Parallel Algorithms

Sathish Vadhiyar

Parallel Sorting

Sathish Vadhiyar

Parallel Sorting Problem

* The input sequence of size N is distributed across P processors

* The output is such that

* elements in each processor P, is sorted
* elements in P, is greater than elements in P, ; and lesser than elementsin P,

Parallel quick sort

* Naive approach

e Start with a single processor; divide array into two sub-arrays
* Now involve one more processor

* Both the processors perform the next step of quick sort within their local
subarrays

* And so on....till the number of subarrays equal the number of processors

* Disadvantage: Inefficient utilization of processors

Another algorithm

* This algorithm involves all the processors in all the iterations

* One of the processors, PO, begins by broadcasting one of its elements
as the pivot element to all the processors

e Each processor then divides its local array into two sub-arrays
* L: elements less than the pivot
* G;: elements greater than the pivot

Parallel Quick Sort

* Processors then divided into two groups:
* First group will process the subsequent steps with L. s
* Second group with G;s

* The sizes of the processor groups must be in the ratio of the number
of elements in Ls and Gs to achieve load balance

* These number of elements can be found using an allreduce operation

Shared memory implementation

* All U's are formed in the first part of the array; all G’s in the second
part

* Each processor needs to know the locations in the shared memory
where it has to write its L, and G,

* Prefix sums of the sizes of the subarrays can be used

* Prefix sum can be done in O(logP)

Example: Prefix sum illustration

* In this example, 36 is the pivot element

R, Py F, Py Py F;
O 3 |31 (90 (B0 61 |68 (962027 | 0 (6] 1 [13 (PO |51 |91 | 56|95 oG | B (14 2 |16 | 24|25)26 | 1 (30| 85 | G5 | B0 | B4 | 46 | 41 (52 | 49 | T35 | 40 | GO) & | 30 [43 | OF | 52 | 38 | 9B | GG
-\--\"'\-.._ - I|II '.I . i
q--\-""-\- § I| —— -
'\-\.____- I | - -
P | \ —
03|90 |13[18]18 | \ | O (5|7 |11|14]22
\ |
Prefix sum of L subarray srees T \ Prefix sum of GG subarray sies
e ! \
|II |II
|II '.II
\ 4
| \
- II III
3 8 : 11 3 22
Pl A1 |20 (27| 9 | 36| 1 [13) 91 | 56 (05 | 56| 24 | 25 | 26| 1 Pb) oo 0[O0 B0) 61 | GE (06) TO 5L (8 |14 2 |15 | BS | G5 | B0 (B4 | 46 | 41 | 52 | 40) F3 | 49 | 60 | 43 | OF | 52 | 35 | OB | GG

Message Passing Version

* A processor should know which elements in its Li and Gi it should
send to which processor

e Distributed prefix sum is used

* A processor can then deduce its destination processor for sending its
L array using:
e Total number of elements of L subarrays
* prefix sums of sizes
 Size of the processor group that will be responsible for L subarray

e Similarly for the G subarray
* [n worst case, this requires all-to-all with time complexity O(N/P)

Parallel Quick sort

* The process now repeats with the subgroups
e Until the number of subgroups equal the number of processors

At this stage, each processor performs a local quick sort:
O(N/Plog(N/P))

Complexity and analysis

* log P times:
e Broadcast: O(logP)
 Allreduce: O(logP)
e Prefix sum and all-to-all: O(logP + N/P)

* Then local quick sort: O(N/P.logP)
e Total: Q(N/PlogP) + O(|Og2P+N/P|08P)

e Weaknesses: Load imbalance and under-utilization

Graph Algorithms

Sathish Vadhiyar

Graph Traversal

* Graph search plays an important role in analyzing large data
sets

* Relationship between data objects represented in the form
of graphs

* Breadth first search used in finding shortest path or sets
of paths

Parallel BFS
_evel-synchronized algorithm

* Proceeds level-by-level starting with the source
vertex

* Level of a vertex - its graph distance from the
source

* Also, called frontier-based algorithm

 The parallel processes process a level, synchronize at
the end of the level, before moving to the next level
- Bulk Synchronous Parallelism (BSP) model

« How to decompose the graph (vertices, edges and
adjacency matrix) among processors?

Distributed BFS with 1D Partitioning

* Each vertex and edges emanating from it are owned by one
processor
* 1-D partitioning of the adjacency matrix

Aj
Ay

- Edges emanating from ve: v’ 1 its edge list = list of

vertex indices in row v of adjacency matrix A

1-D Partitioning

At each level, each processor owns a set F - set of frontier
vertices owned by the processor

* Edge lists of vertices in F are merged to form a set of
neighboring vertices, N

« Some vertices of N owned by the same processor, while
others owned by other processors

* Messages are sent to those processors to add these
vertices to their frontier set for the next level

Algorithm 1 Distributed Breadth-First Expansion with 1D Partitioning

1: Initialize L, _(v) = {
2: for [=0 to oo do

o]

e e e e
AN R~ -

16:

QRS ew

p—
e

0, v = v, where v, 18 a source
~c. otherwise

F «— {v| L, (v) =1}, the set of local vertices with level [
if ' = () for all processors then

Terminate main loop
end if
N «— {neighbors of vertices in I’ (not necessarily local) }
for all processors g do

N, « {vertices in N owned by processor ¢}

Send N, to processor g

Receive ﬁq from processor g L,.(v) - level of v, i.e,
end for graph distance from
N U, N, (The N, may overlap) >OUIc€Vs
for v € N and L,_(v) = oo do

Ly (v)—1+1
end for

17: end for

BFS on GPUs

1 bfs_kernel(int curLevel){

2 v=>blockldx.x*blockDim.x +threadldx.x:
3 if dist|v] == curLevel then

4 forall the n € neighbors(v) do

5 if visited|n] == 0 then

6 dist[n| = dist[v] + 1:

7 visited[n] = 1;

8 end

9 end

10 end

11 }

BFS on GPUs

* One GPU thread for a vertex

* For each level, a GPU kernel is launched with the number of
threads equal o the number of vertices in the graph

* Only those vertices whose assigned vertices are frontiers
will become active

* Do we need atomics?
 Severe load imbalance among the treads
* Scope for improvement

Thank You

