
PRAM Algorithms

Sathish Vadhiyar



PRAM Model - Introduction

• Parallel Random Access Machine

• Helps to write precursor parallel 
algorithm without any architecture 
constraints

• Allows parallel-algorithm designers to 
treat processing power as unlimited

• Ignores complexity of inter-process 
communication



Benefits of PRAM

• Can be a suitable basis for the design of a 
parallel program targeted to a real 
machine

• Base algorithm can help establish tight 
lower and upper complexity bounds for 
practical implementations

• Assumptions made in PRAM model for ideal 
parallelism can help architecture designers 
to develop innovative designs

• Can be suitable for modern day 
architectures, e.g., GPUs



PRAM Architecture Model

• Consists of control unit, global memory, 
and an unbounded set of processors, 
each with own private memory

• An active processor reads from global 
memory, performs computation, writes 
to global memory

• Execute in SIMD model



Different Models

• Various PRAM models differ in how they 
handle read or write conflicts

1. EREW – Exclusive Read Exclusive Write
2. CREW – Concurrent Read Exclusive Write
3. CRCW

1. COMMON – All processors writing to same 
global memory must write the same value

2. ARBITRARY – one of the competing 
processor’s value is arbitrarily chosen

3. PRIORITY – processor with the lowest 
index writes its value



Mapping Between Models

• Any PRAM model/algorithm can execute any 
other PRAM model/algorithm

• For example, possible to convert PRIORITY 
PRAM to EREW PRAM



Steps in PRAM Algorithm & Example: 
Reduction

• PRAM algorithms have two phases:

• Phase 1: Sufficient number of 
processors are activated

• Phase 2: Activated processors perform 
the computations in parallel

• For example, binary tree reduction can 
be implemented using n/2 processors

• EREW PRAM suffices for reduction



Example: Prefix Sum Calculations

•

• Can be used for separating an array into two 
categories, lock-free synchronization in shared 
memory architectures etc.

• CREW PRAM algorithm for prefix sum 
calculations. 

• Can use n/2 processors. Takes O(logn) time



CREW PRAM for Prefix Sum

• Distance between the elements that are 
summed are doubled in every iteration



Example: Merging Two Sorted Lists

• Most PRAM algorithms achieve low time 
complexity by performing more operations 
than an optimal RAM algorithm

• For example, a RAM algorithm requires at 
most n-1 comparisons to merge two sorted 
lists of n/2 elements. Time complexity is O(n)

• CREW PRAM algorithm:

• Assign each list element its own processor – n 
processors



Example: Merging Two Sorted Lists

• The processor knows the index of the 
element in its own list

• Finds the index in the other list using binary 
search

• Adds the two indices to obtain the final 
position

• The total number of operations had increased 
to O(nlogn)

• Not cost-optimal



Example: Enumeration sort

• Computes the final position of each element by 
comparing it with the other elements and 
counting the number of elements having smaller 
value

• A special CRCW PRAM can perform the sort in 
O(1) time

• Spawn n2 processors corresponding to n2

comparisons
• Special CRCW PRAM – If multiple processors 

simultaneously write values to a single memory 
location, the sum of the values is assigned to 
that location



Example: Enumeration sort

• So, each processor compares a[i] and 
a[j]. If a[i] > a[j], writes position[i] = 1, 
else writes position[i]=0

• So the summation of all positions will 
give the final position – constant time 
algorithm

• But not cost-optimal – takes O(n2) 
comparisons, but a sequential algorithm 
does O(nlogn) comparisons



Summary

• PRAM algorithms mostly theoretical

• But can be used as a basis for 
developing efficient parallel algorithm 
for practical machines

• Can also motivate building specialized 
machines


