
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान

बंगलौर, भारत

Department of Computational and Data Sciences

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

DS221 | 19 Sep – 19 Oct, 2017

Data Structures,
Algorithms & Data
Science Platforms

Yogesh Simmhan
s i m m h a n @ c d s . i i s c . a c . i n

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.ac.in | Department of Computational and Data Sciences

What we will cover
Data Structures & Algos: 6 lectures
‣ Refresher of data structure basics
‣ Some “advanced” topics on trees, graphs, concurrent

structures
‣ Algorithmic analysis and design patterns
‣ Will NOT teach programming
‣ 1 programming assignment, 26 Sep [10 points]

Data Science Platforms: 3 lectures
‣ Introduction to Cloud computing, Big Data platforms
‣ Apache Spark, tutorial
‣ 1 short programming assignment, 10 Oct [5 points]

Mid-term exam, 19 Oct [10 points]

2017-09-19 2

CDS.IISc.ac.in | Department of Computational and Data Sciences

Class Resources
Website

‣ Schedule, Lectures, Assignments, Additional Reading
‣ http://cds.iisc.ac.in/courses/ds221/

 Textbook
‣ Data Structures, Algorithms, and Applications in C++, 2nd

Edition, Sartaj Sahni*,**
• http://www.cise.ufl.edu/~sahni/dsaac/

 Other resources
‣ The C++ Programming Language, 3rd Edition, Bjarne

Stroustrup
‣ THE ART OF COMPUTER PROGRAMMING (Volume 1 /

Fundamental Algorithms), Donald Knuth
‣ Introduction to Algorithms, Cormen, Leiserson, Rivest and

Stein
‣ www.geeksforgeeks.org/data-structures/

2017-09-19 3*http://www.tatabookhouse.com/data-structures-algorithms-and-applications-in-c-plus-plus--9788173715228?ver=1519259641
**http://www.flipkart.com/data-structures-algorithms-applications-c-english-2nd/p/itmeyf6jvka3kzdu

http://cds.iisc.ac.in/courses/ds221/
http://www.cise.ufl.edu/~sahni/dsaac/
http://www.geeksforgeeks.org/data-structures/
http://www.tatabookhouse.com/data-structures-algorithms-and-applications-in-c-plus-plus--9788173715228?ver=1519259641
http://www.flipkart.com/data-structures-algorithms-applications-c-english-2nd/p/itmeyf6jvka3kzdu

CDS.IISc.ac.in | Department of Computational and Data Sciences

Ethics Guidelines

 Students must uphold IISc’s Code of Conduct.
‣ Review them! Failure to follow them will lead to sanctions

and penalties: reduced or failing grade … Zero Tolerance!

 Learning takes place both within and outside the class
‣ More outside than inside 

 Discussions between students and reference to online
material is highly encouraged

 However, you must form your own ideas and complete
problems and assignments by yourself.

 All works submitted by the student as part of their
academic assessment must be their own!

2017-09-19 4

CDS.IISc.ac.in | Department of Computational and Data Sciences

L1: Introduction

2017-09-19 5

CDS.IISc.ac.in | Department of Computational and Data Sciences

Concepts

 Algorithm: Outline, the essence of a computational
procedure, with step-by-step instructions

 Program: An implementations of an algorithm in
some programming language

Data structure: Organization of data needed to
solve the problem (array, list, hashmap)

 Algorithmic Analysis: The expected behaviour of
the algorithm you have designed, before you run it

 Empirical Analysis: The behaviour of the program
that implements the algorithm, by running it

2017-09-19 6

Why not just
run it and see

how it behaves?

CDS.IISc.ac.in | Department of Computational and Data Sciences

Limitation of Empirical Analysis

Need to implement the algorithm
‣ Time consuming

 Cannot exhaust all possible inputs
‣ Experiments can be done only on a limited to set of

inputs

‣ May not be indicative of running time for other inputs

Harder to compare two algorithms
‣ Same hardware/environments needs to be used

2017-09-19 7

CDS.IISc.ac.in | Department of Computational and Data Sciences

How do we design an algorithm?

 Intuition

Mixture of techniques, design patterns

 Experience (body of knowledge)

 Data structures, analysis

2017-09-19 8

How do we implement a program?

 Preferred High Level Language, e.g. C++, Java, Python

Map algorithm to language, retaining properties

Use native data structures, libraries Then why learn
about basic data

structures?

CDS.IISc.ac.in | Department of Computational and Data Sciences

Algorithm, Data Structure &
Language are interconnected

 Algorithms based on specific data structures, their
behavior

 Algorithms are limited to the features of the
programming language
‣ Procedural, Functional, Object oriented, distributed

 Data structures may/may not be natively
implemented in language
‣ Java Collections, C++ STL, NumPy

2017-09-19 9

CDS.IISc.ac.in | Department of Computational and Data Sciences

Basic Data
Structures
Lists

2017-09-19 10

CDS.IISc.ac.in | Department of Computational and Data Sciences

Collections of data

 Data Structures to store collections of primitive
data types
‣ Primitive types are called items, elements,
instances, values…depending on context
‣ Primitive types can be boolean, byte, integer, etc.

 Properties of the collection
‣ Invariants that must be maintained, irrespective of

operations

Operations on the collection
‣ Standard operations to create, modify, access elements

 Different implementations for same abstract
collection

2017-09-19 11

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linear List

 Properties
‣ Ordered list of items…precedes, succeeds; first, last

‣ Index for each item…lookup or address item by index
value

‣ Finite size for the list…can be empty, size may vary

‣ Items of same type present in the list

Operations
‣ Create, destroy

‣ Lookup by index, item value

‣ Find size, if empty

‣ Add, delete item

2017-09-19 12

0 1 2 3 4 5 6

36 5 75 11 7 19 -1

Index

Item

Type = int, Size = 7

CDS.IISc.ac.in | Department of Computational and Data Sciences

1-D Array Representation

 Implementation of the abstract list data structure
using programming language
‣ “Backing” Data Structure

 arrays are contiguous memory locations with
fixed capacity

 Allow elements of same type to be present at
specific positions in the array

 Index in a List can be mapped to a Position in the
Array
‣ Mapping function from list index to array position

2017-09-19 13

CDS.IISc.ac.in | Department of Computational and Data Sciences

Mapping Function
List index to Array position

 Say n is the capacity of the array

 Simple mapping
‣ position(index) = index

Wrap-around mapping
‣ position(index) = (position(0)+index) % n

‣ position(0) = front

2017-09-19 14

0 1 2 3 4

0 1 2 3 4 5 6

36 5 75 11 7 -- --

0 1 2 3 4 5 6

0 1 2 3 4 5 6

-1 36 5 75 11 7 19

n=7

n=7, front=1

CDS.IISc.ac.in | Department of Computational and Data Sciences

List Operations

 void set(index, item)

 item get(index)

 void append(item)

 void remove(index)

 int size()

 int capacity()

 boolean isEmpty()

 int indexOf(item)

2017-09-19 15

CDS.IISc.ac.in | Department of Computational and Data Sciences

class List { // list with index starting at 1

int arr[] // backing array for list

int capacity // current capacity of array

int size // current occupied size of list

/**

* Create an empty list with optional

* initial capacity provided. Default capacity of 15

* is used otherwise.

*/

void create(int _capacity){

capacity = _capacity > 0 ? _capacity : 15

arr = new int[capacity] // create backing array

size = 0 // initialize size

}

2017-09-19 17

CDS.IISc.ac.in | Department of Computational and Data Sciences

// assuming pos = index-1 mapping fn.
void set(int index, int item){

if(index > capacity) { // grow array, double it
arrNue = int[MAX(index, 2*capacity)]

// copy all items from old array to new

// source, target, src start, trgt start, length
copyAll(arr, arrNue, 0, 0, capacity)

capacity = MAX(index, 2*capacity) // update var.

delete(arr) // free up memory
arr = arrNue

}
if(index < 1) {

cout << “Invalid index:” << index << “Expect >=1”
} else {

int pos = index – 1
arr[pos] = item
size++

} // end if

} // end set()
} // end List

18

CDS.IISc.ac.in | Department of Computational and Data Sciences

List Operations using
Arrays
 Increasing capacity

 Start with initial capacity given by user, or default

When capacity is reached
‣ Create array with more capacity, e.g. double it

‣ Copy values from old to new array

‣ Delete old array space

 Can also be used to shrink space
‣ Why?

 Pros & Cons of List using Arrays

2017-09-19 19

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linked List Representation

 Problem with array: Pre-defined capacity, under-
usage, cost to move items when full

 Solution: Grow backing data structure dynamically
when we add or remove  Only use as much
memory as required

 Linked lists use pointers to contiguous chain items
‣ Node structure contains item and pointer to next

node in List

‣ Add or remove nodes when setting or getting items

2017-09-19 22

CDS.IISc.ac.in | Department of Computational and Data Sciences

Node & Chain

class Node {

int item

Node* next

}

class LinkedList {

Node* head

int size

append() {...}

get() {...}

set() {...}

remove {...}

}
2017-09-19 23

6 Φ

Node* head address
e.g. 0x37

item Node* next
e.g. null

6 0x54

Node* head address

item Node* next
e.g. 0x54

CDS.IISc.ac.in | Department of Computational and Data Sciences

Linked List Operations

2017-09-19 24

head=null Initial empty list

6 Φhead=0x37

0x37 Add item 6

6 0x54head=0x37

0x37

4 Φ

0x54 Add item 4

Add items 8, 2

head=0x37 6 0x54

0x37

4 0x7A

0x54

8 0xF1

0x7A

2 Φ

0xF1

Remove 3

head=0x37 6 0x54

0x37

4 0xF1

0x54

2 Φ

0xF1

Remove 1

head=0x54 4 0xF1

0x54

2 Φ

0xF1

CDS.IISc.ac.in | Department of Computational and Data Sciences

Algorithmic
Analysis

2017-09-19 25

CDS.IISc.ac.in | Department of Computational and Data Sciences

Algorithm Analysis

• Algorithms can be evaluated on two
performance measures

• Time taken to run an algorithm

• Memory space required to run an algorithm

• …for a given input size

• Later, I/O and Communication complexity

• Why are these important?

2017-09-19 26

CDS.IISc.ac.in | Department of Computational and Data Sciences

Space Complexity

• Estimate of the amount of peak memory
required for an algorithm to run to completion,
for a given input size
– Core dumps/OOMEx: Memory required is larger

than the memory available on a given system

– Algorithm design problem OR “memory leaks” in
implementation

• Some algorithms may be more efficient if data
completely loaded into memory
– Need to look also at system limitations

2017-09-19 27

CDS.IISc.ac.in | Department of Computational and Data Sciences

Space Complexity

• Fixed part: The size required to store certain
data/variables, that is independent of the size
of the problem:
– e.g., for all valid words, given a set of letters

– e.g., etymology for each work in a dictionary

• Variable part: Space needed by variables,
whose size is dependent on the size of the
problem:
– e.g., number of letters in a scrabble game

– e.g., text of Shakespeare's plays

2017-09-19 28

CDS.IISc.ac.in | Department of Computational and Data Sciences

Running Time

• Suppose the program includes an if-then statement
that may execute or not variable running time

• Typically algorithms are measured by their worst case

2017-09-19 30

CDS.IISc.ac.in | Department of Computational and Data Sciences

General Methodology for
Analysis

Uses High Level Description instead of
implementation

 Takes into account for all possible inputs

 Allows one to evaluate the efficiency independent
of hardware/software environment

2017-09-19 31

CDS.IISc.ac.in | Department of Computational and Data Sciences

Pseudo-Code
Mix of natural language and high level programming

concepts that describes the main idea behind algorithm

 Control flow
‣ If … then …else

‣ While-loop

‣ for-loop

 Simple data structures
‣ Array : A[i]; A[I,j]

Methods
‣ Calls: methodName(args)

‣ Returns: return value

2017-09-19 32

int arrayMax(int[] A, int n)
Max=A[0]
for i=1 to n-1 do
if Max < A[i]
then Max = A[i]

return Max

CDS.IISc.ac.in | Department of Computational and Data Sciences

Analysis of Algorithms

 Analyze time taken by Primitive Operations

 Low level operations independent of programming
language
‣ Data movement (assign..)

‣ Control (branch, subroutine call, return…)

‣ Arithmetic/logical operations (add, compare..)

 By inspecting the pseudo-code, we can count the
number of primitive operations executed by an
algorithm

2017-09-19 34

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example: Array Transpose

function Transpose(A[][], n)

for i = 0 to n-1 do

for j = i+1 to n-1 do

tmp = A[i][j]

A[i][j] = A[j][i]

A[j][i] = tmp

end

end

end

2017-09-19 35

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

i=0

i=3

j=0 j=3

Estimated time for A[n][n] = (n(n-1)/2).(3+2) + 2.n
Is this constant for a given ‘n’?

Swap
Outer
Loop

Inner
Loop

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example: Sorting

• Correctness:
– For any given input the algorithm stops with the

output {b1 < b2 < b3 … < bn} which is a
permutation of the input {a1, a2, … an}

• Running time depends on:
– Number of elements (n)

– How partially sorted

– Algorithm used

2017-09-19 36

CDS.IISc.ac.in | Department of Computational and Data Sciences

39

Insertion sort
 The outer loop of insertion sort is:

for (outer = 1; outer < a.length; outer++) {...}

 The invariant is that all the elements to the left of outer
are sorted with respect to one another
‣ For all i < outer, j < outer, if i < j then a[i] <= a[j]

‣ This does not mean they are all in their final correct place; the
remaining array elements may need to be inserted

‣ When we increase outer, a[outer-1] becomes to its left; we must
keep the invariant true by inserting a[outer-1] into its proper
place

‣ This means:
• Finding the element’s proper place

• Making room for the inserted element (by shifting over other
elements)

• Inserting the element

CDS.IISc.ac.in | Department of Computational and Data Sciences

40

One step of insertion sort

3 4 7 12 14 14 20 21 33 38 10 55 9 23 28 16

sorted outer: next to be inserted

3 4 7 55 9 23 28 16

10

temp

3833212014141210

sorted

less than 10

CDS.IISc.ac.in | Department of Computational and Data Sciences

41

Analysis of insertion sort
We run once through the outer loop, inserting each

of n elements; this is a factor of n

On average, there are n/2 elements already sorted
‣ The inner loop looks at (and moves) half of these

‣ This gives a second factor of n/4

Hence, the time required for an insertion sort of an
array of n elements is proportional to n2/4

CDS.IISc.ac.in | Department of Computational and Data Sciences

Analysis of Insertion Sort

of Sorted

Elements

Best case Worst case

0 0 0

1 1 1

2 1 2

… … …

n-1 1 n-1

n-1 n(n-1)/2

2017-09-19 42

CDS.IISc.ac.in | Department of Computational and Data Sciences

Asymptotic Analysis

• Goal: to simplify analysis of running time
by getting rid of ‘details’ which may be
affected by specific implementation and
hardware.
– Like ‘rounding’: 1001 = 1000
– 3n2=n2

• How the running time of an algorithm
increases with the size of input in the limit.
– Asymptotically more efficient algorithms are

best for all but small inputs.
2017-09-19 43

CDS.IISc.ac.in | Department of Computational and Data Sciences

Asymptotic Notation: “Big O”

• O Notation
– Asymptotic upper bound

– f(n)=O(g(n)), if there exists
constants c and n0, s.t.

 f(n) ≤ c.g(n) for n ≥ n0

– f(n) and g(n) are functions over
non negative intergers

• Used for worst-case analysis
• g(n) is the asymptotic upper bound of

actual time taken

c.g(n)

f(n)

Input Size

TB, Sahni

2017-09-19 44

CDS.IISc.ac.in | Department of Computational and Data Sciences

Asymptotic Notation

• Simple Rule: Drop lower order terms
and constant factors

– (n(n-1)/2).(3+2) + 2.n is O(n2)

– 23.n.log(n) is O(n.log(n))

– 9n-6 is O(n)

– 6n2.log(n) + 3n2 + n is O(n2.log(n))

• Note: It is expected that the approximation
should be as small an order as possible

2017-09-19 45

CDS.IISc.ac.in | Department of Computational and Data Sciences

Asymptotic Analysis of
Running Time

• Use O notation to express number of primitive
operations executed as a function of input size.

• Hierarchy of functions

1 < log n < n < n2 < n3 < 2n

• Warning! Beware of large constants (say 1M).

• This might be less efficient than one running in time 2n2,

which is O(n2)

Better

2017-09-19 46

CDS.IISc.ac.in | Department of Computational and Data Sciences

Example of Asymptotic Analysis

• Input: An array X[n] of numbers.

• Output: An array A[n] of numbers s.t A[k]=mean(X[0]+X[1]+…+X[k-1])

for i=0 to (n-1) do

a=0

for j=0 to i do

a = a + X[j]

end

A[i] = a/(i+1)

end

return A

Analysis: running time is O(n2)

2017-09-19 47

CDS.IISc.ac.in | Department of Computational and Data Sciences

A Better Algorithm

s=0

for i=0 to n do

s = s + X[i]

A[i] = s/(i+1)

end

return A

 Analysis: running time is O(n)

2017-09-19 48

CDS.IISc.ac.in | Department of Computational and Data Sciences

Asymptotic Notation

• Special Cases of algorithms
– Logarithmic O(log n)

– Linear O(n)

– Quadratic O(n2)

– Polynomial O(nk), k >1

– Exponential O(an), a>1

2017-09-19 49

CDS.IISc.ac.in | Department of Computational and Data Sciences

Comparison

2017-09-19 50

CDS.IISc.ac.in | Department of Computational and Data Sciences

Asymptotic Notation: Lower
Bound

• The “big-Omega” Ω
notation
– asymptotic lower bound

– f(n) = Ω(g(n)) if there exists const. c
and n0 s.t.

 c.g(n) ≤ f(n) for n ≥ n0

– Used to describe best-case
asymptotic running times
• E.g., lower-bound of searching an

unsorted array; lower bound for
sorting an array

c.g(n)

Input Size

f(n)

2017-09-19 51

CDS.IISc.ac.in | Department of Computational and Data Sciences

Asymptotic Notation: Tight
Bound

• The “big-Theta” θ-
Notation

– Asymptotically tight bound

– f(n) = θ(g(n)) if there exists
consts. c1, c2 and n0 s.t. c1 g(n)
≤ f(n) ≤ c2 g(n) for n ≥ n0

• f(n) = θ (g(n)) iff

f(n)=O(g(n)) and f(n)=Ω(g(n))

c .g(n)1

Input Size

f(n)

c2.g(n)

2017-09-19 52

CDS.IISc.ac.in | Department of Computational and Data Sciences

Small “o”

• o Notation

– Asymptotic strict upper bound

– f(n)=O(g(n)), if there exists constants c and
n0, s.t.

 f(n) < c.g(n) for n ≥ n0

Similarly small omega, ω, is strict lower bound

2017-09-19 53

CDS.IISc.ac.in | Department of Computational and Data Sciences

Asymptotic Notation

• Analogy with real numbers

 f(n) =O(g(n))  f ≤ g

 f(n) =Ω(g(n))  f ≥ g

 f(n) =θ(g(n))  f = g

 f(n) =o(g(n))  f < g

 f(n) =ω(g(n))  f > g

2017-09-19 54

CDS.IISc.ac.in | Department of Computational and Data Sciences

Polynomial and Intractable
Algorithms

• Polynomial Time complexity
– An algorithm is said to be polynomial if it is O(

nd)

 for some integer d

– Polynomial algorithms are said to be efficient
• They solve problems in reasonable times!

• Intractable Algorithms
– Algorithms for which there is no known

 polynomial time algorithm.

2017-09-19 55

CDS.IISc.ac.in | Department of Computational and Data Sciences

Complexity: List using
Arrays
 Storage Complexity: Amount of storage required by

the data structure, relative to items stored

 List using Array: …

 Computational Complexity: Number of CPU cycles
required to perform each data structure operation

 size(), set(), get(), indexOf()

2017-09-19 56

CDS.IISc.ac.in | Department of Computational and Data Sciences

Complexity: List using
Linked List
 Storage Complexity
‣ Only store as many items as you need

‣ But…

 Computational Complexity
‣ set(), get(), remove()

‣ indexOf()

Other Pros & Cons?
‣ Memory management, mixed item types

2017-09-19 57

CDS.IISc.ac.in | Department of Computational and Data Sciences

Choosing between List
implementations
When to pick array based List?

When to pick Linked List?

Other lists
‣ Doubly linked list

‣ Sequential lists & Iterators

2017-09-19 58

CDS.IISc.ac.in | Department of Computational and Data Sciences

Tasks
 Self study (Sahni Textbook)
‣ Chapter 3 & 4 “Asymptotic Notation” & “Performance

Measurement”

‣ Chapters 5 & 6 “Linear Lists—Array & Linked
Representations”

2017-09-19 59

