
Prefix Computations



Parallel Algorithm: Prefix computations on 
arrays
• Array X partitioned into subarrays

• Local prefix sums of each subarray calculated in parallel

• Prefix sums of last elements of each subarray written to a 
separate array Y

• Prefix sums of elements in Y are calculated.

• Each prefix sum of Y is added to corresponding block of X

• Divide and conquer strategy



Example

123456789

123 456 789

1,3,6 4,9,157,15,24

6,15,24

6,21,45

1,3,6,10,15,21,28,36,45

Divide

Local prefix sum

Passing last elements to a 
processor

Computing prefix sum of last elements on the 
processor

Adding global prefix sum to local prefix sums 
in each processor



Prefix sum (SCAN) for shared 
memory and using CUDA



Example: Scan or Parallel-prefix sum

• Using binary tree

• An upward reduction phase (reduce phase or up-
sweep phase)
• Traversing tree from leaves to root forming partial sums at 

internal nodes

• Down-sweep phase
• Traversing from root to leaves using partial sums computed 

in reduction phase



Up Sweep



Down Sweep



Host Code

• int main(){

• const unsigned int num_threads = num_elements / 2;

• /* cudaMalloc d_idata and d_odata */

• cudaMemcpy( d_idata, h_data, mem_size,   cudaMemcpyHostToDevice) );

• dim3  grid(256, 1, 1); dim3  threads(num_threads, 1, 1);

• scan<<< grid, threads>>> (d_odata, d_idata);

• cudaMemcpy( h_data, d_odata[i], sizeof(float) * num_elements,  
cudaMemcpyDeviceToHost

• /* cudaFree d_idata and d_odata */

• }



Device Code

__global__ void scan_workefficient(float *g_odata, float *g_idata, int n)

{

// Dynamically allocated shared memory for scan kernels

extern  __shared__  float temp[];

int thid = threadIdx.x;    int offset = 1;

// Cache the computational window in shared memory

temp[2*thid]   = g_idata[2*thid];

temp[2*thid+1] = g_idata[2*thid+1];



Device Code
// build the sum in place up the tree

for (int d = n>>1; d > 0; d >>= 1)

{

__syncthreads();

if (thid < d)      

{

int ai = offset*(2*thid+1)-1;

int bi = offset*(2*thid+2)-1;

temp[bi] += temp[ai];

}

offset *= 2;

}



Device Code
// scan back down the tree

// clear the last element

if (thid == 0)        temp[n - 1] = 0;   

// traverse down the tree building the scan in place

for (int d = 1; d < n; d *= 2)

{

offset >>= 1;

__syncthreads();

if (thid < d)

{

int ai = offset*(2*thid+1)-1;

int bi = offset*(2*thid+2)-1;



Device Code

float t   = temp[ai];

temp[ai]  = temp[bi];

temp[bi] += t;

}

}

__syncthreads();

// write results to global memory

g_odata[2*thid]   = temp[2*thid];    g_odata[2*thid+1] = temp[2*thid+1];

}
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Parallel Sorting Problem

• The input sequence of size N is distributed across P processors

• The output is such that
• elements in each processor Pi is sorted

• elements in Pi is greater than elements in Pi-1 and lesser than elements in Pi+1



Parallel quick sort

• Naïve approach

• Start with a single processor; divide array into two sub-arrays

• Now involve one more processor

• Both the processors perform the next step of quick sort within their local 
subarrays

• And so on….till the number of subarrays equal the number of processors

• Disadvantage: Inefficient utilization of processors



Another algorithm

• This algorithm involves all the processors in all the iterations

• One of the processors, P0, begins by broadcasting one of its elements 
as the pivot element to all the processors

• Each processor then divides its local array into two sub-arrays
• Li: elements less than the pivot

• Gi: elements greater than the pivot



Parallel Quick Sort

• Processors then divided into two groups:
• First group will process the subsequent steps with Li s

• Second group with Gi s

• The sizes of the processor groups must be in the ratio of the number 
of elements in Ls and Gs to achieve load balance

• These number of elements can be found using an allreduce operation



Shared memory implementation

• All L’s are formed in the first part of the array; all G’s in the second 
part

• Each processor needs to know the locations in the shared memory 
where it has to write its Li and Gi

• Prefix sums of the sizes of the subarrays can be used

• Prefix sum can be done in O(logP)



Example: Prefix sum illustration

• In this example, 36 is the pivot element



Message Passing Version

• A processor should know which elements in its Li and Gi it should 
send to which processor

• Distributed prefix sum is used

• A processor can then deduce its destination processor for sending its 
L array using:
• Total number of elements of L subarrays
• prefix sums of sizes
• Size of the processor group that will be responsible for L subarray

• Similarly for the G subarray

• In worst case, this requires all-to-all with time complexity O(N/P)



Parallel Quick sort

• The process now repeats with the subgroups

• Until the number of subgroups equal the number of processors

• At this stage, each processor performs a local quick sort: 
O(N/Plog(N/P))



Complexity and analysis

• log P times:
• Broadcast: O(logP)

• Allreduce: O(logP)

• Prefix sum and all-to-all: O(logP + N/P)

• Then local quick sort: O(N/P.logP)

• Total: O(N/P.logP) + O(log2P+N/P.logP)

• Weaknesses: Load imbalance and under-utilization



Graph Algorithms
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Graph Traversal

• Graph search plays an important role in analyzing large data 
sets

• Relationship between data objects represented in the form 
of graphs

• Breadth first search used in finding shortest path or sets 
of paths



Parallel BFS
Level-synchronized algorithm

• Proceeds level-by-level starting with the source 
vertex

• Level of a vertex – its graph distance from the 
source

• Also, called frontier-based algorithm

• The parallel processes process a level, synchronize at 
the end of the level, before moving to the next level 
– Bulk Synchronous Parallelism (BSP) model

• How to decompose the graph (vertices, edges and 
adjacency matrix) among processors?



Distributed BFS with 1D Partitioning

• Each vertex and edges emanating from it are owned by one 
processor

• 1-D partitioning of the adjacency matrix

• Edges emanating from vertex v is its edge list = list of 
vertex indices in row v of adjacency matrix A



1-D Partitioning

• At each level, each processor owns a set F – set of frontier 
vertices owned by the processor

• Edge lists of vertices in F are merged to form a set of 
neighboring vertices, N

• Some vertices of N owned by the same processor, while 
others owned by other processors

• Messages are sent to those processors to add these 
vertices to their frontier set for the next level



Lvs(v) – level of v, i.e, 
graph distance from 
source vs



BFS on GPUs



BFS on GPUs

• One GPU thread for a vertex

• For each level, a GPU kernel is launched with the number of 
threads equal to the number of vertices in the graph

• Only those vertices whose assigned vertices are frontiers 
will become active

• Do we need atomics?

• Severe load imbalance among the treads

• Scope for improvement



Thank You 


