potential for 
conflicts, load balancing



1st Challenge – Potential for 
Conflicts

 Unlike previous problems, 
border cells may change 
during updates due to fish or 
shark movement

 Border cells need to be 
communicated back to the 
original processor. Hence 
update step involves 
communication

 In the meantime, the original 
processor may have updated 
the border cell. Hence 
potential conflicts

Time T

Time T+1

S F S

F

F F

F

F

F

F

S

F

F

S

F

F

F

F

F

S



2 Techniques

 Rollback updates for those particles 
(fish or shark) that have crossed 
processor boundary and are in 
potential conflicts.

 May lead to several rollbacks until a 
free space is found.

 2nd technique is synchronization
during updates to avoid conflicts in 
the first place.



2 Techniques

 During update, a processor x 
sends its data first to 
processor y, allows y to 
perform its updates, get the 
updates from y, and then 
performs its own updates.

 Synchronization can be done 
by sub-partitioning.

 Divide a grid owned by a 
processor into sub-grids.

 This way, some parallelism is 
achieved in neighbor updates

1 2

3 4

1 2

3 4

update



Load Imbalance

 The workload distribution changes 
over time

 2-D block distribution is not optimal

Techniques:

Static load balancing by a different 
data distribution

Dynamic load balancer



Static Data Distribution

 Using cyclic or block-cyclic

Problems: 
Increase in boundary data; increase in 
communication



Dynamic load balancing

 Performed at each time step

 Orthogonal Recursive Bisection (ORB)

Problems: Complexity in finding the neighbors and data for 
communication



 END



Dynamic Load Balancing


