PRAM Algorithms

Sathish Vadhiyar

PRAM Model - Introduction

Parallel Random Access Machine

Helps to write precursor parallel
algorithm without any architecture
constraints

Allows parallel-algorithm designers to
treat processing power as unlimited

Ignores complexity of inter-process
communication

Benefits of PRAM

Can be a suitable basis for the design of a
parallel program targeted to a real
machine

Base algorithm can help establish tight
lower and upper complexity bounds for
practical implementations

Assumptions made in PRAM model for ideal
parallelism can help architecture designers
to develop innovative designs

Can be suitable for modern day
architectures, e.g., GPUs

PRAM Architecture Model

* Consists of control unit, global memory,
and an unbounded set of processors,
each with own private memory

* An active processor reads from global
memory, performs computation, writes
to global memory

« Execute in SIMD model

Different Models

» Various PRAM models differ in how they
handle read or write conflicts
1. EREW - Exclusive Read Exclusive Write
2. CREW - Concurrent Read Exclusive Write
3. CRCW
1. COMMON - All processors writing to same
global memory must write the same value

2. ARBITRARY - one of the competing
processor's value is arbitrarily chosen

3. PRIORITY - processor with the lowest
index writes its value

Mapping Between Models

« Any PRAM model/algorithm can execute any
other PRAM model/algorithm

* For example, possible to convert PRIORITY
PRAM to EREW PRAM

Steps in PRAM Algorithm & Example:
Reduction

* PRAM algorithms have two phases:

* Phase 1: Sufficient number of
processors are activated

* Phase 2: Activated processors perform
the computations in parallel

* For example, binary tree reduction can
be implemented using n/2 processors

« EREW PRAM suffices for reduction

Example: Prefix Sum Calculations

Bl = ¥ AL

=0
Can be used for separating an array into two
categories, lock-free synchronization in shared
memory architectures etc.

CREW PRAM algorithm for prefix sum
calculations.

Can use n/2 processors. Takes O(logn) time

CREW PRAM for Prefix Sum

5 |25 | 32| 45 82 | 90 | 106

57
25 45 [52 | 5)

5 (200 7 131225 8 | 16

e Distance between the elements that are
summed are doubled in every iteration

Example: Merging Two Sorted Lists

Most PRAM algorithms achieve low time
complexity by performing more operations
than an optimal RAM algorithm

For example, a RAM algorithm requires at
most n-1 comparisons o merge two sorted
lists of n/2 elements. Time complexity is O(n)

CREW PRAM algorithm:

Assign each list element its own processor - n
processors

Example: Merging Two Sorted Lists

The processor knows the index of the
element in its own list

Finds the index in the other list using binary
search

Adds the two indices to obtain the final
position

The total number of operations had increased
to O(nlogn)

Not cost-optimal

Example: Enumeration sort

Computes the final position of each element by
comparing it with the other elements and
co;.m’rmg he number of elements having smaller
value

A special CRCW PRAM can perform the sort in
O(1) time

Spawn n? processors corresponding to n?
comparisons

Special CRCW PRAM - If multiple processors
simultaneously write values to a single memory
location, the sum of the values is assigned to
that location

Example: Enumeration sort

* S0, each processor compares a[i] and
alj]. If ali] > a[j], writes position[i] = 1,
else writes position[i]=0

* So the summation of all positions will
give the final position - constant time
algorithm

* But not cost-optimal - takes O(n?)
comparisons, but a sequential algorithm
does O(nlogn) comparisons

Summary

* PRAM algorithms mostly theoretical

» But can be used as a basis for
developing efficient parallel algorithm
for practical machines

* Can also motivate building specialized
machines

