
Parallel Algorithms
Sathish Vadhiyar



Parallel Sorting
Sathish Vadhiyar



Parallel Sorting Problem

• The input sequence of size N is distributed across P processors

• The output is such that
• elements in each processor Pi is sorted

• elements in Pi is greater than elements in Pi-1 and lesser than elements in Pi+1



Parallel quick sort

• Naïve approach

• Start with a single processor; divide array into two sub-arrays

• Now involve one more processor

• Both the processors perform the next step of quick sort within their local 
subarrays

• And so on….till the number of subarrays equal the number of processors

• Disadvantage: Inefficient utilization of processors



Another algorithm

• This algorithm involves all the processors in all the iterations

• One of the processors, P0, begins by broadcasting one of its elements 
as the pivot element to all the processors

• Each processor then divides its local array into two sub-arrays
• Li: elements less than the pivot

• Gi: elements greater than the pivot



Parallel Quick Sort

• Processors then divided into two groups:
• First group will process the subsequent steps with Li s

• Second group with Gi s

• The sizes of the processor groups must be in the ratio of the number 
of elements in Ls and Gs to achieve load balance

• These number of elements can be found using an allreduce operation



Shared memory implementation

• All L’s are formed in the first part of the array; all G’s in the second 
part

• Each processor needs to know the locations in the shared memory 
where it has to write its Li and Gi

• Prefix sums of the sizes of the subarrays can be used

• Prefix sum can be done in O(logP)



Example: Prefix sum illustration

• In this example, 36 is the pivot element



Message Passing Version

• A processor should know which elements in its Li and Gi it should 
send to which processor

• Distributed prefix sum is used

• A processor can then deduce its destination processor for sending its 
L array using:
• Total number of elements of L subarrays
• prefix sums of sizes
• Size of the processor group that will be responsible for L subarray

• Similarly for the G subarray

• In worst case, this requires all-to-all with time complexity O(N/P)



Parallel Quick sort

• The process now repeats with the subgroups

• Until the number of subgroups equal the number of processors

• At this stage, each processor performs a local quick sort: 
O(N/Plog(N/P))



Complexity and analysis

• log P times:
• Broadcast: O(logP)

• Allreduce: O(logP)

• Prefix sum and all-to-all: O(logP + N/P)

• Then local quick sort: O(N/P.logP)

• Total: O(N/P.logP) + O(log2P+N/P.logP)

• Weaknesses: Load imbalance and under-utilization



Graph Algorithms
Sathish Vadhiyar



Graph Traversal

• Graph search plays an important role in analyzing large data 
sets

• Relationship between data objects represented in the form 
of graphs

• Breadth first search used in finding shortest path or sets 
of paths



Parallel BFS
Level-synchronized algorithm

• Proceeds level-by-level starting with the source 
vertex

• Level of a vertex – its graph distance from the 
source

• Also, called frontier-based algorithm

• The parallel processes process a level, synchronize at 
the end of the level, before moving to the next level 
– Bulk Synchronous Parallelism (BSP) model

• How to decompose the graph (vertices, edges and 
adjacency matrix) among processors?



Distributed BFS with 1D Partitioning

• Each vertex and edges emanating from it are owned by one 
processor

• 1-D partitioning of the adjacency matrix

• Edges emanating from vertex v is its edge list = list of 
vertex indices in row v of adjacency matrix A



1-D Partitioning

• At each level, each processor owns a set F – set of frontier 
vertices owned by the processor

• Edge lists of vertices in F are merged to form a set of 
neighboring vertices, N

• Some vertices of N owned by the same processor, while 
others owned by other processors

• Messages are sent to those processors to add these 
vertices to their frontier set for the next level



Lvs(v) – level of v, i.e, 
graph distance from 
source vs



BFS on GPUs



BFS on GPUs

• One GPU thread for a vertex

• For each level, a GPU kernel is launched with the number of 
threads equal to the number of vertices in the graph

• Only those vertices whose assigned vertices are frontiers 
will become active

• Do we need atomics?

• Severe load imbalance among the treads

• Scope for improvement



Thank You 


