
Parallel Architecture

Sathish Vadhiyar

Motivations of Parallel Computing

◼ Faster execution times

❑ From days or months to hours or seconds

❑ E.g., climate modelling, bioinformatics

◼ Large amount of data dictate parallelism

◼ Parallelism more natural for certain kinds of

problems, e.g., climate modelling

◼ Due to computer architecture trends

❑ CPU speeds have saturated

❑ Slow memory bandwidths

2

3

Classification of Architectures – Flynn’s

classification
In terms of parallelism in

instruction and data stream

◼ Single Instruction Single
Data (SISD): Serial
Computers

◼ Single Instruction Multiple
Data (SIMD)

 - Vector processors and
processor arrays

 - Examples: CM-2, Cray-90,
Cray YMP, Hitachi 3600

Courtesy: http://www.llnl.gov/computing/tutorials/parallel_comp/

4

Classification of Architectures – Flynn’s

classification
◼ Multiple Instruction Single

Data (MISD): Not popular
◼ Multiple Instruction

Multiple Data (MIMD)
 - Most popular
 - IBM SP and most other

supercomputers,
 clusters, computational

Grids etc.

Courtesy: http://www.llnl.gov/computing/tutorials/parallel_comp/

5

Classification of Architectures – Based on

Memory
◼ Shared memory

◼ 2 types – UMA and

NUMA

UMA

NUMA

Examples: HP-
Exemplar, SGI Origin,
Sequent NUMA-Q

Courtesy: http://www.llnl.gov/computing/tutorials/parallel_comp/

6

Classification 2:

Shared Memory vs Message Passing

◼ Shared memory machine: The n processors
share physical address space
❑ Communication can be done through this shared

memory

◼ The alternative is sometimes referred to
as a message passing machine or a
distributed memory machine

PP P P PP P

Interconnect

Main Memory

PP P P PP P

Interconnect

M MMMMMM

7

Shared Memory Machines

The shared memory could itself be
distributed among the processor nodes
❑ Each processor might have some portion of the

shared physical address space that is physically
close to it and therefore accessible in less time

❑ Terms: NUMA vs UMA architecture
◼ Non-Uniform Memory Access

◼ Uniform Memory Access

SHARED MEMORY AND

CACHES

8

9

X: 0

Shared Memory Architecture: Caches

X: 0

Read X Read X

X: 0

Read X

Cache hit:

Wrong data!!

P1 P2

Write X=1

X: 1

X: 1

10

Cache Coherence Problem

◼ If each processor in a shared memory

multiple processor machine has a data cache

❑ Potential data consistency problem: the cache

coherence problem

❑ Shared variable modification, private cache

◼ Objective: processes shouldn’t read `stale’

data

◼ Solutions

❑ Hardware: cache coherence mechanisms

11

Cache Coherence Protocols

◼ Write update – propagate cache line to other
processors on every write to a processor

◼ Write invalidate – each processor gets the
updated cache line whenever it reads stale
data

◼ Which is better?

12

X: 0

Invalidation Based Cache Coherence

X: 0

Read X Read X

X: 0

Read X

Invalidate

P1 P2

Write X=1

X: 1
X: 1

X: 1

13

Cache Coherence using invalidate protocols

◼ 3 states associated with data items
❑ Shared – a variable shared by 2

caches
❑ Invalid – another processor (say P0)

has updated the data item
❑ Dirty – state of the data item in P0

State Diagram

14

S

I D

read

writeC_write

read,

write

read C_read
write

C_write

15

Implementations of cache coherence protocols

◼ Snoopy
◼ for bus based architectures
◼ shared bus interconnect where all cache

controllers monitor all bus activity
◼ There is only one operation through bus at a

time; cache controllers can be built to take
corrective action and enforce coherence in
caches

◼ Memory operations are propagated over the bus
and snooped

16

Implementations of cache coherence protocols

◼ Directory-based
◼ Instead of broadcasting memory operations to

all processors, propagate coherence operations
to relevant processors

◼ A central directory maintains states of cache
blocks, associated processors

Implementation of Directory Based

Protocols

◼ Using presence bits for the owner processors

◼ Two schemes:

◼ Full bit vector scheme – O(MxP) storage for

P processors and M cache lines

◼ But not necessary

◼ Modern day processors use sparse or tagged

directory scheme

◼ Limited cache lines and limited presence bits

17

False Sharing

◼ Cache coherence occurs at the granularity of

cache lines – an entire cache line is

invalidated

◼ Modern day cache lines are 64 bytes in size

◼ Consider a Fortran program dealing with a

matrix

◼ Assume each thread or process accessing a

row of a matrix

◼ Leads to false sharing

18

False sharing: Solutions

◼ Reorganize the code so that each processor

access a set of rows

◼ Can still lead to overlapping of cache lines if

matrix size not divisible by processors

◼ In such cases, employ padding

◼ Padding: dummy elements added to make

the matrix size divisible

19

INTERCONNECTION

NETWORKS

20

21

Interconnects
◼ Used in both shared memory and

distributed memory architectures
◼ In shared memory: Used to connect

processors to memory
◼ In distributed memory: Used to connect

different processors
◼ Components

❑ Interface (PCI or PCI-e): for connecting
processor to network link

❑ Network link connected to a communication
network (network of connections)

Communication network

◼ Consists of switching elements to which

processors are connected through ports

◼ Switch: network of switching elements

◼ Switching elements connected with each

other using a pattern of connections

◼ Pattern defines the network topology

◼ In shared memory systems, memory units

are also connected to communication

network
22

23

Parallel Architecture: Interconnections

◼ Routing techniques: how the route taken by the message

from source to destination is decided

◼ Network topologies
❑ Static – point-to-point communication links among processing

nodes

❑ Dynamic – Communication links are formed dynamically by
switches

24

Network Topologies

◼ Static
❑ Bus
❑ Completely connected
❑ Star
❑ Linear array, Ring (1-D torus)
❑ Mesh
❑ k-d mesh: d dimensions with k nodes in each dimension
❑ Hypercubes – 2-logp mesh
❑ Trees – our campus network

◼ Dynamic – Communication links are formed dynamically by
switches
❑ Crossbar
❑ Multistage

◼ For more details, and evaluation of topologies, refer to book by
Grama et al.

Network Topologies

◼ Bus, ring – used in small-

scale shared memory

systems

◼ Crossbar switch – used in

some small-scale shared

memory machines, small

or medium-scale

distributed memory

machines
25

Crossbar Switch

◼ Consists of 2D grid of switching elements

◼ Each switching element consists of 2 input

ports and 2 output ports

◼ An input port dynamically connected to an

output port through a switching logic

26

Multistage network – Omega network

◼ To reduce switching complexity

◼ Omega network – consisting of logP stages,

each consisting of P/2 switching elements

◼ Contention

❑ In crossbar – nonblocking

❑ In Omega – can occur during multiple

communications to disjoint pairs

27

Mesh, Torus, Hypercubes, Fat-tree

◼ Commonly used network topologies in

distributed memory architectures

◼ Hypercubes are networks with dimensions

28

29

Mesh, Torus, Hypercubes

Mesh
2D

Torus

Hypercube(binary n-cube)

n=2 n=3

Fat Tree Networks

◼ Binary tree

◼ Processors arranged in leaves

◼ Other nodes correspond to switches

◼ Fundamental property:

No. of links from a node to

a children = no. of links

from the node to its parent

◼ Edges become fatter as we traverse up the

tree

30

Fat Tree Networks

◼ Any pairs of processors can communicate

without contention: non-blocking network

◼ Constant Bisection Bandwidth (CBB)

networks

◼ Two level fat tree has a diameter of four

31

32

Evaluating Interconnection topologies

◼ Diameter – maximum distance between any two processing
nodes
❑ Full-connected –

❑ Star –

❑ Ring –

❑ Hypercube -

◼ Connectivity – multiplicity of paths between 2 nodes. Miniimum
number of arcs to be removed from network to break it into two
disconnected networks
❑ Linear-array –

❑ Ring –

❑ 2-d mesh –

❑ 2-d mesh with wraparound –

❑ D-dimension hypercubes –

1
2

p/2

logP

1
2

2

4

d

33

Evaluating Interconnection topologies

◼ bisection width – minimum number of links to
be removed from network to partition it into 2
equal halves

❑ Ring –

❑ P-node 2-D mesh -

❑ Tree –

❑ Star –

❑ Completely connected –

❑ Hypercubes -

2

Root(P)

1

1

P2/4

P/2

34

Evaluating Interconnection topologies

◼ channel width – number of bits that can be
simultaneously communicated over a link, i.e.
number of physical wires between 2 nodes

◼ channel rate – performance of a single physical
wire

◼ channel bandwidth – channel rate times channel
width

◼ bisection bandwidth – maximum volume of
communication between two halves of network,
i.e. bisection width times channel bandwidth

	Slide 1
	Slide 2: Motivations of Parallel Computing
	Slide 3: Classification of Architectures – Flynn’s classification
	Slide 4: Classification of Architectures – Flynn’s classification
	Slide 5: Classification of Architectures – Based on Memory
	Slide 6: Classification 2: Shared Memory vs Message Passing
	Slide 7: Shared Memory Machines
	Slide 8: Shared memory and caches
	Slide 9: Shared Memory Architecture: Caches
	Slide 10: Cache Coherence Problem
	Slide 11: Cache Coherence Protocols
	Slide 12: Invalidation Based Cache Coherence
	Slide 13: Cache Coherence using invalidate protocols
	Slide 14: State Diagram
	Slide 15: Implementations of cache coherence protocols
	Slide 16: Implementations of cache coherence protocols
	Slide 17: Implementation of Directory Based Protocols
	Slide 18: False Sharing
	Slide 19: False sharing: Solutions
	Slide 20: Interconnection Networks
	Slide 21: Interconnects
	Slide 22: Communication network
	Slide 23: Parallel Architecture: Interconnections
	Slide 24: Network Topologies
	Slide 25: Network Topologies
	Slide 26: Crossbar Switch
	Slide 27: Multistage network – Omega network
	Slide 28: Mesh, Torus, Hypercubes, Fat-tree
	Slide 29: Mesh, Torus, Hypercubes
	Slide 30: Fat Tree Networks
	Slide 31: Fat Tree Networks
	Slide 32: Evaluating Interconnection topologies
	Slide 33: Evaluating Interconnection topologies
	Slide 34: Evaluating Interconnection topologies

