
Shared Memory Parallelism -

OpenMP

Sathish Vadhiyar
Credits/Sources:

OpenMP C/C++ standard (openmp.org)

OpenMP tutorial (http://www.llnl.gov/computing/tutorials/openMP/#Introduction)

OpenMP sc99 tutorial presentation (openmp.org)

Dr. Eric Strohmaier (University of Tennessee, CS594 class, Feb 9, 2000)

http://www.llnl.gov/computing/tutorials/openMP/#Introduction


Introduction

 A portable programming model and standard for 
shared memory programming using compiler 
directives

 Directives?: constructs or statements in the program 
applying some action on a block of code

 A specification for a set of compiler directives, library 
routines, and environment variables – standardizing 
pragmas 

 Easy to program; easy for code developer to convert 
his sequential to parallel program by throwing 
directives

 First version in 1997, development over the years till 
the latest 4.5 in 2015



Fork-Join Model

 Begins as a single thread 
called master thread

 Fork: When parallel construct 
is encountered, team of 
threads are created

 Statements in the parallel 
region are executed in parallel

 Join: At the end of the parallel 
region, the team threads 
synchronize and terminate



OpenMP consists of…

 Work-sharing constructs

 Synchronization constructs

 Data environment constructs

 Library calls, environment variables



Introduction

 Mainly supports loop-level parallelism

 Specifies parallelism for a region of code: fine-
level parallelism

 The number of threads can be varied from one 
region to another – dynamic parallelism
 Follows Amdahl’s law – sequential portions in the 

code

 Applications have varying phases of parallelism

 Also supports
 Coarse-level parallelism – sections and tasks

 Executions on accelerators

 SIMD vectorizations

 task-core affinity



parallel construct

#pragma omp parallel [clause [, clause] …] new-line

structured-block

Clause: Can support nested 

parallelism



Parallel construct - Example

#include <omp.h>

main () {

int nthreads, tid; 

#pragma omp parallel private(nthreads, tid) {

printf("Hello World \n);

}

}



Work sharing construct

 For distributing the execution among the threads 

that encounter it

 3 types of work sharing constructs – loops, 

sections, single



for construct

 For distributing the iterations among the threads

#pragma omp for [clause [, clause] …] new-

line

for-loop

Clause:



for construct

 Restriction in the structure of the for 
loop so that the compiler can 
determine the number of iterations –
e.g. no branching out of loop

 The assignment of iterations to 
threads depends on the schedule
clause

 Implicit barrier at the end of for if not 
nowait



schedule clause

1. schedule(static, chunk_size) –
iterations/chunk_size chunks distributed 
in round-robin

2. Schedule(dynamic, chunk_size) – same 
as above, but chunks distributed 
dynamically.

3. schedule(runtime) – decision at runtime. 
Implementation dependent



for - Example

include <omp.h>

#define CHUNKSIZE 100

#define N 1000

main () {

int i, chunk; float a[N], b[N], c[N];

/* Some initializations */

for (i=0; i < N; i++)

a[i] = b[i] = i * 1.0;

chunk = CHUNKSIZE;

#pragma omp parallel shared(a,b,c,chunk) private(i) {

#pragma omp for schedule(dynamic,chunk) nowait

for (i=0; i < N; i++)

c[i] = a[i] + b[i];

} /* end of parallel section */

} 



Coarse level parallelism – sections and 

tasks
 sections

 tasks – dynamic mechanism

 depend clause for task



Synchronization directives



flush directive

 Point where consistent view of memory is 

provided among the threads

 Thread-visible variables (global variables, 

shared variables etc.) are written to memory

 If var-list is used, only variables in the list are 

flushed



flush - Example



flush – Example (Contd…)



Data Scope Attribute Clauses

Most variables are shared by default

Data scopes explicitly specified by data scope attribute clauses

Clauses:

1. private

2. firstprivate

3. lastprivate

4. shared

5. default

6. reduction

7. copyin

8. copyprivate



threadprivate
• Global variable-list declared are made private to a thread

• Each thread gets its own copy

• Persist between different parallel regions
 #include <omp.h>

 int alpha[10], beta[10], i;

 #pragma omp threadprivate(alpha)

 main () {

 /* Explicitly turn off dynamic threads */

 omp_set_dynamic(0);

 /* First parallel region */

 #pragma omp parallel private(i,beta)

 for (i=0; i < 10; i++) alpha[i] = beta[i] = i;

 /* Second parallel region */

 #pragma omp parallel

 printf("alpha[3]= %d and beta[3]= %d\n",alpha[3],beta[3]);} 



private, firstprivate & lastprivate

 private (variable-list)

 variable-list private to each thread

 A new object with automatic storage duration allocated for the 
construct

 firstprivate (variable-list)

 The new object is initialized with the value of the old object that 
existed prior to the construct

 lastprivate (variable-list)

 The value of the private object corresponding to the last iteration 
or the last section is assigned to the original object



shared, default, reduction

 shared(variable-list)

 default(shared | none)

 Specifies the sharing behavior of all of the variables visible in the 
construct

 Reduction(op: variable-list)

 Private copies of the variables are made for each thread

 The final object value at the end of the reduction will be 
combination of all the private object values



default - Example



Library Routines (API)

 Querying function (number of threads etc.)

 General purpose locking routines

 Setting execution environment (dynamic 

threads, nested parallelism etc.)



API

 OMP_SET_NUM_THREADS(num_threads)

 OMP_GET_NUM_THREADS()

 OMP_GET_MAX_THREADS()

 OMP_GET_THREAD_NUM()

 OMP_GET_NUM_PROCS()

 OMP_IN_PARALLEL()

 OMP_SET_DYNAMIC(dynamic_threads)

 OMP_GET_DYNAMIC()

 OMP_SET_NESTED(nested)

 OMP_GET_NESTED()



API(Contd..)

 omp_init_lock(omp_lock_t *lock)

 omp_init_nest_lock(omp_nest_lock_t *lock)

 omp_destroy_lock(omp_lock_t *lock)

 omp_destroy_nest_lock(omp_nest_lock_t *lock) 

 omp_set_lock(omp_lock_t *lock)

 omp_set_nest_lock(omp_nest_lock_t *lock)

 omp_unset_lock(omp_lock_t *lock)

 omp_unset_nest__lock(omp_nest_lock_t *lock) 

 omp_test_lock(omp_lock_t *lock)

 omp_test_nest_lock(omp_nest_lock_t *lock) 

 omp_get_wtime()

 omp_get_wtick()

 omp_get_thread_num()

 omp_get_num_proc()

 omp_get_num_devices()



Lock details

 Simple locks and nestable locks

 Simple locks are not locked if they are already in a 

locked state

 Nestable locks can be locked multiple times by the 

same thread

 Simple locks are available if they are unlocked

 Nestable locks are available if they are unlocked or 

owned by a calling thread



Example – Nested lock



Example – Nested lock (Contd..)



Example 1: Jacobi Solver



Example 2: BFS Version 1

(Nested Parallelism)



Example 3: BFS Version 2

(Using Task Construct)



Hybrid Programming – Combining MPI and 

OpenMP benefits

 MPI

- explicit parallelism, no synchronization problems

- suitable for coarse grain

 OpenMP

- easy to program, dynamic scheduling allowed

- only for shared memory, data synchronization problems

 MPI/OpenMP Hybrid

- Can combine MPI data placement with OpenMP fine-grain 
parallelism

- Suitable for cluster of SMPs (Clumps)

- Can implement hierarchical model



 END



Definitions

 Construct – statement containing directive and 
structured block

 Directive – Based on C #pragma directives

#pragma <omp id> <other text>

#pragma omp directive-name [clause [, clause] …] 
new-line

Example:
#pragma omp parallel default(shared) private(beta,pi)



Parallel construct

 Parallel region executed by multiple threads

 If num_threads, omp_set_num_threads(), 
OMP_SET_NUM_THREADS not used, then 
number of created threads is implementation 
dependent

 Number of physical processors hosting the 
thread also implementation dependent

 Threads numbered from 0 to N-1

 Nested parallelism by embedding one parallel 
construct inside another


