
Parallel BioInformatics

Sathish Vadhiyar

Parallel Bioinformatics

 Many large scale applications in
bioinformatics – sequence search,
alignment, construction of
phylogenetic trees

 Many operations can be trivially
parallelized

Sequence Alignment

Sequence Alignment/Comparison

 Sequences – to relate molecular structure
and function to the underlying sequence

 Sequence comparison - to find similarity of
species

 DNA and protein sequences can be treated
as strings over a fixed alphabet of
characters (C,G,A,T)

 Aligning 2 sequences to match characters
from the sequences that lie in the same
position

Terms

 Gaps – introduced in either of the
sequences to deal with missing
characters

 Scoring function – to evaluate an
alignment

 Goal – find an alignment with the
best score

Terms

 Affine gap penalty function: for a
maximal consecutive sequence of k
gaps, a penalty of h+gk is applied.

 First gap in a consecutive gap
sequence is h+g, while the rest of the
gaps are charged g each

Example

 Scoring function, f:

 f(c1,c2) = 1 if c1=c2, 0 otherwise

 Gap penalty for a gap sequence of
length k = 2+k

The Algorithm

 A=a1,a2,…,am and B = b1,b2,…,bn

 Let m <= n

 Dynamic programming to find an
optimal alignment of A and B

 Solution to a larger problem is expressed
in terms of solutions to smaller problems

 Recursive formulation

Data Structures

 Three tables, T1, T2 and T3 of size
(m+1)x(n+1)

 [i,j] entry in each table corresponds
to optimally aligning A and B

 T1: ai is matched with bj

 T2: - matched with bj

 T3: ai matched with -

Table Meanings

 T1: [i,j] entry – gives the score of:

 (a1,…,ai-1:b1,…,bj-1)aligned(ai,bj)

 T2: [i,j] entry – gives the score of:

 (a1,…,ai:b1,…,bj-1)aligned(-,bj)

 T3: [i,j] entry – gives the score of:

 (a1,…,ai-1:b1,…,bj)aligned(ai,-)

T1[i,j]

 (ai,bj) and best alignment of
(a1,…,ai-1:b1,…,bj-1)

 Best alignment of (a1,…,ai-1:b1,…,bj-1)
: Max of

 (a1,…,ai-2:b1,..,bj-2)aligned(ai-1,bj-1)

 (a1,…,ai-1:b1,..,bj-2)aligned(-,bj-1)

 (a1,…,ai-2:b1,…,bj-1)aligned(ai-1,-)

T2[i,j]

 Best of ((-,bj) and alignment of
(a1,…,ai:b1,…,bj-1))

T3[i,j]

 Best of ((ai,-) and alignment of
(a1,…,ai-1:b1,…,bj))

Table Initialization

 First row and column of each table
initialized to –inf except:

 T1[0,0] = 0;

 T2[0,j] = h+gj;

 T3[i,0] = h+gi

Filling Up of Table Entries

 For parallelism, fill diagonal by diagonal
(diagonal scan)

 Entries required for computing a diagonal
depends only on previous two diagonals

 However, some diagonals are too short for
parallelism; hence processors will be load
unbalanced and hence idle

 Row scan or column scan will be better for
parallelization

Row-by-row scan
 For this, computation of a row i should depend only

on (i-1)-th row

 For parallelization, distribution of tables should be
along rows or columns?

 i-th row of T1 and T3 depends on only the (i-1)th
rows

 But, i-th row of T2 depends on values in i-th row

columns

Row-by-row scan
After computing T1 and T3, T2 can be computed as:

For column
distribution of
table to
processors, x[j]
can be computed
using prefix
operation using

MPI_

?prefix

Scan

Parallelization

 1-d block distribution along columns of
Tables T1, T2 and T3; each processor
responsible for n/P columns

 For sequences:
 B: bj is needed only in computing column j;

hence block distribution of B; ith segment
of n/P characters given to processor Pi

 A: ai is needed by all processors at the
same time when row is computed; but
block distribution followed to reduce space;
Pi broadcasts its block to all processors
when row i is computed

Parallelization

 T1[i,j] needs:

 T1[i-1,j-1], T2[i-1,j-1], T3[i-1,j-1]

 w[j] needs:

 T1[i,j-1], T3[i,j-1]

 A processor needs to get these 5
elements from the preceding
processor for computing its left most
column

Complexity

 tl – latency time; tb – time for a single
message

 Computing each row takes

 O(n/p + (tl+tb)logp) time – time for a prefix
operation using binary tree

 Each of p broadcasts for broadcasting
portions of A:

 O((tl+tbm/p)logp)

 Total (for m rows for each processor):

 O(mn/P + tl(m+p)logp + tbmlogp)

References

 Parallel Biological Sequence
Comparison using Prefix
Computations. Aluru et. al. JPDC
2003.

