
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान

बंगलौर, भारत

Department of Computational and Data Sciences

©Yogesh Simmhan & Partha Talukdar, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

L12:Distributed Graph
Processing

Yogesh Simmhan
2 3 / 3 0 M a r , 2 0 1 6

SE256:Jan16 (2:1)

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.in | Department of Computational and Data Sciences

Graphs are commonplace

Web & Social Networks
‣ Web graph, Citation Networks, Twitter, Facebook, Internet

 Knowledge networks & relationships
‣ Google’s Knowledge Graph, NELL

 Cybersecurity
‣ Telecom call logs, financial transactions, Malware

 Internet of Things
‣ Transport, Power, Water networks

 Bioinformatics
‣ Gene sequencing, Gene expression networks

2016-03-23 2

CDS.IISc.in | Department of Computational and Data Sciences

Graph Algorithms

 Traversals: Paths & flows between different parts of
the graph
‣ Breadth First Search, Shortest path, Minimum Spanning

Tree, Eulerian paths, MaxCut

 Clustering: Closeness between sets of vertices
‣ Community detection & evolution, Connected

components, K-means clustering, Max Independent Set

 Centrality: Relative importance of vertices
‣ PageRank, Betweenness Centrality

2016-03-23 3

CDS.IISc.in | Department of Computational and Data Sciences

But, Graphs can be
challenging
 Computationally complex algorithms
‣ Shortest Path: O((E+V) log V) ~ O(EV)

‣ Centrality: O(EV) ~ O(V3)

‣ Clustering: O(V) ~ O(V3)

 And these are for “shared-memory” algorithms

2016-03-23

Graph500.org’s fastest
supercomputer, K
computer with
524,288 cores
performed at 17E+12
TEPS

6

CDS.IISc.in | Department of Computational and Data Sciences

But, Graphs can be
challenging
Graphs sizes can be huge
‣ Google’s index contains 50B pages

‣ Facebook has around 1.1B users

‣ Twitter has around 530M users

‣ Google+ has around 570M users

2016-03-23

Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April
2014

7

CDS.IISc.in | Department of Computational and Data Sciences

But, Graphs can be
challenging
 Shared memory algorithms don’t scale!
 Do not fit naturally to Hadoop/MapReduce

‣ Multiple MR jobs (iterative MR)
‣ Topology & Data written to HDFS each time
‣ Tuple, rather than graph-centric, abstraction

 Lot of work on parallel graph libraries for HPC
‣ Boost Graph Library, Graph500
‣ Storage & compute are (loosely) coupled, not fault tolerant
‣ But everyone does not have a supercomputer 

 Processing and querying are different
‣ Graph DBs not suited for analytics
‣ Focus on large simple graphs, complex “queries”
‣ E.g. Neo4J, FlockDB, 4Store, Titan

2016-03-23 8

CDS.IISc.in | Department of Computational and Data Sciences

Google’s Pregel

Google, to overcome, these challenges came up
with Pregel.
‣ Provides scalability

‣ Fault-tolerance

‣ Flexibility to express arbitrary algorithms

 The high level organization of Pregel programs is
inspired by Valiant’s Bulk Synchronous Parallel
(BSP) model [1].

2016-03-23

Slides courtesy “Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010”
[1] Leslie G. Valiant, A Bridging Model for Parallel Computation. Comm. ACM 33(8), 1990

9

CDS.IISc.in | Department of Computational and Data Sciences

Bulk Synchronous Parallel
(BSP)
 Distributed execution model
‣ Compute  Communicate Compute Communicate
 …

‣ Bulk messaging avoids comm. costs

2016-03-23

B

A

R

R

I

E

R

B

A

R

R

I

E

R

10

CDS.IISc.in | Department of Computational and Data Sciences

Vertex-centric BSP

 Series of iterations (supersteps) .

 Each vertex V invokes a function in parallel.

 Can read messages sent in previous superstep (S-1).

 Can send messages, to be read at the next
superstep (S+1).

 Can modify state of outgoing edges.

Input
All Vote
to Halt Output

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010
2016-03-23 11

CDS.IISc.in | Department of Computational and Data Sciences

Advantage?
 In Vertex-Centric Approach

Users focus on a local action
‣ Think of Map method over tuple

Processing each item independently.

Ensures that Pregel programs are inherently
free of deadlocks and data races common in
asynchronous systems.

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010
2016-03-23 12

CDS.IISc.in | Department of Computational and Data Sciences

Apache Giraph
Implements Pregel Abstraction

Google’s Pregel, SIGMOD 2010
‣ Vertex-centric Model

‣ Iterative BSP computation

 Apache Giraph donated by Yahoo
‣ Feb 6, 2012: Giraph 0.1-incubation

‣ May 6, 2013: Giraph 1.0.0

‣ Nov 19, 2014: Giraph 1.1.0

 Built on Hadoop Ecosystem

2016-03-23 13

CDS.IISc.in | Department of Computational and Data Sciences

Model of Computation

 A Directed Graph is given to Pregel.

 It runs the computation at each vertex.

Until all nodes vote for halt.

 Pregel gives you a directed graph back.

All Vote
to Halt

Output

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010
2016-03-23 14

CDS.IISc.in | Department of Computational and Data Sciences

Vertex State Machine

 Algorithm termination is based on every vertex
voting to halt.

 In superstep 0, every vertex is in the active state.

 A vertex deactivates itself by voting to halt.

 It can be reactivated by receiving an (external)
message.

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010
2016-03-23 15

CDS.IISc.in | Department of Computational and Data Sciences

Vertex Centric
Programming
 Vertex Centric Programming Model
‣ Logic written from perspective on a single vertex.

Executed on all vertices.

 Vertices know about
‣ Their own value(s)

‣ Their outgoing edges

2016-03-23

Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014

16

CDS.IISc.in | Department of Computational and Data Sciences

3 6 2 1

3 6 2 16 2 66

6 6 2 66 6

6 6 6 66

Blue Arrows
are messages.

Blue vertices
have voted to
halt.

6

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010

Vertices

Supersteps

Messages

WorkersEdges

2016-03-23 17

CDS.IISc.in | Department of Computational and Data Sciences

Max Vertex

2016-03-23

GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics, Simmhan, et al, EuroPar 2014

18

CDS.IISc.in | Department of Computational and Data Sciences

Advantages

Makes distributed programming easy
‣ No locks, semaphores, race conditions

‣ Separates computing from communication phase

 Vertex-level parallelization
‣ Bulk message passing for efficiency

 Stateful (in-memory)
‣ Only messages & checkpoints hit disk

2016-03-23 19

CDS.IISc.in | Department of Computational and Data Sciences

Apache Giraph: API
void compute(Iterator<IntWritable> msgs)

getSuperstep()

getVertexValue()

edges = iterator()

sendMsg(edge, value)

sendMsgToAllEdges(value)

voteToHalt()

2016-03-23 20

CDS.IISc.in | Department of Computational and Data Sciences

Message passing

No guaranteed message delivery order.

Messages are delivered exactly once.

 Can send messages to any node.
‣ Though, typically to neighbors

2016-03-23 21

CDS.IISc.in | Department of Computational and Data Sciences

public class MaxVertexVertex extends IntIntNullIntVertex {

public void compute(Iterator<IntWritable> messages)

throws IOException {

int currentMax = getVertexValue().get();

// first superstep is special,

// because we can simply look at the neighbors

if (getSuperstep() == 0) {

for (Iterator<IntWritable> edges =

iterator(); edges.hasNext();) {

int neighbor = edges.next().get();

if (neighbor > currentMax) {

currentMax = neighbor;

}

} ...

Based on org.apache.giraph.examples.ConnectedComponentsVertex

2016-03-23 22

CDS.IISc.in | Department of Computational and Data Sciences

...

// only need to send value if it is not the own id

if (currentMax != getVertexValue().get()) {

setVertexValue(new IntWritable(currentMax));

for (Iterator<IntWritable> edges = iterator();

edges.hasNext();) {

int neighbor = edges.next().get();

if (neighbor > currentMax) {

sendMsg(new IntWritable(neighbor),

getVertexValue());

}

}

}

voteToHalt();

return;

} // end getSuperstep==0

2016-03-23 23

CDS.IISc.in | Department of Computational and Data Sciences

boolean changed = false; // getSuperstep != 0

// did we get a smaller id?

while (messages.hasNext()) {

int candidateMax = messages.next().get();

if (candidateMax > currentMax) {

currentMax = candidateMax;

changed = true;

}

}

// propagate new component id to the neighbors

if (changed) {

setVertexValue(new IntWritable(currentMax));

sendMsgToAllEdges(getVertexValue());

}

voteToHalt();

} // end compute()

2016-03-23 24

CDS.IISc.in | Department of Computational and Data Sciences

Apache Giraph

2016-03-23
Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014

25

CDS.IISc.in | Department of Computational and Data Sciences

Giraph Architecture
Hadoop Map-only Application
ZooKeeper: responsible for computation state
– Partition/worker mapping, global #superstep

Master: responsible for coordination
– Assigns partitions to workers, synchronization

Worker: responsible for vertices
– Invokes active vertices compute() function,

sends, receives and assigns messages

© Sebastian Schelter
2016-03-23 26

CDS.IISc.in | Department of Computational and Data Sciences

Giraph Architecture

 Checkpointing of supersteps possible

Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014

2016-03-23 27

CDS.IISc.in | Department of Computational and Data Sciences

Additional Features

Combiners

 Sending a message to another vertex that exists on
a different machine has some overhead.

User specifies a way to reduce many messages into
one value (ala Reduce in MR).
‣ by overriding the Combine() method.

‣ Must be commutative and associative.

 Exceedingly useful in certain contexts (e.g., 4x
speedup on shortest-path computation).

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010

2016-03-23 28

CDS.IISc.in | Department of Computational and Data Sciences

Additional Features

Aggregators

 A mechanism for global communication,
monitoring, and data.
‣ Each vertex can produce a value in a superstep S for the

Aggregator to use.
‣ The Aggregated value is available to all the vertices in

superstep S+1.

 Aggregators can be used for statistics and for global
communication.
‣ E.g., Sum applied to out-edge count of each vertex.

• generates the total number of edges in the graph and
communicate it to all the vertices.

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010

2016-03-23 29

CDS.IISc.in | Department of Computational and Data Sciences

Additional Features

Topology mutations:

 Some graph algorithms need to change the graph's
topology.
‣ E.g. A clustering algorithm may need to replace a cluster

with a node

 Vertices can create / destroy vertices at will.

 Resolving conflicting requests:
‣ Partial ordering:

E Remove,V Remove,V Add, E Add.
‣ User-defined handlers:

You fix the conflicts on your own.

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010

2016-03-23 30

CDS.IISc.in | Department of Computational and Data Sciences

Additional Features

 MasterCompute: Executed on master

 WorkerContext: Executed per worker

 PartitionContext: Executed per partition

Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014

2016-03-23 31

CDS.IISc.in | Department of Computational and Data Sciences

Fault Tolerance

 Checkpointing

‣ The master periodically (alternate supersteps) instructs
the workers to save the state of their partitions to HDFS.

• e.g., Vertex values, edge values, incoming messages.

 Failure detection

‣ Using regular “ping” messages.

 Recovery

‣ The master reassigns graph partitions to the currently
available workers.

‣ The workers all reload their partition state from most
recent available checkpoint.

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010

2016-03-23 32

CDS.IISc.in | Department of Computational and Data Sciences

Shortest Path

class ShortestPathVertex

: public Vertex<int, int, int> {

void Compute(MessageIterator* msgs) {

int mindist = IsSource(vertex_id()) ? 0 : INF;

for (; !msgs->Done(); msgs->Next())

mindist = min(mindist, msgs->Value());

if (mindist < GetValue()) {

*MutableValue() = mindist;

OutEdgeIterator iter = GetOutEdgeIterator();

for (; !iter.Done(); iter.Next())

SendMessageTo(iter.Target(),

mindist + iter.GetValue());

}

VoteToHalt();

}

};

In the 1st superstep, only
the source vertex will

update its value (from INF
to zero)

Pregel: A System for Large-Scale Graph Processing, Malewicz, et al, SIGMOD 2010

2016-03-23 33

CDS.IISc.in | Department of Computational and Data Sciences

Shortest Path

Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014

2016-03-23 34

CDS.IISc.in | Department of Computational and Data Sciences

Shortest Path

2016-03-23 35

CDS.IISc.in | Department of Computational and Data Sciences

Shortest Path

2016-03-23 36

CDS.IISc.in | Department of Computational and Data Sciences

Shortest Path

2016-03-23 37

CDS.IISc.in | Department of Computational and Data Sciences

PageRank, recursively

 P(n) is PageRank for webpage/URL ‘n’
‣ Probability that you’re in vertex ‘n’

 |G| is number of URLs (vertices) in graph

 α is probability of random jump

 L(n) is set of vertices that link to ‘n’

 C(m) is out-degree of ‘m’

2016-03-23 38

CDS.IISc.in | Department of Computational and Data Sciences

PageRank using MapReduce

2016-03-23 Lin, Fig 5.8 39

CDS.IISc.in | Department of Computational and Data Sciences

Application – Page Rank
class PageRankVertex

: public Vertex<double, void, double> {
public:
virtual void Compute(MessageIterator* msgs) {

if (superstep() >= 1) {
double sum = 0;
for (; !msgs->Done(); msgs->Next())

sum += msgs->Value();
*MutableValue() = 0.15 / NumVertices() + 0.85 * sum;

}
if (superstep() < 30) {

const int64 n = GetOutEdgeIterator().size();
SendMessageToAllNeighbors(GetValue() / n);

} else
VoteToHalt();

}
};

Store and carry PageRank

2016-03-23 40

CDS.IISc.in | Department of Computational and Data Sciences

K-Means Clustering

Master-Compute Model

2016-03-23

GPS: A Graph Processing System, Semih Salihoglu, et al, SSDBM, 2013

41

CDS.IISc.in | Department of Computational and Data Sciences

GoFFish
Subgraph-centric, Time-series graph processing

2016-03-23 42

CDS.IISc.in | Department of Computational and Data Sciences

Analysis over Time-series Graphs

 Fixed graph of event sources…Internet of Things
‣ Known relationships between sources E.g. pathway
‣ E.g. “red car” event from a camera

 Event Streams form graph time-series

 Track path of the “red car”
‣ Mine for interesting trajectory

 Inferring track from micro-paths

 Other analysis
‣ Wide Area outage management
‣ Event clustering and aggregation
‣ Topic propagation in social networks
‣ Time dependent shortest path

2016-03-23 43

CDS.IISc.in | Department of Computational and Data Sciences

GoFFish: Temporal Graph
Analytics

 Scalable platform for graph-
oriented event analytics

 Designed for commodity H/W:
clusters & clouds

Novel data mapping to time-series
graphs, with efficient layout on
distributed storage

 Compose and efficiently execute
dataflow applications over time-
series graphs

 Funded by DARPA XDATA Grant
2016-03-23 GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics,

Simmhan, et al, EuroPar, 2014
44

CDS.IISc.in | Department of Computational and Data Sciences

GoFFish Software Platform
Platform to store, compose & execute analytics

on time-series graph datasets
‣ At scale, on distributed systems

2016-03-23

 GoFS: Distributed Graph-

oriented File System

 Gopher

– Compose sub-graph

centric complex analytics

– Executed on Floe streaming

dataflow engine

 Data & Compute collocated

45

CDS.IISc.in | Department of Computational and Data Sciences

Design Insights – Mitigate
Weak Links

1) Disk I/O is the weakest link for big data
‣ Do more with less disk reads, parallel disk I/O
‣ Graph layout on distributed disks is key!

2) Network I/O
‣ Limit network communicate. Transfer in chunks.
‣ Graph partitioning on distributed hosts is key!

3) Memory Capacity
‣ Not all data fits in distributed memory
‣ Incremental loading & computation

4) CPU
‣ Elastic Cloud execution, Leverage many-core

2016-03-23

Think
Hive

Think
Pregel

Think
Hadoop

USP!

46

CDS.IISc.in | Department of Computational and Data Sciences

Host A

H
o

st B
Graph Data Model
 Designed for “sub-graph” centric distributed

computing
‣ Graphs

• Partitions … Distributed evenly across machines
o Sub-graphs … Logical unit of operation

– Vertices

2016-03-23

 Sub-graph is unit of distributed data access & operation

– Extends Google Pregel/Apache Giraph’s vertex-centric

BSP model … no global view

47

CDS.IISc.in | Department of Computational and Data Sciences

Host A

Host B

Time Series Graph Data Model

 Designed for “sub-graph” distributed centric
computing … over time-series graphs

Graph template
‣ Common features

Graph instances
‣ Time-variant features

2016-03-23

t1t2t3t4t5

 Instance vertex follows

the template vertex’s

partition

48

CDS.IISc.in | Department of Computational and Data Sciences

GoFS: Distributed TS Graph Store

 Data+Compute Co-design

Graphs partitioned to
reduce edge cuts

 Subgraphs identified
within partitions

 Slice is unit of (file)
storage on disk

 Exploits spatio-temporal locality in a slice
• Bin pack small subgraphs in a partition

• Temporal packing of different instances
2016-03-23 49

CDS.IISc.in | Department of Computational and Data Sciences

E.g. Data Loading of NW
Traces

Trace FilesTrace Files

Metadata Files
HDFS

Template MR

Instance MRInstance MR Trace Files
Instance GML

Files

Template GML
File

Trace
Files

Instance
GML

Template
GML

METIS
Partitioner Partition

ed GML
Files

GoFS
Node

GoFS
Loader

GoFS
Node

….

 Write once, read many model: Bulk load
instances

2016-03-23 50

CDS.IISc.in | Department of Computational and Data Sciences

Gopher Design
Vertex-centric graph model
‣Google Pregel (Apache Giraph)
Message overhead, dynamic graphs†

Sub-graph centric streaming dataflows
‣Sub-graphs reduce messaging, more local ops
‣Streaming allows incremental execution
‣Dataflow composition more flexible than BSP

Giraph++, Blogel use partition & block centric

2016-03-23
† “Optimizations and Analysis of BSP Graph Processing Models on Public
Clouds”, Redekopp, et al, IPDPS 2013 51

CDS.IISc.in | Department of Computational and Data Sciences

Sub-graph Centric Max
Vertex

2016-03-23 52

CDS.IISc.in | Department of Computational and Data Sciences

Sub-graph Centric Max Vertex

2016-03-23 53

CDS.IISc.in | Department of Computational and Data Sciences

Performance on Single Graphs

2016-03-23

Data Set Vertices Edges Diameter

RN: CA Road Network 1,965,206 2,766,607 849

TR: Internet Tracesroutes 19,442,778 22,782,842 25

LJ: LiveJournal Social N/W 4,847,571 68,475,391 10

GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics, Simmhan,
et al, EuroPar, 2014

54

CDS.IISc.in | Department of Computational and Data Sciences

Algorithmic Benefits on PageRank

 PageRank  Block Rank  Subgraph Rank
‣ Coarse-grained rank for “good” initialization

2016-03-23 Subgraph Rank: PageRank for Subgraph-Centric Distributed Graph
Processing, Badam & Simmhan, COMAD, 2014

55

CDS.IISc.in | Department of Computational and Data Sciences

Analysis of SSSP Algorithm

Modeling & predicting behaviour of SSSP
‣ Predictions of Runtime, Optimization heuristics

2016-03-23 Analysis of Subgraph-centric Distributed Shortest
Path Algorithm, Ravikant, Neel & Simmhan, ParLearning, 2015

56

CDS.IISc.in | Department of Computational and Data Sciences

Time Series Graph
on GoFFish

2016-03-23 57

CDS.IISc.in | Department of Computational and Data Sciences

TS Graph Programming Model
 Independent Instances

 Eventually dependent Instances

 Sequentially dependent Instances

 Timesteps form “outer loop” of supersteps

2016-03-23 58

CDS.IISc.in | Department of Computational and Data Sciences

Temporally Iterative BSP

2016-03-23 59

CDS.IISc.in | Department of Computational and Data Sciences

User Logic

 Compute(Subgraph sg, int timestep, int
superstep, Message[] msgs)

 EndOfTimestep(Subgraph sg, int
timestep)

 Merge(SubgraphTemplate sgt, int
superstep, Message[] msgs)

2016-03-23 60

CDS.IISc.in | Department of Computational and Data Sciences

Messaging & Termination

 SendToNextTimestep(msg)

 SendToSubgraphInNextTimestep(sgid,
msg)

 SendMessageToMerge(msg)

 VoteToHaltTimestep()

 VoteToHalt()

2016-03-23 61

CDS.IISc.in | Department of Computational and Data Sciences

Hash Tag Aggregation
 We have the structure of a social network and the hashtags

shared by each user in different timesteps.

 Find the statistical summary of a particular hashtag: count,
rate

 eventually dependent pattern

 Each subgraph calculates the frequency of occurrence of the
hashtags among its vertices, sends the result to Merge step.

 In the Merge method, each subgraph receives the messages
sent to it from its own predecessors at different timesteps
creates a vector from it and send it to largest subgraph in 1st

partition.

 In the next superstep, this largest subgraph in the 1st
partition aggregates all lists it receives as messages

2016-03-23 62

CDS.IISc.in | Department of Computational and Data Sciences

Meme Propagation
Application
 Meme tracking helps analyze the spread of ideas or memes (e.g.

viral videos, hashtags) through a social network

 Given snapshots of a social network after everyδtime, and each
vertex contain memes received between successive intervals

 We need to track a meme μ across the network.

 As meme spread in a short span the superset of structures can be
taken as template

2016-03-23 Distributed Programming over Timeseries Graphs, Simmhan, et al, IPDPS 2015 63

CDS.IISc.in | Department of Computational and Data Sciences

Meme Propagation
Algorithm
 BFS across space and time
1. In timestep 0 find all source vertices in g0. Let the set

be C0

2. In timestep 1 start multisource BFS from C0 in g1 to
find all vertices touched by meme μ and create set
C1.
‣ During BFS, stop at vertices which don’t have any

neighbor touched by μ

3. In timestep i start multisource BFS from all vertices
touched in previous timesteps and create Ci

‣ Result of one timestep is used as an input for the
next time step hence follows sequentially
dependent pattern

2016-03-23 64

CDS.IISc.in | Department of Computational and Data Sciences

Time Dependent Shortest Path
 SSSP when edge values changes over

time
 Road network in a city
 Data available at discrete time ,

waiting on vertices allowed.
 SSSP on initial graph gives

suboptimal solution. For eg(SC)
 SSSP on 3-d graph created by

stacking instances over each other.
 Edge vj

i
vj

i+1 (idle edge),
Unidirectional
 Let tdsp[vj] be the final tdsp value

from source s  vj

2016-03-23 Distributed Programming over Timeseries Graphs, Simmhan, et al, IPDPS 2015 65

CDS.IISc.in | Department of Computational and Data Sciences

TDSP Algorithm

 Weight of idle edges given by

1. Start SSSP on g0 from s and find all vertices whose shortest
path value is less than δ . Let the set be F0

2. In g1 give label δto all vertices in F0 and use SSSP to find all
vertices whose shortest path value is less than 2* δ (F1)

3. Similarly in gi start with all the vertices whose tdsp value is
already calculated and label them as i*δ and use SSSP to find
vertices having shortest path (i+1)*δ

 Result of one timestep is used as an input for the next time step
hence follows sequentially dependent pattern

2016-03-23 66

CDS.IISc.in | Department of Computational and Data Sciences

Experimental Setup

 Used two real world graph as template from SNAP database

 Generated data for 50 timesteps

 Meme and Hash: SIR Model of epidemiology

‣ TDSP: Random weight for edge latencies

 Ran 3 algorithms on two graphs partitioned on 3,6,9
machines

 Partitioning: Metis(min edge cut, load factor 1.03)

 Amazon AWS, m3.large(dual core, 7.5GB RAM, 100 GBSSD)

Name No of Vertices No of Edges Diameter

California Road Network (CARN) 1,965,206 2,766,607 849

Wikipedia Talk Network (WIKI) 2,394,385 5,021,410 9

2016-03-23 67

CDS.IISc.in | Department of Computational and Data Sciences

Results: Makespan

• CARN more scalable than WIKI (larger diameter, better partitioning)
• Baseline comparison with Apache Giraph

• Giraph SSSP on one time step worse than TDSP in GoFFish in 50
timestep

Y. Simmhan, N. Choudhury, et al. Distributed programming over time-series graphs, IEEE IPDPS 2015
2016-03-23 68

CDS.IISc.in | Department of Computational and Data Sciences

Results: Profiling TDSP for CARN

• Uneven distribution of load across timesteps
• Partition 6 not touched till 26th timestep
• Effect visible in CPU utilization

2016-03-23 69

CDS.IISc.in | Department of Computational and Data Sciences

Results: Time across timesteps

• Large spike in every 20th time steps (Forced Garbage
Collection)

• Subtle spike in 10th timestep
• Lazy loading of slices with load factor 10
• Average time for 3 much larger than 6 and 9

2016-03-23 70

CDS.IISc.in | Department of Computational and Data Sciences

Research Problems

1. New vertex/subgraph-centric graph & time-
series graph algorithms

2. Better partitioning of subgraph tasks to improve
utilization, makespan

3. Realtime scheduling of subgraph tasks for
runtime balancing of load

4. Graph databases for querying using Giraph,
GoFFish

5. Managing dynamism in graph structure

2016-03-23 71

CDS.IISc.in | Department of Computational and Data Sciences

Other Distributed Graph
Platforms
GraphLab, CMU [1]

GraphX, UC Berkeley [2]

 Trinity, Microsoft Research [3]

2016-03-23

[1] Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud, Low, et al, VLDB, 2012
[2] GraphX: Graph Processing in a Distributed Dataflow Framework, Gonzalez, et al, USENIX OSDI, 2014
[3] Trinity: A distributed graph engine on a memory cloud, B Shao, et al, ACM SIGMOD, 2013

72

CDS.IISc.in | Department of Computational and Data Sciences

Reading

 Pregel: A System for Large-Scale Graph Processing,
Malewicz, et al, SIGMOD 2010

GPS: A Graph Processing System, Salihoglu and
Widon, SSDBM, 2013

GoFFish: A Sub-Graph Centric Framework for Large-
Scale Graph Analytics, Simmhan, et al, EuroPar,
2014

2016-03-23 73

