
Shared Memory Parallelism -

OpenMP

Sathish Vadhiyar
Credits/Sources:

OpenMP C/C++ standard (openmp.org)

OpenMP tutorial (http://www.llnl.gov/computing/tutorials/openMP/#Introduction)

OpenMP sc99 tutorial presentation (openmp.org)

Dr. Eric Strohmaier (University of Tennessee, CS594 class, Feb 9, 2000)

http://www.llnl.gov/computing/tutorials/openMP/#Introduction


Introduction

 A portable programming model and standard for 
shared memory programming using compiler 
directives

 Directives?: constructs or statements in the program 
applying some action on a block of code

 A specification for a set of compiler directives, library 
routines, and environment variables – standardizing 
pragmas 

 Easy to program; easy for code developer to convert 
his sequential to parallel program by throwing 
directives

 First version in 1997, development over the years till 
the latest 4.5 in 2015



Fork-Join Model

 Begins as a single thread 
called master thread

 Fork: When parallel construct 
is encountered, team of 
threads are created

 Statements in the parallel 
region are executed in parallel

 Join: At the end of the parallel 
region, the team threads 
synchronize and terminate



OpenMP consists of…

 Work-sharing constructs

 Synchronization constructs

 Data environment constructs

 Library calls, environment variables



Introduction

 Mainly supports loop-level parallelism

 Specifies parallelism for a region of code: fine-
level parallelism

 The number of threads can be varied from one 
region to another – dynamic parallelism
 Follows Amdahl’s law – sequential portions in the 

code

 Applications have varying phases of parallelism

 Also supports
 Coarse-level parallelism – sections and tasks

 Executions on accelerators

 SIMD vectorizations

 task-core affinity



parallel construct

#pragma omp parallel [clause [, clause] …] new-line

structured-block

Clause: Can support nested 

parallelism



Parallel construct - Example

#include <omp.h>

main () {

int nthreads, tid; 

#pragma omp parallel private(nthreads, tid) {

printf("Hello World \n);

}

}



Work sharing construct

 For distributing the execution among the threads 

that encounter it

 3 types of work sharing constructs – loops, 

sections, single



for construct

 For distributing the iterations among the threads

#pragma omp for [clause [, clause] …] new-

line

for-loop

Clause:



for construct

 Restriction in the structure of the for 
loop so that the compiler can 
determine the number of iterations –
e.g. no branching out of loop

 The assignment of iterations to 
threads depends on the schedule
clause

 Implicit barrier at the end of for if not 
nowait



schedule clause

1. schedule(static, chunk_size) –
iterations/chunk_size chunks distributed 
in round-robin

2. Schedule(dynamic, chunk_size) – same 
as above, but chunks distributed 
dynamically.

3. schedule(runtime) – decision at runtime. 
Implementation dependent



for - Example

include <omp.h>

#define CHUNKSIZE 100

#define N 1000

main () {

int i, chunk; float a[N], b[N], c[N];

/* Some initializations */

for (i=0; i < N; i++)

a[i] = b[i] = i * 1.0;

chunk = CHUNKSIZE;

#pragma omp parallel shared(a,b,c,chunk) private(i) {

#pragma omp for schedule(dynamic,chunk) nowait

for (i=0; i < N; i++)

c[i] = a[i] + b[i];

} /* end of parallel section */

} 



Coarse level parallelism – sections and 

tasks
 sections

 tasks – dynamic mechanism

 depend clause for task



Synchronization directives



flush directive

 Point where consistent view of memory is 

provided among the threads

 Thread-visible variables (global variables, 

shared variables etc.) are written to memory

 If var-list is used, only variables in the list are 

flushed



flush - Example



flush – Example (Contd…)



Data Scope Attribute Clauses

Most variables are shared by default

Data scopes explicitly specified by data scope attribute clauses

Clauses:

1. private

2. firstprivate

3. lastprivate

4. shared

5. default

6. reduction

7. copyin

8. copyprivate



threadprivate
• Global variable-list declared are made private to a thread

• Each thread gets its own copy

• Persist between different parallel regions
 #include <omp.h>

 int alpha[10], beta[10], i;

 #pragma omp threadprivate(alpha)

 main () {

 /* Explicitly turn off dynamic threads */

 omp_set_dynamic(0);

 /* First parallel region */

 #pragma omp parallel private(i,beta)

 for (i=0; i < 10; i++) alpha[i] = beta[i] = i;

 /* Second parallel region */

 #pragma omp parallel

 printf("alpha[3]= %d and beta[3]= %d\n",alpha[3],beta[3]);} 



private, firstprivate & lastprivate

 private (variable-list)

 variable-list private to each thread

 A new object with automatic storage duration allocated for the 
construct

 firstprivate (variable-list)

 The new object is initialized with the value of the old object that 
existed prior to the construct

 lastprivate (variable-list)

 The value of the private object corresponding to the last iteration 
or the last section is assigned to the original object



shared, default, reduction

 shared(variable-list)

 default(shared | none)

 Specifies the sharing behavior of all of the variables visible in the 
construct

 Reduction(op: variable-list)

 Private copies of the variables are made for each thread

 The final object value at the end of the reduction will be 
combination of all the private object values



default - Example



Library Routines (API)

 Querying function (number of threads etc.)

 General purpose locking routines

 Setting execution environment (dynamic 

threads, nested parallelism etc.)



API

 OMP_SET_NUM_THREADS(num_threads)

 OMP_GET_NUM_THREADS()

 OMP_GET_MAX_THREADS()

 OMP_GET_THREAD_NUM()

 OMP_GET_NUM_PROCS()

 OMP_IN_PARALLEL()

 OMP_SET_DYNAMIC(dynamic_threads)

 OMP_GET_DYNAMIC()

 OMP_SET_NESTED(nested)

 OMP_GET_NESTED()



API(Contd..)

 omp_init_lock(omp_lock_t *lock)

 omp_init_nest_lock(omp_nest_lock_t *lock)

 omp_destroy_lock(omp_lock_t *lock)

 omp_destroy_nest_lock(omp_nest_lock_t *lock) 

 omp_set_lock(omp_lock_t *lock)

 omp_set_nest_lock(omp_nest_lock_t *lock)

 omp_unset_lock(omp_lock_t *lock)

 omp_unset_nest__lock(omp_nest_lock_t *lock) 

 omp_test_lock(omp_lock_t *lock)

 omp_test_nest_lock(omp_nest_lock_t *lock) 

 omp_get_wtime()

 omp_get_wtick()

 omp_get_thread_num()

 omp_get_num_proc()

 omp_get_num_devices()



Lock details

 Simple locks and nestable locks

 Simple locks are not locked if they are already in a 

locked state

 Nestable locks can be locked multiple times by the 

same thread

 Simple locks are available if they are unlocked

 Nestable locks are available if they are unlocked or 

owned by a calling thread



Example – Nested lock



Example – Nested lock (Contd..)



Example 1: Jacobi Solver



Example 2: BFS Version 1

(Nested Parallelism)



Example 3: BFS Version 2

(Using Task Construct)



Hybrid Programming – Combining MPI and 

OpenMP benefits

 MPI

- explicit parallelism, no synchronization problems

- suitable for coarse grain

 OpenMP

- easy to program, dynamic scheduling allowed

- only for shared memory, data synchronization problems

 MPI/OpenMP Hybrid

- Can combine MPI data placement with OpenMP fine-grain 
parallelism

- Suitable for cluster of SMPs (Clumps)

- Can implement hierarchical model



 END



Definitions

 Construct – statement containing directive and 
structured block

 Directive – Based on C #pragma directives

#pragma <omp id> <other text>

#pragma omp directive-name [clause [, clause] …] 
new-line

Example:
#pragma omp parallel default(shared) private(beta,pi)



Parallel construct

 Parallel region executed by multiple threads

 If num_threads, omp_set_num_threads(), 
OMP_SET_NUM_THREADS not used, then 
number of created threads is implementation 
dependent

 Number of physical processors hosting the 
thread also implementation dependent

 Threads numbered from 0 to N-1

 Nested parallelism by embedding one parallel 
construct inside another


