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Motivations of Parallel Computing

Faster execution times
o From days or months to hours or seconds
o E.g., climate modelling, bioinformatics

Large amount of data dictate parallelism

Parallelism more natural for certain kinds of
problems, e.g., climate modelling
Due to computer architecture trends

o CPU speeds have saturated
o Slow memory bandwidths



Classification ot Architectures — Flynn’s

classification

In terms of parallelism in
instruction and data stream

Single Instruction Single
Data (SISD): Serial
Computers

Single Instruction Multiple
Data (SIMD)

- Vector processors and
processor arrays

- Examples: CM-2, Cray-90,
Cray YMP, Hitachi 3600

prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n)
load B(1) load B(2) load B(n)
C(=A(1)*B(1) C(2)=A(2)*B(2) C(n)=A(n)*B(n)
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P1 P2 Pn

Courtesy: http://www.lInl.gov/computing/tutorials/parallel_comp/
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Classification ot Architectures — Flynn’s

classification
Multiple Instruction Single
Data (MISD): Not popular

Multiple Instruction
Multiple Data (MIMD)

- Most popular

- IBM SP and most other
supercomputers,

clusters, computational
Grids etc.

prev instruct prev instruct prev instruct
load A(1) call funcD do10i=1,N
load B(1) X=y 2 alpha=w**3
C(1)=A(1)*B(1) sum=x"2 zeta=C(i)
store C(1) call sub1(i,j) 10 continue
next instruct next instruct next instruct
P1 P2 Pn

Courtesy: http://www.lInl.gov/computing/tutorials/parallel_comp/
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Classification of Architectures — Based on
Memory

= Shared"memory

= 2 types — UMA and

NUMA NUMA

Examples: HP-
Exemplar, SGI Origin,
UMA Sequent NUMA-Q
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Courtesy: http://www.lInl.gov/computing/tutorials/parallel_comp/ .



Classification 2:
Shared Memory vs Message Passing

Shared memory machine: The n processors
share physical address space

o Communication can be done through this shared
R AR
e

Meencide memty

The alternative is sometimes referred to
as a message passing machine or a
distributed memory machine



Shared Memory Machines

The shared memory could itself be
distributed among the processor nodes
o Each processor might have some portion of the

shared physical address space that is physically
close to it and therefore accessible in less time

o Terms: NUMA vs UMA architecture

Non-Uniform Memory Access
Uniform Memory Access



SHARED MEMORY AND
CACHES




Shared Memory Architecture: Caches

Write X= Read X




Cache Coherence Problem

If each processor in a shared memory
multiple processor machine has a data cache

o Potential data consistency problem: the cache
coherence problem

o Shared variable modification, private cache

Obijective: processes shouldn’t read stale’
data

Solutions
o Hardware: cache coherence mechanisms
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Cache Coherence Protocols

Write update - propagate cache line to other
processors on every write to a processor

Write invalidate - each processor gets the
updated cache line whenever it reads stale
data

Which is better?
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‘Invalidation Based Cache Coherence

Write X= Read X

Invalidate
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(Uache Coherence using invalidate protocols

3 states associated with data items

0 Shared - a variable shared by 2
caches

0 Invalid - another processor (say PO)
has updated the data item

o Dirty - state of the data item in PO
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‘ State Diagram

C_write

read,
write
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Implementations of cache coherence protocols

Snoopy

for bus based architectures

shared bus interconnect where all cache
controllers monitor all bus activity

There is only one operation through bus at a
time; cache controllers can be built to take
corrective action and enforce coherence in
caches

Memory operations are propagated over the bus
and snooped
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Implementations of cache coherence protocols

Directory-based

Instead of broadcasting memory operations to
all processors, propagate coherence operations
to relevant processors

A central directory maintains states of cache
blocks, associated processors
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Implementation of Directory Based
Protocols

Using presence bits for the owner processors
Two schemes:

Full bit vector scheme — O(MxP) storage for
P processors and M cache lines

But not necessary

Modern day processors use sparse or tagged
directory scheme

Limited cache lines and limited presence bits
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False Sharing

Cache coherence occurs at the granularity of
cache lines — an entire cache line is
iInvalidated

Modern day cache lines are 64 bytes In size

Consider a Fortran program dealing with a
matrix

Assume each thread or process accessing a
row of a matrix

Leads to false sharing
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False sharing: Solutions

Reorganize the code so that each processor
access a set of rows

Can still lead to overlapping of cache lines if
matrix size not divisible by processors

In such cases, employ padding

Padding: dummy elements added to make
the matrix size divisible
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INTERCONNECTION
NETWORKS




Interconnects

Used in both shared memory and
distributed memory architectures

In shared memory: Used to connect
processors to memory

In distributed memory: Used to connect
different processors

Components

o Interface (PCI or PCI-e): for connecting
processor to network link

a Network link connected to a communication
network (network of connections)
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Communication network

Consists of switching elements to which
processors are connected through ports

Switch: network of switching elements

Switching elements connected with each
other using a pattern of connections

Pattern defines the network topology

In shared memory systems, memory units
are also connected to communication
network
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Parallel Architecture: Interconnections

Routing techniques: how the route taken by the message
from source to destination is decided

Network topologies

o Static — point-to-point communication links among processing
nodes

o Dynamic — Communication links are formed dynamically by
switches
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Network Topologies

Static

o Bus

a  Completely connected

o Star

o Linear array, Ring (1-D torus)

o Mesh

o k-d mesh: d dimensions with k nodes in each dimension
o Hypercubes - 2-logp mesh

a  Trees - our campus hetwork

Dynamic - Communication links are formed dynamically by
switches

a Crossbar

o Multistage

For more details, and evaluation of fopologies, refer to book by
Grama-et-ak
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Network Topologies

Bus, ring — used in small-
scale shared memory
systems

Crossbar switch — used in
some small-scale shared
memory machines, small
or medium-scale
distributed memory
machines
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Crossbar Switch

Consists of 2D grid of switching elements

Each switching element consists of 2 input
ports and 2 output ports

An input port dynamically connected to an
output port through a switching logic

\
-
|
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Multistage network — Omega network

To reduce switching complexity

Omega network — consisting of logP stages,

each consisting of P/2 switching elements
PDI_ Po

P
P
P.
Py
Pv
Pg

PRI

Contention - |
o In crossbar — nonblocking

o In Omega — can occur during multiple
communications to disjoint pairs
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Mesh, Torus, Hypercubes, Fat-tree

Commonly used network topologies in
distributed memory architectures

Hypercubes are networks with dimensions
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‘ Mesh, Torus, Hypercubes

2D
Mesh

Hypercube (binary n-cube)




Fat Tree Networks

Binary tree
Processors arranged in leaves
Other nodes correspond to swﬂches

Fundamental property:
No. of links from a node to

a children = no. of links , _ /\O /\ /\ /\

from the node to Its parent

Edges become fatter as we traverse up the
tree
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Fat Tree Networks

Any pairs of processors can communicate
without contention: non-blocking network

Constant Bisection Bandwidth (CBB)
networks

Two level fat tree has a diameter of four
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Evaluating Interconnection topologies

Diameter — maximum distance between any two processing
nodes

o Full-connected — 1
o Star— 2

o Ring - p/2

o Hypercube - logP

Connectivity — multiplicity of paths between 2 nodes. Miniimum
number of arcs to be removed from network to break it into two
disconnected networks

o Linear-array — 1

Ring — 2

2-d mesh — 2

2-d mesh with wraparound — 4
D-dimension hypercubes — ¢

U 0O 0 O

32



Evaluating Interconnection topologies

bisection width — minimum number of links to
be removed from network to partition it into 2
equal halves

0 Ring — 2

o P-node 2-D mesh - Rroot(P)
o Tree—1
Q
Q
Q

Star — 1
Completely connected — pz/4
Hypercubes - p/>



Evaluating Interconnection topologies

channel width - number of bits that can be
simultaneously communicated over a link, i.e.
number of physical wires between 2 nodes

channel rate - performance of a single physical
wire

channel bandwidth - channel rate times channel
width

bisection bandwidth - maximum volume of
communication between two halves of network,
I.e. bisection width times channel bandwidth
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