4F0%, ndian Institute of Sclence artment of Computational and Data Sciences

DS221|19 Sep - 19 Oct, 2017
Data Structures,

Algorithms & Data
Science Platforms

http://creativecommons.org/licenses/by/4.0/deed.en_US

partment of Computational and Data Sciences

= Data Structures & Algos: 6 lectures
» Refresher of data structure basics

» Some “advanced” topics on trees, graphs, concurrent
structures

» Algorithmic analysis and design patterns
» Will NOT teach programming
» 1 programming assignment, 26 Sep [10 points]

= Data Science Platforms: 3 lectures
» Introduction to Cloud computing, Big Data platforms
» Apache Spark, tutorial
» 1 short programming assignment, 10 Oct [5 points]

=" Mid-term exam, 19 Oct [10 points]

2017-09-19 0

CDS.lISc.ac.in | Department of Computational and Data Sciences

Class Resources

= \Website

» Schedule, Lectures, Assignments, Additional Reading
» http://cds.iisc.ac.in/courses/ds221/

= Textbook

» Data Structures, Algorithms, and Applications in C++, 2"
Edition, Sartaj Sahni*,**

* http://www.cise.ufl.edu/~sahni/dsaac/

= Other resources

» The C++ Programming Language, 3" Edition, Bjarne
Stroustrup

» THE ART OF COMPUTER PROGRAMMING (Volume 1/
Fundamental Algorithms), Donald Knuth

» Introduction to Algorithms, Cormen, Leiserson, Rivest and
Stein

» www.geeksforgeeks.org/data-structures/

2 0]_7—09—]_9 *http://Www.tatabookhouse.com/data-structures-aIgorithms-and-applications-in-c-plus-plus--9788173715228?ver=ﬂ519259641
**http://www.flipkart.com/data-structures-algorithms-applications-c-english-2nd/p/itmeyf6jvka3kzdu

http://cds.iisc.ac.in/courses/ds221/
http://www.cise.ufl.edu/~sahni/dsaac/
http://www.geeksforgeeks.org/data-structures/
http://www.tatabookhouse.com/data-structures-algorithms-and-applications-in-c-plus-plus--9788173715228?ver=1519259641
http://www.flipkart.com/data-structures-algorithms-applications-c-english-2nd/p/itmeyf6jvka3kzdu

Department of Computational and Data Sciences

= Students must uphold 11Sc’s Code of Conduct.

» Review them! Failure to follow them will lead to sanctions
and penalties: reduced or failing grade ... Zero Tolerance!

= | earning takes place both within and outside the class
» More outside than inside ©

= Dijscussions between students and reference to online
material is highly encouraged

= However, you must form your own ideas and complete
problems and assignments by yourself.

= All works submitted by the student as part of their
academic assessment must be their own!

2017-09-19 4

. CDS.lISc.ac.in | Department of Computational and Data Sciences

L.1: Introduction

2017-09-19 3

ent of Computational and Data Sciences

= Algorithm: Outline, the essence of a computational
procedure, with step-by-step instructions

" Program: An implementations of an algorithm in
some programming language Why not just
run it and see
how it behaves?

//////
= Algorithmic Analysis: The expected behaviour of ~

the algorithm you have designed, before you run it

= Data structure: Organization of data neec
solve the problem (array, list, hashmap)

= Empirical Analysis: The behaviour of the program
that implements the algorithm, by running it

2017-09-19 b

| Department of Computational and Data Sciences

= Need to implement the algorithm
» Time consuming

= Cannot exhaust all possible inputs

» Experiments can be done only on a limited to set of
inputs

» May not be indicative of running time for other inputs

=" Harder to compare two algorithms
» Same hardware/environments needs to be used

2017-09-19 /

irtment of Computational and Data Sciences

" [ntuition

= Mixture of techniques, design patterns
= Experience (body of knowledge)

= Data structures, analysis

= Preferred High Level Language, e.g. C++, Java, Python
=" Map algorithm to language, retaining properties

= Use native data structures, libraries Then why learn

about basic data
2017-09-19 structures?

CDS.lISc.ac.in | Department of Computational and Data Sciences

Algor1thm Data Structure &
Language are interconnected

= Algorithms based on specific data structures, their
behavior

= Algorithms are limited to the features of the
programming language
» Procedural, Functional, Object oriented, distributed
= Data structures may/may not be natively

implemented in language
» Java Collections, C++ STL, NumPy

2017-09-19 9

. CDS.lISc.ac.in | Department of Computational and Data Sciences

Basic Data
Structures

LIStsS

2017-09-19 10

| Department of Computational and Data Sciences

= Data Structures to store collections of primitive
data types

» Primitive types are called items, elements,
instances, values...depending on context

» Primitive types can be boolean, byte, integer, etc.

" Properties of the collection

» Invariants that must be maintained, irrespective of
operations

= Operations on the collection
» Standard operations to create, modify, access elements

= Different implementations for same abstract
collection

2017-09-19 11

| Department of Computational and Data Sciences

Type = int, Size = 7

Index 0 1 2 3 4 5 6

Item 36 5 75 11 7 19 -1
= Properties

» Ordered list of items...precedes, succeeds; first, last

> Index for each item...lookup or address item by index
value

> Finite size for the list...can be empty, size may vary
» [tems of same type present in the list

= Operations
» Create, destroy
» Lookup by index, item value
» Find size, if empty
» Add, delete item

2017-09-19 12

artment of Computational and Data Sciences

" Implementation of the abstract list data structure
using programming language
» “Backing” Data Structure

" arrays are contiguous memory locations with
fixed capacity

= Allow elements of same type to be present at
specific positions in the array

" Index in a List can be mapped to a Position in the
Array

» Mapping function from list index to array position

2017-09-19 13

CDS.lISc.ac.in | Department of Computational and Data Sciences

Mapping Function

List index to Array position

= Say n is the capacity of the array

. . 0O 1 2 3 4
= Simple mapping l l l l l =7
» position(index) = index 0 1/ 2 3 4 5 6

36 5 75 11 7

=" Wrap-around mapping
» position(index) = (position(®)+index) % n
» position(@) = front

n=7, front=1 1 365 75 11 7 | 19
2017-09-10 14

CDS.lISc.ac.in | Department of Computational and Data Sciences

List Operations

"void set(index, item)
»item get(index)

*void append(item)
*void remove(index)
»int size()

*int capacity()

" boolean isEmpty()
*int indexOf(item)

2017-09-19 13

CDS.lISc.ac.in | Department of Computational and Data Sciences

class List { // list with index starting at 1
int arr[] // backing array for list
int capacity // current capacity of array
int size // current occupied size of 1list
/>I<>I<

* Create an empty list with optional
* initial capacity provided. Default capacity of 15
* is used otherwise.
*/
void create(int _capacity){
capacity = capacity > @ ? capacity : 15
arr = new int[capacity] // create backing array
size = 0 // 1nitialize size

2017-09-19 17

CDS.lISc.ac.in | Department of Computational and Data Sciences

void set(int index, int item){
if(index > capacity) {
arrNue = int[MAX(index, 2*capacity)]

copyAlLL(arr, arrNue, 0, 0, capacity)
capacity = MAX(index, 2*capacity)
delete(arr)
arr = arrNue
}
if(index < 1) {
cout << “Invalid index:” << index << “Expect >=1"
} else {
int pos = index - 1
arr[pos] = item
size++

18

CDS.lISc.ac.in | Department of Computational and Data Sciences

List Operations using
Arrays

" I[ncreasing capacity
= Start with initial capacity given by user, or default

=" When capacity is reached

» Create array with more capacity, e.g. double it
» Copy values from old to new array
» Delete old array space

" Can also be used to shrink space
» Why?

" Pros & Cons of List using Arrays

2017-09-19 19

| Department of Computational and Data Sciences

= Problem with array: Pre-defined capacity, under-
usage, cost to move items when full

= Solution: Grow backing data structure dynamically
when we add or remove @ Only use as much
memory as required

" [inked lists use pointers to contiguous chain items

» Node structure contains item and pointer to next
node in List

» Add or remove nodes when setting or getting items

2017-09-19 20

CDS.lISc.ac.in | Department of Computational and Data Sciences

Node & Chain

class Node { Node* head address
int item) 4 €-8. 037
Node* next 6 | @

} item Node* next

. . .g. null

class LinkedList { g
Node* head Node* head address
int size 4
append() {...} 6 | Ox54
get() {...} item Node* next
set() {} e.g. 0x54
remove {...}

}

2017-09-19 23

CDS.lISc.ac.in | Department of Computational and Data Sciences

Linked List Operations

head=null Initial empty list
Ox37 Add item 6
head=06x37 6 -
Ox37 Ox54 Add item 4
head=0x37 6 - :I-
Ox37 Ox54 Ox7A oxgl Additems8, 2
Ox37 Ox54 OxF1 Remove 3
Ox54 OxF1 Remove 1

2017-09-19 24

CDS.lISc.ac.in | Department of Computational and Data Sciences

Algorithmic
Analysis

2017-09-19 23

in | Department of Computational and Data Sciences

e Algorithms can be evaluated on two
performance measures

* Time taken to run an algorithm

 Memory space required to run an algorithm

e ..foragiveninput size
e Later, I/O and Communication complexity

 Why are these important?

¢017-09-19 26

irtment of Computational and Data Sciences

e Estimate of the amount of peak memory
required for an algorithm to run to completion,
for a given input size

— Core dumps/OOMEx: Memory required is larger
than the memory available on a given system

— Algorithm design problem OR “memory leaks” in
implementation

 Some algorithms may be more efficient if data
completely loaded into memory

— Need to look also at system limitations

2017-09-19 0/

CDS.lISc.ac.in | Department of Computational and Data Sciences

Space Complexity

* Fixed part: The size required to store certain
data/variables, that is independent of the size
of the problem:

— e.g., for all valid words, given a set of letters
— e.g., etymology for each work in a dictionary

e Variable part: Space needed by variables,
whose size is dependent on the size of the
problem:

— e.g., number of letters in a scrabble game
— e.g., text of Shakespeare's plays

2017-09-19 28

Jms

4dms

Ims

2ms

1ms

ant of Computational and Data Sciences

_______________ Wworst-case

} average-case”?

- = = best-case

E F G

A B C D
Input

e Suppose the program Includes an If-then statement
that may execute or not = variable running time

e Typically algorithms are measured by their worst case

2017-09-19

30

CDS.lISc.ac.in | Department of Computational and Data Sciences

General Methodology for
Analysis
= Uses High Level Description instead of
implementation
= Takes into account for all possible inputs

= Allows one to evaluate the efficiency independent
of hardware/software environment

2017-09-19 jl

partment of Computational and Data Sciences

=" Mix of natural language and high level programming
concepts that describes the main idea behind algorithm

= Control flow
» If ... then ...else

» While-loop : : :
int arrayMax(int[] A, int n)
» for-loop Max=A[0]
= Simple data structures f"l':: tqzlx to A”['il] eo
> Array : Afi]; A[Lj] then Max = A[i]
= Methods return Max

» Calls: methodName(args)
» Returns: return value

2017-09-19 kY4

| Department of Computational and Data Sciences

" Analyze time taken by Primitive Operations

" Low level operations independent of programming
language
» Data movement (assign..)
» Control (branch, subroutine call, return...)
» Arithmetic/logical operations (add, compare..)

" By inspecting the pseudo-code, we can count the
number of primitive operations executed by an
algorithm

2017-09-19 34

CDS.lISc.ac.in | Department of Computational and Data Sciences

Example: Array Transpose

function Transpose(A[][], n)
for 1 = @ to n-1 do

j=0 j=3
for j = i+1 to n-1 do i=0 | 0,0 | 0,1 0,2 | 0,3
tmp = A[l][]] 1,0 1,1 (1,21,3
. . . . 2,0 | 2,1]2,2] 2,3
A[1][3J] = A[J][1] Y e e e B
A[J][i] = tmp
end

end 'iﬁi
end . . m Loop
Estimated time for A[n][n] = (n(n-1)/2).(3+2) + 2.n
a17-00-19 IS this constant for a given ‘n’? Inner

Loop

| Department of Computational and Data Sciences

e Correctness:

— For any given input the algorithm stops with the
output {bl < b2 < b3 .. < bn} whichisa
permutation of the input {al, a2, .. an}

* Running time depends on:

— Number of elements (n)
— How partially sorted
— Algorithm used

2017-09-19 36

CDS.lISc.ac.in | Department of Computational and Data Sciences

Insertion sort

= The outer loop of insertion sort is:
for (outer = 1; outer < a.length; outer++) {...}

= The invariant is that all the elements to the left of outer
are sorted with respect to one another
» For all i < outer, j < outer, if i < j then a[i] <= a[]j]

» This does not mean they are all in their final correct place; the
remaining array elements may need to be inserted

» When we increase outer, a[outer-1] becomes to its left; we must
keep the invariant true by inserting alouter-1] into its proper
place

» This means:
* Finding the element’s proper place

* Making room for the inserted element (by shifting over other
elements)

* Inserting the element
39

CDS.lISc.ac.in | Department of Computational and Data Sciences

One step of insertion sort

sorted f outer: next to be inserted
31417 [12114(14]120(21|33(38|10(55]1 9 |23(28]16
4 temp
less than 10
-1 10
3147 (10112114114 (20121133138(55]19 |23]|28/16
" ‘ -
——

sorted

40

| Department of Computational and Data Sciences

= We run once through the outer loop, inserting each
of n elements; this is a factor of n

* On average, there are n/2 elements already sorted
» The inner loop looks at (and moves) half of these
» This gives a second factor of n/4

" Hence, the time required for an insertion sort of an
array of n elements is proportional to n2/4

41

. CDS.lISc.ac.in | Department of Computational and Data Sciences

Analysis of Insertion Sort

of Sorted Best case Worst case
Elements
0 0 0
1 1 1
2 1 2
n-1 1 n-1
n-1 n(n-1)/2

2017-09-19 40

artment of Computational and Data Sciences

 Goal: to simplify analysis of running time
by getting rid of ‘details’ which may be
affected by specific implementation and
hardware.
— Like ‘rounding’: 1001 = 1000
— 3n2=n?

* How the running time of an algorithm
increases with the size of input in the limit.

— Asymptotically more efficient algorithms are
best for all but small inputs.

2017-09-19 43

Department of Computational and Data Sciences

Definition 3.1 Let p(n) and qg(n) be two nonnegative functions. p(n) is asymp-
totically bigger (p(n) asymptotically dominates q(n)) than the function q(n) iff

litn M = ()

w p(n)

* O Notation
— Asymptotic upper bound

— f(n)=0(g(n)), if there exists
constants c and ny, s.t.
» f(n) <c.g(n) forn =n,

— f(n) and g(n) are functions over
non negative intergers

* Used for worst-case analysis

* g(n)is the asymptotic upper bound of
actual time taken

2017-09-19

Running Time

(3.1) TB, Sahni

c.g(n)

f(n)

Input Size i

CDS.lISc.ac.in | Department of Computational and Data Sciences

Asymptotic Notation

* Simple Rule: Drop lower order terms
and constant factors

—(n(n-1)/2).(3+2) + 2.n is 0(n2?)

—23.n.log(n) is 0O(n.log(n))

—9n-6 1is 0(n)

—6n2.log(n) + 3n2+ n is 0(n2.log(n))
* Note: It is expected that the approximation

should be as small an order as possible

2017-09-19 45

CDS.lISc.ac.in | Department of Computational and Data Sciences

Asymptotlc Analysis of

Running Time

Use O notation to express number of primitive
operations executed as a function of input size.

* Hierarchy of functions

1 <logn<n<n<nd¢2n

Better

 Warning! Beware of large constants (say 1M).

* This might be less efficient than one running in time 2n2,
which is 0(n?)

2017-09-19 46

CDS.lISc.ac.in | Department of Computational and Data Sciences

Example of Asymptotic Analysis

* |nput: An array X[n] of numbers.
e Qutput: An array A[n] of numbers s.t A[k]=mean(X[O]+X[1]+...+X[k-1])

for i=0 to (n-1) do

a=0
for j=0 to 1 do
a=a+ X[j]
end
A[i] = a/(i+1)
end
return A

" Analysis: running time is O(n?)

2017-09-19 47

CDS.lISc.ac.in | Department of Computational and Data Sciences

A Better Algorithm

S=0

for 1i=0 to n do
s = s + X[1]
A[i1] = s/(i+1)

end

return A

= Analysis: running time is O(n)

2017-09-19

48

CDS.lISc.ac.in | Department of Computational and Data Sciences

Asymptotic Notation

e Special Cases of algorithms
— Logarithmic O(log n)
— Linear O(n)
— Quadratic O(n?)
— Polynomial O(nk), k >1
— Exponential O(a"), a>1

2017-09-19 49

CDS.lISc.ac.in | Department of Computational and Data Sciences

Comparison
log n n log n n° n° 2"
0 1 0 1 1 2
1 2 2 4 8 4
2 4 8 16 64 16
3 8 24 64 512 256
4 16 04 256 4096 65536
2 32 160 1024 32768 4294967296

2017-09-19

70

CDS.lISc.ac.in | Department of Computational and Data Sciences

Asymptotic Notation: Lower
Bound

* The “big-Omega” O
notation

— asymptotic lower bound E
— f(n) = Q(g(n)) if there exists const. ¢ %D) c.q(n)
and ng s.t. =
(o'
" c.g(n) <f(n) forn>n,
— Used to describe best-case
asymptotic running times
Input Size

* E.g., lower-bound of searching an
unsorted array; lower bound for
sorting an array

2017-09-19 71

CDS.lISc.ac.in | Department of Computational and Data Sciences

Asymptotlc Notation: Tight
Bound

* The “big-Theta” B-
Notation
— Asymptotically tight bound

— f(n) = B(g(n)) if there exists
consts. ¢4, ¢, and ng s.t. ¢, g(n)
<f(n) <c,g(n)fornz=n,

* f(n) =98 (g(n)) iff Input Size
f(n)=0(g(n)) and f(n)=Q(g(n))

2017-09-19 50

CDS.lISc.ac.in | Department of Computational and Data Sciences

Small “0”

* 0 Notation
— Asymptotic strict upper bound

— f(n)=0(g(n)), if there exists constants c and
ny, s.t.

" f(n) < c.g(n) forn 2 n,

Similarly small omega, w, is strict lower bound

2017-09-19 5]

1 . CDS.lISc.ac.in | Department of Computational and Data Sciences

Asymptotic Notation

* Analogy with real numbers
= f(n)=0(g(n)) 2 fsg
= f(n)=Q(g(n)) 2 f2g
= f(n)=6(g(n)) 2 f=g
= f(n)=0(g(n)) 2 f<g
" f(n) =w(g(n)) 2 f>g

2017-09-19 94

artment of Computational and Data Sciences

* Polynomial Time complexity

— An algorithm is said to be polynomial if it is Of
nd)
= for some integer d

— Polynomial algorithms are said to be efficient
* They solve problems in reasonable times!

* Intractable Algorithms
— Algorithms for which there is no known

= polynomial time algorithm.

2017-09-19 33

Department of Computational and Data Sciences

= Storage Complexity: Amount of storage required by
the data structure, relative to items stored

= List using Array: ...

= Computational Complexity: Number of CPU cycles
required to perform each data structure operation

= size(), set(), get(), indexOf()

2017-09-19 ili

CDS.lISc.ac.in | Department of Computational and Data Sciences

Complexity: List using
Linked List

= Storage Complexity

» Only store as many items as you need
» But...

= Computational Complexity

» set(), get(), remove()
» indexOf()

= Other Pros & Cons?
» Memory management, mixed item types

2017-09-19 37

CDS.lISc.ac.in | Department of Computational and Data Sciences

Choosing between List
implementations

=" When to pick array based List?
=" When to pick Linked List?

= Other lists
» Doubly linked list
» Sequential lists & Iterators

2017-09-19

78

CDS.lISc.ac.in | Department of Computational and Data Sciences

Tasks

= Self study (Sahni Textbook)

» Chapter 3 & 4 “Asymptotic Notation” & “Performance
Measurement”

» Chapters 5 & 6 “Linear Lists—Array & Linked
Representations”

2017-09-19 79

