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Motivations of Parallel Computing

◼ Faster execution times

❑ From days or months to hours or seconds

❑ E.g., climate modelling, bioinformatics

◼ Large amount of data dictate parallelism

◼ Parallelism more natural for certain kinds of 

problems, e.g., climate modelling

◼ Due to computer architecture trends

❑ CPU speeds have saturated

❑ Slow memory bandwidths
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Classification of Architectures – Flynn’s 

classification
In terms of parallelism in 

instruction and data stream

◼ Single Instruction Single 
Data (SISD): Serial 
Computers

◼ Single Instruction Multiple 
Data (SIMD)

     - Vector processors and 
processor arrays

     - Examples: CM-2, Cray-90, 
Cray YMP, Hitachi 3600

Courtesy: http://www.llnl.gov/computing/tutorials/parallel_comp/
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Classification of Architectures – Flynn’s 

classification
◼ Multiple Instruction Single 

Data (MISD): Not popular
◼ Multiple Instruction 

Multiple Data (MIMD)
     - Most popular
     - IBM SP and most other 

supercomputers, 
        clusters, computational 

Grids etc.

Courtesy: http://www.llnl.gov/computing/tutorials/parallel_comp/
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Classification of Architectures – Based on 

Memory
◼ Shared memory

◼ 2 types – UMA and 

NUMA

UMA

NUMA

Examples: HP-
Exemplar, SGI Origin, 
Sequent NUMA-Q

Courtesy: http://www.llnl.gov/computing/tutorials/parallel_comp/
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Classification 2:

Shared Memory vs Message Passing

◼ Shared memory machine: The n processors 
share physical address space
❑ Communication can be done through this shared 

memory

◼ The alternative is sometimes referred to 
as a message passing machine or a 
distributed memory machine
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Shared Memory Machines

The shared memory could itself be 
distributed among the processor nodes
❑ Each processor might have some portion of the 

shared physical address space that is physically 
close to it and therefore accessible in less time

❑ Terms: NUMA vs UMA architecture
◼ Non-Uniform Memory Access

◼ Uniform Memory Access



SHARED MEMORY AND 

CACHES
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Cache Coherence Problem

◼ If each processor in a shared memory 

multiple processor machine has a data cache

❑ Potential data consistency problem: the cache 

coherence problem

❑ Shared variable modification, private cache

◼ Objective: processes shouldn’t read `stale’ 

data

◼ Solutions

❑ Hardware: cache coherence mechanisms
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Cache Coherence Protocols

◼ Write update – propagate cache line to other 
processors on every write to a processor

◼ Write invalidate – each processor gets the 
updated cache line whenever it reads stale 
data

◼ Which is better?
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X: 0

Invalidation Based Cache Coherence
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Cache Coherence using invalidate protocols

◼ 3 states associated with data items
❑ Shared – a variable shared by 2 

caches
❑ Invalid – another processor (say P0) 

has updated the data item
❑ Dirty – state of the data item in P0



State Diagram
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Implementations of cache coherence protocols

◼ Snoopy
◼ for bus based architectures
◼ shared bus interconnect where all cache 

controllers monitor all bus activity 
◼ There is only one operation through bus at a 

time; cache controllers can be built to take 
corrective action and enforce coherence in 
caches

◼ Memory operations are propagated over the bus 
and snooped
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Implementations of cache coherence protocols

◼ Directory-based
◼ Instead of broadcasting memory operations to 

all processors, propagate coherence operations 
to relevant processors

◼ A central directory maintains states of cache 
blocks, associated processors



Implementation of Directory Based 

Protocols

◼ Using presence bits for the owner processors

◼ Two schemes:

◼ Full bit vector scheme – O(MxP) storage for 

P processors and M cache lines

◼ But not necessary

◼ Modern day processors use sparse or tagged 

directory scheme

◼ Limited cache lines and limited presence bits
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False Sharing

◼ Cache coherence occurs at the granularity of 

cache lines – an entire cache line is 

invalidated

◼ Modern day cache lines are 64 bytes in size

◼ Consider a Fortran program dealing with a 

matrix

◼ Assume each thread or process accessing a 

row of a matrix

◼ Leads to false sharing
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False sharing: Solutions

◼ Reorganize the code so that each processor 

access a set of rows

◼ Can still lead to overlapping of cache lines if 

matrix size not divisible by processors

◼ In such cases, employ padding

◼ Padding: dummy elements added to make 

the matrix size divisible
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INTERCONNECTION 

NETWORKS
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Interconnects
◼ Used in both shared memory and 

distributed memory architectures
◼ In shared memory: Used to connect 

processors to memory
◼ In distributed memory: Used to connect 

different processors
◼ Components

❑ Interface (PCI or PCI-e): for connecting 
processor to network link

❑ Network link connected to a communication 
network (network of connections)



Communication network

◼ Consists of switching elements to which 

processors are connected through ports

◼ Switch: network of switching elements

◼ Switching elements connected with each 

other using a pattern of connections

◼ Pattern defines the network topology

◼ In shared memory systems, memory units 

are also connected to communication 

network
22
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Parallel Architecture: Interconnections

◼ Routing techniques: how the route taken by the message 

from source to destination is decided

◼ Network topologies
❑ Static – point-to-point communication links among processing 

nodes

❑ Dynamic – Communication links are formed dynamically by 
switches
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Network Topologies

◼ Static
❑ Bus
❑ Completely connected
❑ Star
❑ Linear array, Ring (1-D torus)
❑ Mesh
❑ k-d mesh: d dimensions with k nodes in each dimension
❑ Hypercubes – 2-logp mesh
❑ Trees – our campus network

◼ Dynamic – Communication links are formed dynamically by 
switches
❑ Crossbar
❑ Multistage

◼ For more details, and evaluation of topologies, refer to book by 
Grama et al.



Network Topologies

◼ Bus, ring – used in small-

scale shared memory 

systems

◼ Crossbar switch – used in 

some small-scale shared 

memory machines, small 

or medium-scale 

distributed memory 

machines
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Crossbar Switch

◼ Consists of 2D grid of switching elements

◼ Each switching element consists of 2 input 

ports and 2 output ports

◼ An input port dynamically connected to an 

output port through a switching logic
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Multistage network – Omega network

◼ To reduce switching complexity

◼ Omega network – consisting of logP stages, 

each consisting of P/2 switching elements

◼ Contention

❑ In crossbar – nonblocking

❑ In Omega – can occur during multiple 

communications to disjoint pairs
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Mesh, Torus, Hypercubes, Fat-tree

◼ Commonly used network topologies in 

distributed memory architectures

◼ Hypercubes are networks with dimensions
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Mesh, Torus, Hypercubes

Mesh
2D

Torus

Hypercube(binary n-cube)

n=2 n=3



Fat Tree Networks

◼ Binary tree

◼ Processors arranged in leaves

◼ Other nodes correspond to switches

◼ Fundamental property:                                              

No. of links from a node to                               

a children = no. of links                                           

from the node to its parent

◼ Edges become fatter as we traverse up the 

tree
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Fat Tree Networks

◼ Any pairs of processors can communicate 

without contention: non-blocking network

◼ Constant Bisection Bandwidth (CBB) 

networks

◼ Two level fat tree has a diameter of four
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Evaluating Interconnection topologies

◼ Diameter – maximum distance between any two processing 
nodes
❑ Full-connected –

❑ Star –

❑ Ring –

❑ Hypercube - 

◼ Connectivity – multiplicity of paths between 2 nodes. Miniimum 
number of arcs to be removed from network to break it into two 
disconnected networks
❑ Linear-array – 

❑ Ring – 

❑ 2-d mesh – 

❑ 2-d mesh with wraparound – 

❑ D-dimension hypercubes – 
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Evaluating Interconnection topologies

◼ bisection width – minimum number of links to 
be removed from network to partition it into 2 
equal halves

❑ Ring –

❑ P-node 2-D mesh -

❑ Tree –

❑ Star – 

❑ Completely connected –

❑ Hypercubes - 
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Evaluating Interconnection topologies

◼ channel width – number of bits that can be 
simultaneously communicated over a link, i.e. 
number of physical wires between 2 nodes

◼ channel rate – performance of a single physical 
wire

◼ channel bandwidth – channel rate times channel 
width

◼ bisection bandwidth – maximum volume of 
communication between two halves of network, 
i.e. bisection width times channel bandwidth
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