
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान

बंगलौर, भारत

Department of Computational and Data Sciences

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

DS221 | 19 Sep – 19 Oct, 2017

Data Structures,
Algorithms & Data
Science Platforms

Yogesh Simmhan
s i m m h a n @ c d s . i i s c . a c . i n

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.ac.in | Department of Computational and Data Sciences

What we will cover
Data Structures & Algos: 6 lectures
‣ Refresher of data structure basics
‣ Some “advanced” topics on trees, graphs, concurrent

structures
‣ Algorithmic analysis and design patterns
‣ Will NOT teach programming
‣ 1 programming assignment, 26 Sep [10 points]

Data Science Platforms: 3 lectures
‣ Introduction to Cloud computing, Big Data platforms
‣ Apache Spark, tutorial
‣ 1 short programming assignment, 10 Oct [5 points]

Mid-term exam, 19 Oct [10 points]

2017-09-19 2

CDS.IISc.ac.in | Department of Computational and Data Sciences

Class Resources
Website

‣ Schedule, Lectures, Assignments, Additional Reading
‣ http://cds.iisc.ac.in/courses/ds221/

 Textbook
‣ Data Structures, Algorithms, and Applications in C++, 2nd

Edition, Sartaj Sahni*,**
• http://www.cise.ufl.edu/~sahni/dsaac/

 Other resources
‣ The C++ Programming Language, 3rd Edition, Bjarne

Stroustrup
‣ THE ART OF COMPUTER PROGRAMMING (Volume 1 /

Fundamental Algorithms), Donald Knuth
‣ Introduction to Algorithms, Cormen, Leiserson, Rivest and

Stein
‣ www.geeksforgeeks.org/data-structures/

2017-09-19 3*http://www.tatabookhouse.com/data-structures-algorithms-and-applications-in-c-plus-plus--9788173715228?ver=1519259641
**http://www.flipkart.com/data-structures-algorithms-applications-c-english-2nd/p/itmeyf6jvka3kzdu

http://cds.iisc.ac.in/courses/ds221/
http://www.cise.ufl.edu/~sahni/dsaac/
http://www.geeksforgeeks.org/data-structures/
http://www.tatabookhouse.com/data-structures-algorithms-and-applications-in-c-plus-plus--9788173715228?ver=1519259641
http://www.flipkart.com/data-structures-algorithms-applications-c-english-2nd/p/itmeyf6jvka3kzdu

CDS.IISc.ac.in | Department of Computational and Data Sciences

Ethics Guidelines

 Students must uphold IISc’s Code of Conduct.
‣ Review them! Failure to follow them will lead to sanctions

and penalties: reduced or failing grade … Zero Tolerance!

 Learning takes place both within and outside the class
‣ More outside than inside

 Discussions between students and reference to online
material is highly encouraged

 However, you must form your own ideas and complete
problems and assignments by yourself.

 All works submitted by the student as part of their
academic assessment must be their own!

2017-09-19 4

CDS.IISc.ac.in | Department of Computational and Data Sciences

L1: Introduction

2017-09-19 5

CDS.IISc.ac.in | Department of Computational and Data Sciences

Concepts

 Algorithm: Outline, the essence of a computational
procedure, with step-by-step instructions

 Program: An implementations of an algorithm in
some programming language

Data structure: Organization of data needed to
solve the problem (array, list, hashmap)

 Algorithmic Analysis: The expected behaviour of
the algorithm you have designed, before you run it

 Empirical Analysis: The behaviour of the program
that implements the algorithm, by running it

2017-09-19 6

Why not just
run it and see

how it behaves?

CDS.IISc.ac.in | Department of Computational and Data Sciences

Limitation of Empirical Analysis

Need to implement the algorithm
‣ Time consuming

 Cannot exhaust all possible inputs
‣ Experiments can be done only on a limited to set of

inputs

‣ May not be indicative of running time for other inputs

Harder to compare two algorithms
‣ Same hardware/environments needs to be used

2017-09-19 7

CDS.IISc.ac.in | Department of Computational and Data Sciences

How do we design an algorithm?

 Intuition

Mixture of techniques, design patterns

 Experience (body of knowledge)

 Data structures, analysis

2017-09-19 8

How do we implement a program?

 Preferred High Level Language, e.g. C++, Java, Python

Map algorithm to language, retaining properties

Use native data structures, libraries Then why learn
about basic data

structures?

CDS.IISc.ac.in | Department of Computational and Data Sciences

Algorithm, Data Structure &
Language are interconnected

 Algorithms based on specific data structures, their
behavior

 Algorithms are limited to the features of the
programming language
‣ Procedural, Functional, Object oriented, distributed

 Data structures may/may not be natively
implemented in language
‣ Java Collections, C++ STL, NumPy

2017-09-19 9

CDS.IISc.ac.in | Department of Computational and Data Sciences

Basic Data
Structures
Lists

2017-09-19 10

CDS.IISc.ac.in | Department of Computational and Data Sciences

Collections of data

 Data Structures to store collections of primitive
data types
‣ Primitive types are called items, elements,
instances, values…depending on context
‣ Primitive types can be boolean, byte, integer, etc.

 Properties of the collection
‣ Invariants that must be maintained, irrespective of

operations

Operations on the collection
‣ Standard operations to create, modify, access elements

 Different implementations for same abstract
collection

2017-09-19 11

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linear List

 Properties
‣ Ordered list of items…precedes, succeeds; first, last

‣ Index for each item…lookup or address item by index
value

‣ Finite size for the list…can be empty, size may vary

‣ Items of same type present in the list

Operations
‣ Create, destroy

‣ Lookup by index, item value

‣ Find size, if empty

‣ Add, delete item

2017-09-19 12

0 1 2 3 4 5 6

36 5 75 11 7 19 -1

Index

Item

Type = int, Size = 7

CDS.IISc.ac.in | Department of Computational and Data Sciences

1-D Array Representation

 Implementation of the abstract list data structure
using programming language
‣ “Backing” Data Structure

 arrays are contiguous memory locations with
fixed capacity

 Allow elements of same type to be present at
specific positions in the array

 Index in a List can be mapped to a Position in the
Array
‣ Mapping function from list index to array position

2017-09-19 13

CDS.IISc.ac.in | Department of Computational and Data Sciences

Mapping Function
List index to Array position

 Say n is the capacity of the array

 Simple mapping
‣ position(index) = index

Wrap-around mapping
‣ position(index) = (position(0)+index) % n

‣ position(0) = front

2017-09-19 14

0 1 2 3 4

0 1 2 3 4 5 6

36 5 75 11 7 -- --

0 1 2 3 4 5 6

0 1 2 3 4 5 6

-1 36 5 75 11 7 19

n=7

n=7, front=1

CDS.IISc.ac.in | Department of Computational and Data Sciences

List Operations

 void set(index, item)

 item get(index)

 void append(item)

 void remove(index)

 int size()

 int capacity()

 boolean isEmpty()

 int indexOf(item)

2017-09-19 15

CDS.IISc.ac.in | Department of Computational and Data Sciences

class List { // list with index starting at 1

int arr[] // backing array for list

int capacity // current capacity of array

int size // current occupied size of list

/**

* Create an empty list with optional

* initial capacity provided. Default capacity of 15

* is used otherwise.

*/

void create(int _capacity){

capacity = _capacity > 0 ? _capacity : 15

arr = new int[capacity] // create backing array

size = 0 // initialize size

}

2017-09-19 17

CDS.IISc.ac.in | Department of Computational and Data Sciences

// assuming pos = index-1 mapping fn.
void set(int index, int item){

if(index > capacity) { // grow array, double it
arrNue = int[MAX(index, 2*capacity)]

// copy all items from old array to new

// source, target, src start, trgt start, length
copyAll(arr, arrNue, 0, 0, capacity)

capacity = MAX(index, 2*capacity) // update var.

delete(arr) // free up memory
arr = arrNue

}
if(index < 1) {

cout << “Invalid index:” << index << “Expect >=1”
} else {

int pos = index – 1
arr[pos] = item
size++

} // end if

} // end set()
} // end List

18

CDS.IISc.ac.in | Department of Computational and Data Sciences

List Operations using
Arrays
 Increasing capacity

 Start with initial capacity given by user, or default

When capacity is reached
‣ Create array with more capacity, e.g. double it

‣ Copy values from old to new array

‣ Delete old array space

 Can also be used to shrink space
‣ Why?

 Pros & Cons of List using Arrays

2017-09-19 19

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linked List Representation

 Problem with array: Pre-defined capacity, under-
usage, cost to move items when full

 Solution: Grow backing data structure dynamically
when we add or remove Only use as much
memory as required

 Linked lists use pointers to contiguous chain items
‣ Node structure contains item and pointer to next

node in List

‣ Add or remove nodes when setting or getting items

2017-09-19 22

CDS.IISc.ac.in | Department of Computational and Data Sciences

Node & Chain

class Node {

int item

Node* next

}

class LinkedList {

Node* head

int size

append() {...}

get() {...}

set() {...}

remove {...}

}
2017-09-19 23

6 Φ

Node* head address
e.g. 0x37

item Node* next
e.g. null

6 0x54

Node* head address

item Node* next
e.g. 0x54

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linked List Operations

2017-09-19 24

head=null Initial empty list

6 Φhead=0x37

0x37 Add item 6

6 0x54head=0x37

0x37

4 Φ

0x54 Add item 4

Add items 8, 2

head=0x37 6 0x54

0x37

4 0x7A

0x54

8 0xF1

0x7A

2 Φ

0xF1

Remove 3

head=0x37 6 0x54

0x37

4 0xF1

0x54

2 Φ

0xF1

Remove 1

head=0x54 4 0xF1

0x54

2 Φ

0xF1

CDS.IISc.ac.in | Department of Computational and Data Sciences

Algorithmic
Analysis

2017-09-19 25

CDS.IISc.ac.in | Department of Computational and Data Sciences

Algorithm Analysis

• Algorithms can be evaluated on two
performance measures

• Time taken to run an algorithm

• Memory space required to run an algorithm

• …for a given input size

• Later, I/O and Communication complexity

• Why are these important?

2017-09-19 26

CDS.IISc.ac.in | Department of Computational and Data Sciences

Space Complexity

• Estimate of the amount of peak memory
required for an algorithm to run to completion,
for a given input size
– Core dumps/OOMEx: Memory required is larger

than the memory available on a given system

– Algorithm design problem OR “memory leaks” in
implementation

• Some algorithms may be more efficient if data
completely loaded into memory
– Need to look also at system limitations

2017-09-19 27

CDS.IISc.ac.in | Department of Computational and Data Sciences

Space Complexity

• Fixed part: The size required to store certain
data/variables, that is independent of the size
of the problem:
– e.g., for all valid words, given a set of letters

– e.g., etymology for each work in a dictionary

• Variable part: Space needed by variables,
whose size is dependent on the size of the
problem:
– e.g., number of letters in a scrabble game

– e.g., text of Shakespeare's plays

2017-09-19 28

CDS.IISc.ac.in | Department of Computational and Data Sciences

Running Time

• Suppose the program includes an if-then statement
that may execute or not variable running time

• Typically algorithms are measured by their worst case

2017-09-19 30

CDS.IISc.ac.in | Department of Computational and Data Sciences

General Methodology for
Analysis

Uses High Level Description instead of
implementation

 Takes into account for all possible inputs

 Allows one to evaluate the efficiency independent
of hardware/software environment

2017-09-19 31

CDS.IISc.ac.in | Department of Computational and Data Sciences

Pseudo-Code
Mix of natural language and high level programming

concepts that describes the main idea behind algorithm

 Control flow
‣ If … then …else

‣ While-loop

‣ for-loop

 Simple data structures
‣ Array : A[i]; A[I,j]

Methods
‣ Calls: methodName(args)

‣ Returns: return value

2017-09-19 32

int arrayMax(int[] A, int n)
Max=A[0]
for i=1 to n-1 do
if Max < A[i]
then Max = A[i]

return Max

CDS.IISc.ac.in | Department of Computational and Data Sciences

Analysis of Algorithms

 Analyze time taken by Primitive Operations

 Low level operations independent of programming
language
‣ Data movement (assign..)

‣ Control (branch, subroutine call, return…)

‣ Arithmetic/logical operations (add, compare..)

 By inspecting the pseudo-code, we can count the
number of primitive operations executed by an
algorithm

2017-09-19 34

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example: Array Transpose

function Transpose(A[][], n)

for i = 0 to n-1 do

for j = i+1 to n-1 do

tmp = A[i][j]

A[i][j] = A[j][i]

A[j][i] = tmp

end

end

end

2017-09-19 35

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

i=0

i=3

j=0 j=3

Estimated time for A[n][n] = (n(n-1)/2).(3+2) + 2.n
Is this constant for a given ‘n’?

Swap
Outer
Loop

Inner
Loop

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example: Sorting

• Correctness:
– For any given input the algorithm stops with the

output {b1 < b2 < b3 … < bn} which is a
permutation of the input {a1, a2, … an}

• Running time depends on:
– Number of elements (n)

– How partially sorted

– Algorithm used

2017-09-19 36

CDS.IISc.ac.in | Department of Computational and Data Sciences

39

Insertion sort
 The outer loop of insertion sort is:

for (outer = 1; outer < a.length; outer++) {...}

 The invariant is that all the elements to the left of outer
are sorted with respect to one another
‣ For all i < outer, j < outer, if i < j then a[i] <= a[j]

‣ This does not mean they are all in their final correct place; the
remaining array elements may need to be inserted

‣ When we increase outer, a[outer-1] becomes to its left; we must
keep the invariant true by inserting a[outer-1] into its proper
place

‣ This means:
• Finding the element’s proper place

• Making room for the inserted element (by shifting over other
elements)

• Inserting the element

CDS.IISc.ac.in | Department of Computational and Data Sciences

40

One step of insertion sort

3 4 7 12 14 14 20 21 33 38 10 55 9 23 28 16

sorted outer: next to be inserted

3 4 7 55 9 23 28 16

10

temp

3833212014141210

sorted

less than 10

CDS.IISc.ac.in | Department of Computational and Data Sciences

41

Analysis of insertion sort
We run once through the outer loop, inserting each

of n elements; this is a factor of n

On average, there are n/2 elements already sorted
‣ The inner loop looks at (and moves) half of these

‣ This gives a second factor of n/4

Hence, the time required for an insertion sort of an
array of n elements is proportional to n2/4

CDS.IISc.ac.in | Department of Computational and Data Sciences

Analysis of Insertion Sort

of Sorted

Elements

Best case Worst case

0 0 0

1 1 1

2 1 2

… … …

n-1 1 n-1

n-1 n(n-1)/2

2017-09-19 42

CDS.IISc.ac.in | Department of Computational and Data Sciences

Asymptotic Analysis

• Goal: to simplify analysis of running time
by getting rid of ‘details’ which may be
affected by specific implementation and
hardware.
– Like ‘rounding’: 1001 = 1000
– 3n2=n2

• How the running time of an algorithm
increases with the size of input in the limit.
– Asymptotically more efficient algorithms are

best for all but small inputs.
2017-09-19 43

CDS.IISc.ac.in | Department of Computational and Data Sciences

Asymptotic Notation: “Big O”

• O Notation
– Asymptotic upper bound

– f(n)=O(g(n)), if there exists
constants c and n0, s.t.

 f(n) ≤ c.g(n) for n ≥ n0

– f(n) and g(n) are functions over
non negative intergers

• Used for worst-case analysis
• g(n) is the asymptotic upper bound of

actual time taken

c.g(n)

f(n)

Input Size

TB, Sahni

2017-09-19 44

CDS.IISc.ac.in | Department of Computational and Data Sciences

Asymptotic Notation

• Simple Rule: Drop lower order terms
and constant factors

– (n(n-1)/2).(3+2) + 2.n is O(n2)

– 23.n.log(n) is O(n.log(n))

– 9n-6 is O(n)

– 6n2.log(n) + 3n2 + n is O(n2.log(n))

• Note: It is expected that the approximation
should be as small an order as possible

2017-09-19 45

CDS.IISc.ac.in | Department of Computational and Data Sciences

Asymptotic Analysis of
Running Time

• Use O notation to express number of primitive
operations executed as a function of input size.

• Hierarchy of functions

1 < log n < n < n2 < n3 < 2n

• Warning! Beware of large constants (say 1M).

• This might be less efficient than one running in time 2n2,

which is O(n2)

Better

2017-09-19 46

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example of Asymptotic Analysis

• Input: An array X[n] of numbers.

• Output: An array A[n] of numbers s.t A[k]=mean(X[0]+X[1]+…+X[k-1])

for i=0 to (n-1) do

a=0

for j=0 to i do

a = a + X[j]

end

A[i] = a/(i+1)

end

return A

Analysis: running time is O(n2)

2017-09-19 47

CDS.IISc.ac.in | Department of Computational and Data Sciences

A Better Algorithm

s=0

for i=0 to n do

s = s + X[i]

A[i] = s/(i+1)

end

return A

 Analysis: running time is O(n)

2017-09-19 48

CDS.IISc.ac.in | Department of Computational and Data Sciences

Asymptotic Notation

• Special Cases of algorithms
– Logarithmic O(log n)

– Linear O(n)

– Quadratic O(n2)

– Polynomial O(nk), k >1

– Exponential O(an), a>1

2017-09-19 49

CDS.IISc.ac.in | Department of Computational and Data Sciences

Comparison

2017-09-19 50

CDS.IISc.ac.in | Department of Computational and Data Sciences

Asymptotic Notation: Lower
Bound

• The “big-Omega” Ω
notation
– asymptotic lower bound

– f(n) = Ω(g(n)) if there exists const. c
and n0 s.t.

 c.g(n) ≤ f(n) for n ≥ n0

– Used to describe best-case
asymptotic running times
• E.g., lower-bound of searching an

unsorted array; lower bound for
sorting an array

c.g(n)

Input Size

f(n)

2017-09-19 51

CDS.IISc.ac.in | Department of Computational and Data Sciences

Asymptotic Notation: Tight
Bound

• The “big-Theta” θ-
Notation

– Asymptotically tight bound

– f(n) = θ(g(n)) if there exists
consts. c1, c2 and n0 s.t. c1 g(n)
≤ f(n) ≤ c2 g(n) for n ≥ n0

• f(n) = θ (g(n)) iff

f(n)=O(g(n)) and f(n)=Ω(g(n))

c .g(n)1

Input Size

f(n)

c2.g(n)

2017-09-19 52

CDS.IISc.ac.in | Department of Computational and Data Sciences

Small “o”

• o Notation

– Asymptotic strict upper bound

– f(n)=O(g(n)), if there exists constants c and
n0, s.t.

 f(n) < c.g(n) for n ≥ n0

Similarly small omega, ω, is strict lower bound

2017-09-19 53

CDS.IISc.ac.in | Department of Computational and Data Sciences

Asymptotic Notation

• Analogy with real numbers

 f(n) =O(g(n)) f ≤ g

 f(n) =Ω(g(n)) f ≥ g

 f(n) =θ(g(n)) f = g

 f(n) =o(g(n)) f < g

 f(n) =ω(g(n)) f > g

2017-09-19 54

CDS.IISc.ac.in | Department of Computational and Data Sciences

Polynomial and Intractable
Algorithms

• Polynomial Time complexity
– An algorithm is said to be polynomial if it is O(

nd)

 for some integer d

– Polynomial algorithms are said to be efficient
• They solve problems in reasonable times!

• Intractable Algorithms
– Algorithms for which there is no known

 polynomial time algorithm.

2017-09-19 55

CDS.IISc.ac.in | Department of Computational and Data Sciences

Complexity: List using
Arrays
 Storage Complexity: Amount of storage required by

the data structure, relative to items stored

 List using Array: …

 Computational Complexity: Number of CPU cycles
required to perform each data structure operation

 size(), set(), get(), indexOf()

2017-09-19 56

CDS.IISc.ac.in | Department of Computational and Data Sciences

Complexity: List using
Linked List
 Storage Complexity
‣ Only store as many items as you need

‣ But…

 Computational Complexity
‣ set(), get(), remove()

‣ indexOf()

Other Pros & Cons?
‣ Memory management, mixed item types

2017-09-19 57

CDS.IISc.ac.in | Department of Computational and Data Sciences

Choosing between List
implementations
When to pick array based List?

When to pick Linked List?

Other lists
‣ Doubly linked list

‣ Sequential lists & Iterators

2017-09-19 58

CDS.IISc.ac.in | Department of Computational and Data Sciences

Tasks
 Self study (Sahni Textbook)
‣ Chapter 3 & 4 “Asymptotic Notation” & “Performance

Measurement”

‣ Chapters 5 & 6 “Linear Lists—Array & Linked
Representations”

2017-09-19 59

