Parallel Machine Learning
• k-NN used for classification and regression problems
• Commonly used data structure: k-d trees
• For the given multi-dimensional data, construct a k-d tree
• Similar to
Nearest neighbour search using kd-tree

k-d Tree Nearest Neighbor Search
Two steps in k-NN

1. k-d tree construction
2. K-d tree search

Parallelization

• Option 1:
 • Tree construction: Partition data sets among processors; Each processor constructs local k-d tree
 • Search: Query sent to all processors which perform search in local k-d trees; each processor returns the top neighbors from which the k nearest are chosen
Parallelization

• Option 1: Poor work efficiency, i.e., wasted work

• Option 2:
 • Global k-d tree construction in all the processors
 • For each processors, one half of data is given to one half of processors, and the other half of data given to other processors
 • After this recursive division, the top part of the tree is replicated in all the processors
 • The processors then construct local k-d trees for their subdomains
Searching the global k-d tree

- Query sent to the processors that takes care of the subdomain of the query
- The processor forms the local k nearest neighbors
- Forms a radius based on these neighbors
- Sends the query to the nearby processors consisting of subdomains that are spanned by the radius
- The processors search for points within the radius and send their results to the origin processor
Figure 3. Figure shows the data points (denoted by o) in 2D space divided among 5 nodes. Query point is shown as X. KNN with \(k = 3 \) is run in node \(P_1 \) (owner of \(X \)). This returns 3 points owned by \(P_1 \) and a max distance (denoted by green circle around \(X \)). Only \(P_2 \) and \(P_4 \) might own points within this radius. KNN is run on \(P_2 \) and \(P_4 \) for \(X \) and the closest 3 points are chosen (within purple circle around \(X \)).
Optimization

- Queries can be batched
- Software pipelining can be performed between the stages
Algorithm 1 Finding k-nearest neighbors from the local kd-tree. Input: kd-tree T, Query q, k, search radius, r (default $r = \infty$). Output: A set, R of k nearest neighbors within r.

1: procedure FINDKNN(T, q, k, r)
2: $r' \leftarrow r$; push $(\text{root}, 0)$ into S
3: while S is not empty do
4: $(\text{node}, d) \leftarrow \text{pop from } S$
5: if node is leaf then
6: for each particle x in node do
7: compute distance, $d[x]$ of x from q
8: if $d[x] < r'$ then
9: if $|H| < k$ then
10: add x into H
11: if $|H| = k$ then
12: $r' \leftarrow H.\text{maxi}_\text{dis}$
13: else if $d[x] < \text{max distance in } H$ then
14: replace the topmost point H by x
15: $r' \leftarrow d[x]$
16: else
17: end for
18: end if
19: end while
20: end procedure
Algorithm

16: \textbf{else}
17: \quad \textbf{if} \ d < r' \ \textbf{then}
18: \quad d' \leftarrow q[node.dim] - node.median
19: \quad d' \leftarrow \sqrt{d \cdot d + d' \cdot d'}
20: \quad C_1 \leftarrow \text{closer child of node from} \ q
21: \quad C_2 \leftarrow \text{other child of node}
22: \quad \textbf{if} \ d' < r' \ \textbf{then}
23: \quad \text{push} \ (C_2, d') \ \text{into} \ S
24: \quad \text{push} \ (C_1, d) \ \text{into} \ S
25: \quad R \leftarrow H
References

• PANDA: Extreme Scale Parallel K-Nearest Neighbor on Distributed Architectures. IPDPS 2016.