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Graphs are commonplace

Web & Social Networks
‣ Web graph, Citation Networks, Twitter, Facebook, Internet

 Knowledge networks & relationships
‣ Google’s Knowledge Graph, NELL

 Cybersecurity
‣ Telecom call logs, financial transactions, Malware

 Internet of Things
‣ Transport, Power, Water networks

 Bioinformatics
‣ Gene sequencing, Gene expression networks
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Graph Algorithms

 Traversals: Paths & flows between different parts of 
the graph
‣ Breadth First Search, Shortest path, Minimum Spanning 

Tree, Eulerian paths, MaxCut

 Clustering: Closeness between sets of vertices
‣ Community detection & evolution, Connected 

components, K-means clustering, Max Independent Set

 Centrality: Relative importance of vertices
‣ PageRank, Betweenness Centrality

2016-03-23 3
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But, Graphs can be 
challenging
 Computationally complex algorithms
‣ Shortest Path: O((E+V) log V) ~ O(EV)

‣ Centrality: O(EV) ~ O(V3)

‣ Clustering: O(V) ~ O(V3)

 And these are for “shared-memory” algorithms

2016-03-23

Graph500.org’s fastest 
supercomputer, K 
computer with 
524,288 cores 
performed at 17E+12 
TEPS 
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But, Graphs can be 
challenging
Graphs sizes can be huge
‣ Google’s index contains 50B pages

‣ Facebook has around 1.1B users 

‣ Twitter has around 530M users

‣ Google+ has around 570M users

2016-03-23

Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 
2014
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But, Graphs can be 
challenging
 Shared memory algorithms don’t scale!
 Do not fit naturally to Hadoop/MapReduce

‣ Multiple MR jobs (iterative MR)
‣ Topology & Data written to HDFS each time
‣ Tuple, rather than graph-centric, abstraction

 Lot of work on parallel graph libraries for HPC
‣ Boost Graph Library, Graph500
‣ Storage & compute are (loosely) coupled, not fault tolerant
‣ But everyone does not have a supercomputer 

 Processing and querying are different
‣ Graph DBs not suited for analytics
‣ Focus on large simple graphs, complex “queries”
‣ E.g. Neo4J, FlockDB, 4Store, Titan

2016-03-23 8
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Google’s Pregel

Google, to overcome, these challenges came up 
with Pregel.
‣ Provides scalability

‣ Fault-tolerance

‣ Flexibility to express arbitrary algorithms

 The high level organization of Pregel programs is 
inspired by Valiant’s Bulk Synchronous Parallel 
(BSP) model [1].

2016-03-23

Slides courtesy “Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010”
[1] Leslie G. Valiant, A Bridging Model for Parallel Computation. Comm. ACM 33(8), 1990
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Bulk Synchronous Parallel 
(BSP)
 Distributed execution model
‣ Compute  Communicate Compute Communicate 
 …

‣ Bulk messaging avoids comm. costs

2016-03-23
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Vertex-centric BSP

 Series of iterations (supersteps) .

 Each vertex V invokes a function in parallel.

 Can read messages sent in previous superstep (S-1).

 Can send messages, to be read at the next 
superstep (S+1).

 Can modify state of outgoing edges.

Input
All Vote
to Halt Output

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010
2016-03-23 11
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Advantage? 
 In Vertex-Centric Approach

Users focus on a local action
‣ Think of Map method over tuple

Processing each item independently.

Ensures that Pregel programs are inherently 
free of deadlocks and data races common in 
asynchronous systems.

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010
2016-03-23 12
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Apache Giraph
Implements Pregel Abstraction

Google’s Pregel, SIGMOD 2010
‣ Vertex-centric Model

‣ Iterative BSP computation

 Apache Giraph donated by Yahoo
‣ Feb 6, 2012: Giraph 0.1-incubation

‣ May 6, 2013: Giraph 1.0.0

‣ Nov 19, 2014: Giraph 1.1.0

 Built on Hadoop Ecosystem

2016-03-23 13
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Model of Computation

 A Directed Graph is given to Pregel.

 It runs the computation at each vertex.

Until all nodes vote for halt.

 Pregel gives you a directed graph back.

All Vote
to Halt

Output

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010
2016-03-23 14
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Vertex State Machine

 Algorithm termination is based on every vertex 
voting to halt.

 In superstep 0, every vertex is in the active state.

 A vertex deactivates itself by voting to halt.

 It can be reactivated by receiving an (external) 
message.

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010
2016-03-23 15
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Vertex Centric 
Programming
 Vertex Centric Programming Model
‣ Logic written from perspective on a single vertex. 

Executed on all vertices.

 Vertices know about
‣ Their own value(s)

‣ Their outgoing edges

2016-03-23

Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014
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3 6 2 1
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Blue Arrows 
are messages.

Blue vertices 
have voted to 
halt.

6

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010

Vertices

Supersteps

Messages

WorkersEdges
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Max Vertex

2016-03-23

GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics, Simmhan, et al, EuroPar 2014
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Advantages

Makes distributed programming easy
‣ No locks, semaphores, race conditions

‣ Separates computing from communication phase

 Vertex-level parallelization
‣ Bulk message passing for efficiency

 Stateful (in-memory)
‣ Only messages & checkpoints hit disk

2016-03-23 19
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Apache Giraph: API
void compute(Iterator<IntWritable> msgs)

getSuperstep()

getVertexValue()

edges = iterator()

sendMsg(edge, value)

sendMsgToAllEdges(value)

voteToHalt()

2016-03-23 20
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Message passing

No guaranteed message delivery order.

Messages are delivered exactly once.

 Can send messages to any node.
‣ Though, typically to neighbors

2016-03-23 21
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public class MaxVertexVertex extends IntIntNullIntVertex {

public void compute(Iterator<IntWritable> messages) 

throws IOException {

int currentMax = getVertexValue().get();

// first superstep is special, 

// because we can simply look at the neighbors

if (getSuperstep() == 0) {

for (Iterator<IntWritable> edges = 

iterator(); edges.hasNext();) {

int neighbor = edges.next().get();

if (neighbor > currentMax) {

currentMax = neighbor;

}

} ...

Based on org.apache.giraph.examples.ConnectedComponentsVertex

2016-03-23 22
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...

// only need to send value if it is not the own id

if (currentMax != getVertexValue().get()) {

setVertexValue(new IntWritable(currentMax));

for (Iterator<IntWritable> edges = iterator();

edges.hasNext();) {

int neighbor = edges.next().get();

if (neighbor > currentMax) {

sendMsg(new IntWritable(neighbor),

getVertexValue());

}

}

}

voteToHalt();

return;

} // end getSuperstep==0

2016-03-23 23
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boolean changed = false; // getSuperstep != 0

// did we get a smaller id?

while (messages.hasNext()) {

int candidateMax = messages.next().get();

if (candidateMax > currentMax) {

currentMax = candidateMax;

changed = true;

}

}

// propagate new component id to the neighbors

if (changed) {

setVertexValue(new IntWritable(currentMax));

sendMsgToAllEdges(getVertexValue());

}

voteToHalt();

} // end compute() 

2016-03-23 24
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Apache Giraph

2016-03-23
Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014
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Giraph Architecture
Hadoop Map-only Application
ZooKeeper: responsible for computation state
– Partition/worker mapping, global #superstep

Master: responsible for coordination
– Assigns partitions to workers, synchronization

Worker: responsible for vertices
– Invokes active vertices compute() function, 

sends, receives and assigns messages

© Sebastian Schelter
2016-03-23 26



CDS.IISc.in  |  Department of Computational and Data Sciences

Giraph Architecture

 Checkpointing of supersteps possible

Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014

2016-03-23 27
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Additional Features

Combiners

 Sending a message to another vertex that exists on 
a different machine has some overhead. 

User specifies a way to reduce many messages into 
one value (ala Reduce in MR).
‣ by overriding the Combine() method.

‣ Must be commutative and associative.

 Exceedingly useful in certain contexts (e.g., 4x 
speedup on shortest-path computation).

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010

2016-03-23 28
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Additional Features

Aggregators

 A mechanism for global communication, 
monitoring, and data.
‣ Each vertex can produce a value in a superstep S for the 

Aggregator to use. 
‣ The Aggregated value is available to all the vertices in 

superstep S+1. 

 Aggregators can be used for statistics and for global 
communication.
‣ E.g., Sum applied to out-edge count of each vertex.

• generates the total number of edges in the graph and 
communicate it to all the vertices.

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010

2016-03-23 29
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Additional Features

Topology mutations:

 Some graph algorithms need to change the graph's 
topology.
‣ E.g.  A clustering algorithm may need to replace a cluster 

with a node

 Vertices can create / destroy vertices at will.

 Resolving conflicting requests: 
‣ Partial ordering: 

E Remove,V Remove,V Add, E Add.
‣ User-defined handlers: 

You fix the conflicts on your own.

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010

2016-03-23 30
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Additional Features

 MasterCompute: Executed on master

 WorkerContext: Executed per worker

 PartitionContext: Executed per partition

Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014

2016-03-23 31
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Fault Tolerance

 Checkpointing

‣ The master periodically (alternate supersteps) instructs 
the workers to save the state of their partitions to HDFS.

• e.g., Vertex values, edge values, incoming messages.

 Failure detection 

‣ Using regular “ping” messages.

 Recovery

‣ The master reassigns graph partitions to the currently 
available workers.

‣ The workers all reload their partition state from most 
recent available checkpoint.

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010

2016-03-23 32
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Shortest Path

class ShortestPathVertex

: public Vertex<int, int, int> {

void Compute(MessageIterator* msgs) {

int mindist = IsSource(vertex_id()) ? 0 : INF;

for (; !msgs->Done(); msgs->Next())

mindist = min(mindist, msgs->Value());

if (mindist < GetValue()) {

*MutableValue() = mindist;

OutEdgeIterator iter = GetOutEdgeIterator();

for (; !iter.Done(); iter.Next())

SendMessageTo(iter.Target(), 

mindist + iter.GetValue());

}

VoteToHalt();

}

};

In the 1st superstep, only 
the source vertex will 

update its value (from INF 
to zero)

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010

2016-03-23 33



CDS.IISc.in  |  Department of Computational and Data Sciences

Shortest Path

Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014

2016-03-23 34
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Shortest Path

2016-03-23 35
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Shortest Path

2016-03-23 36
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Shortest Path

2016-03-23 37
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PageRank, recursively

 P(n) is PageRank for webpage/URL ‘n’
‣ Probability that you’re in vertex ‘n’

 |G| is number of URLs (vertices) in graph

 α is probability of random jump 

 L(n) is set of vertices that link to ‘n’

 C(m) is out-degree of ‘m’

2016-03-23 38
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PageRank using MapReduce

2016-03-23 Lin, Fig 5.8 39
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Application – Page Rank
class PageRankVertex

: public Vertex<double, void, double> {
public:
virtual void Compute(MessageIterator* msgs) {

if (superstep() >= 1) {
double sum = 0;
for (; !msgs->Done(); msgs->Next())

sum += msgs->Value();
*MutableValue() = 0.15 / NumVertices() + 0.85 * sum;

}
if (superstep() < 30) {

const int64 n = GetOutEdgeIterator().size();
SendMessageToAllNeighbors(GetValue() / n);

} else
VoteToHalt();

}
};

Store and carry PageRank

2016-03-23 40



CDS.IISc.in  |  Department of Computational and Data Sciences

K-Means Clustering

Master-Compute Model

2016-03-23

GPS: A Graph Processing System, Semih Salihoglu, et al, SSDBM, 2013

41
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GoFFish
Subgraph-centric, Time-series graph processing

2016-03-23 42
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Analysis over Time-series Graphs

 Fixed graph of event sources…Internet of Things
‣ Known relationships between sources E.g. pathway
‣ E.g. “red car” event from a camera

 Event Streams form graph time-series

 Track path of the “red car”
‣ Mine for interesting trajectory

 Inferring track from micro-paths

 Other analysis
‣ Wide Area outage management
‣ Event clustering and aggregation
‣ Topic propagation in social networks
‣ Time dependent shortest path

2016-03-23 43
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GoFFish: Temporal Graph 
Analytics

 Scalable platform for graph-
oriented event analytics

 Designed for commodity H/W: 
clusters & clouds

Novel data mapping to time-series 
graphs, with efficient layout on 
distributed storage

 Compose and efficiently execute 
dataflow applications over time-
series graphs

 Funded by DARPA XDATA Grant
2016-03-23 GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics, 

Simmhan, et al, EuroPar, 2014
44
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GoFFish Software Platform
Platform to store, compose & execute analytics 

on time-series graph datasets
‣ At scale, on distributed systems

2016-03-23

 GoFS: Distributed Graph-

oriented File System

 Gopher

– Compose sub-graph 

centric complex analytics

– Executed on Floe streaming 

dataflow engine

 Data & Compute collocated

45
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Design Insights – Mitigate 
Weak Links

1) Disk I/O is the weakest link for big data
‣ Do more with less disk reads, parallel disk I/O
‣ Graph layout on distributed disks is key!

2) Network I/O
‣ Limit network communicate. Transfer in chunks.
‣ Graph partitioning on distributed hosts is key!

3) Memory Capacity
‣ Not all data fits in distributed memory
‣ Incremental loading & computation

4) CPU
‣ Elastic Cloud execution, Leverage many-core

2016-03-23

Think 
Hive

Think 
Pregel

Think 
Hadoop

USP!

46
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Host A

H
o

st B
Graph Data Model
 Designed for “sub-graph” centric distributed

computing 
‣ Graphs

• Partitions … Distributed evenly across machines
o Sub-graphs … Logical unit of operation

– Vertices

2016-03-23

 Sub-graph is unit of distributed data access & operation

– Extends Google Pregel/Apache Giraph’s vertex-centric 

BSP model … no global view

47
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Host A

Host B

Time Series Graph Data Model

 Designed for “sub-graph” distributed centric 
computing … over time-series graphs

Graph template 
‣ Common features

Graph instances
‣ Time-variant features

2016-03-23

t1t2t3t4t5

 Instance vertex follows 

the template vertex’s 

partition

48
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GoFS: Distributed TS Graph Store

 Data+Compute Co-design

Graphs partitioned to 
reduce edge cuts

 Subgraphs identified 
within partitions

 Slice is unit of (file) 
storage on disk

 Exploits spatio-temporal locality in a slice
• Bin pack small subgraphs in a partition

• Temporal packing of different instances
2016-03-23 49
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E.g. Data Loading of NW 
Traces

Trace FilesTrace Files

Metadata Files
HDFS

Template MR

Instance MRInstance MR Trace Files
Instance GML 

Files

Template GML 
File

Trace 
Files

Instance 
GML

Template 
GML

METIS 
Partitioner Partition

ed GML 
Files

GoFS
Node

GoFS
Loader

GoFS
Node

….

 Write once, read many model: Bulk load 
instances

2016-03-23 50
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Gopher Design
Vertex-centric graph model 
‣Google Pregel (Apache Giraph)
Message overhead, dynamic graphs†

Sub-graph centric streaming dataflows
‣Sub-graphs reduce messaging, more local ops
‣Streaming allows incremental execution
‣Dataflow composition more flexible than BSP

Giraph++, Blogel use partition & block centric

2016-03-23
† “Optimizations and Analysis of BSP Graph Processing Models on Public 
Clouds”, Redekopp, et al, IPDPS 2013 51
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Sub-graph Centric Max 
Vertex

2016-03-23 52
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Sub-graph Centric Max Vertex

2016-03-23 53
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Performance on Single Graphs

2016-03-23

Data Set Vertices Edges Diameter

RN: CA Road Network 1,965,206 2,766,607 849

TR: Internet Tracesroutes 19,442,778 22,782,842 25

LJ: LiveJournal Social N/W 4,847,571 68,475,391 10

GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics, Simmhan, 
et al, EuroPar, 2014
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Algorithmic Benefits on PageRank

 PageRank  Block Rank  Subgraph Rank
‣ Coarse-grained rank for “good” initialization

2016-03-23 Subgraph Rank: PageRank for Subgraph-Centric Distributed Graph 
Processing, Badam & Simmhan, COMAD, 2014
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Analysis of SSSP Algorithm

Modeling & predicting behaviour of SSSP
‣ Predictions of Runtime, Optimization heuristics

2016-03-23 Analysis of Subgraph-centric Distributed Shortest
Path Algorithm, Ravikant, Neel & Simmhan, ParLearning, 2015

56
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Time Series Graph 
on GoFFish

2016-03-23 57
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TS Graph Programming Model
 Independent Instances

 Eventually dependent Instances

 Sequentially dependent Instances

 Timesteps form “outer loop” of supersteps

2016-03-23 58
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Temporally Iterative BSP

2016-03-23 59
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User Logic

 Compute(Subgraph sg, int timestep, int
superstep, Message[] msgs)

 EndOfTimestep(Subgraph sg, int
timestep)

 Merge(SubgraphTemplate sgt, int
superstep, Message[] msgs)

2016-03-23 60
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Messaging & Termination

 SendToNextTimestep(msg)

 SendToSubgraphInNextTimestep(sgid, 
msg)

 SendMessageToMerge(msg)

 VoteToHaltTimestep()

 VoteToHalt()

2016-03-23 61
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Hash Tag Aggregation
 We have the structure of a social network and the hashtags 

shared by each user in different timesteps. 

 Find the statistical summary of a particular hashtag: count, 
rate

 eventually dependent pattern 

 Each subgraph calculates the frequency of occurrence of the 
hashtags among its vertices, sends the result to Merge step.

 In the Merge method, each subgraph receives the messages 
sent to it from its own predecessors at different timesteps 
creates a vector from it and send it to largest subgraph in 1st

partition.

 In the next superstep, this largest subgraph in the 1st 
partition aggregates all lists it receives as messages 

2016-03-23 62
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Meme Propagation 
Application
 Meme tracking helps analyze the spread of ideas or memes (e.g. 

viral videos, hashtags) through a social network 

 Given snapshots of a social network after everyδtime, and each 
vertex contain memes received between successive intervals

 We need to track a meme μ across the network.

 As meme spread in a short span the superset of structures can be 
taken as template

2016-03-23 Distributed Programming over Timeseries Graphs, Simmhan, et al, IPDPS 2015 63
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Meme Propagation 
Algorithm
 BFS across space and time
1. In timestep 0 find all source vertices in g0. Let the set 

be C0

2. In timestep 1 start multisource BFS from C0 in g1 to 
find all vertices touched by meme μ and create set 
C1.
‣ During  BFS, stop at vertices which don’t have any 

neighbor touched by μ

3. In timestep i start multisource BFS from all vertices 
touched in previous timesteps and create Ci

‣ Result of one timestep is used as an input for the 
next time step hence follows sequentially 
dependent pattern

2016-03-23 64
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Time Dependent Shortest Path
 SSSP when edge values changes over 

time
 Road network in a city
 Data available at discrete time , 

waiting on vertices allowed.
 SSSP on initial graph gives 

suboptimal solution. For eg(SC)
 SSSP on 3-d graph created by 

stacking instances over each other.
 Edge vj

i
vj

i+1 (idle edge), 
Unidirectional
 Let tdsp[vj] be the final tdsp value 

from source s  vj

2016-03-23 Distributed Programming over Timeseries Graphs, Simmhan, et al, IPDPS 2015 65
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TDSP Algorithm

 Weight of idle edges given by

1. Start SSSP on g0 from s and find all vertices whose shortest 
path value is less than δ . Let the set be F0

2. In g1 give label δto all vertices in F0 and use SSSP to find all 
vertices whose shortest path value is less than 2* δ (F1)

3. Similarly in gi start with all the vertices whose tdsp value is 
already calculated and label them as i*δ and use SSSP to find 
vertices having shortest path (i+1)*δ

 Result of one timestep is used as an input for the next time step 
hence follows sequentially dependent pattern

2016-03-23 66
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Experimental Setup

 Used two real world graph as template from SNAP database

 Generated data for 50 timesteps

 Meme and Hash: SIR Model of epidemiology

‣ TDSP: Random weight for edge latencies

 Ran 3 algorithms on two graphs partitioned on 3,6,9 
machines

 Partitioning: Metis(min edge cut, load factor 1.03) 

 Amazon AWS, m3.large(dual core, 7.5GB RAM, 100 GBSSD)

Name No of Vertices No of Edges Diameter

California Road Network (CARN) 1,965,206 2,766,607 849 

Wikipedia Talk Network (WIKI) 2,394,385 5,021,410 9 
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Results: Makespan

• CARN more scalable than WIKI (larger diameter, better partitioning)
• Baseline comparison with Apache Giraph

• Giraph SSSP on one time step worse than TDSP in GoFFish in 50 
timestep

Y. Simmhan, N. Choudhury, et al. Distributed programming over time-series graphs, IEEE IPDPS 2015
2016-03-23 68



CDS.IISc.in  |  Department of Computational and Data Sciences

Results: Profiling TDSP for CARN

• Uneven distribution of load across timesteps
• Partition 6 not touched till 26th timestep
• Effect visible in CPU utilization
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Results: Time across timesteps

• Large spike in every 20th time steps (Forced Garbage 
Collection)

• Subtle spike in 10th timestep
• Lazy loading of slices with load factor 10
• Average time for 3  much larger than 6 and 9
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Research Problems

1. New vertex/subgraph-centric graph & time-
series graph algorithms

2. Better partitioning of subgraph tasks to improve 
utilization, makespan

3. Realtime scheduling of subgraph tasks for 
runtime balancing of load

4. Graph databases for querying using Giraph, 
GoFFish

5. Managing dynamism in graph structure
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Other Distributed Graph 
Platforms
GraphLab, CMU [1]

GraphX, UC Berkeley [2]

 Trinity, Microsoft Research [3]

2016-03-23

[1] Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud, Low, et al, VLDB, 2012
[2] GraphX: Graph Processing in a Distributed Dataflow Framework, Gonzalez, et al, USENIX OSDI, 2014
[3] Trinity: A distributed graph engine on a memory cloud, B Shao, et al, ACM SIGMOD, 2013 
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Reading

 Pregel: A System for Large-Scale Graph Processing, 
Malewicz, et al, SIGMOD 2010

GPS: A Graph Processing System, Salihoglu and 
Widon, SSDBM, 2013

GoFFish: A Sub-Graph Centric Framework for Large-
Scale Graph Analytics, Simmhan, et al, EuroPar, 
2014
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