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Graph Traversal

 Graph search plays an important role in 
analyzing large data sets

 Relationship between data objects 
represented in the form of graphs

 Breadth first search used in finding 
shortest path or sets of paths



Parallel BFS
Level-synchronized algorithm

 Proceeds level-by-level starting with the source 
vertex

 Level of a vertex – its graph distance from the 
source

 Also, called frontier-based algorithm

 The parallel processes process a level, synchronize 
at the end of the level, before moving to the next 
level – Bulk Synchronous Parallelism (BSP) model

 How to decompose the graph (vertices, edges and 
adjacency matrix) among processors?



Distributed BFS with 1D 
Partitioning

 Each vertex and edges emanating from it 
are owned by one processor

 1-D partitioning of the adjacency matrix

 Edges emanating from vertex v is its 
edge list = list of vertex indices in row v 
of adjacency matrix A



1-D Partitioning

 At each level, each processor owns a set F –
set of frontier vertices owned by the 
processor

 Edge lists of vertices in F are merged to 
form a set of neighboring vertices, N

 Some vertices of N owned by the same 
processor, while others owned by other 
processors

 Messages are sent to those processors to 
add these vertices to their frontier set for 
the next level



Lvs(v) – level of v, i.e, 
graph distance from 
source vs



BFS on GPUs



BFS on GPUs

 One GPU thread for a vertex

 For each level, a GPU kernel is launched 
with the number of threads equal to the 
number of vertices in the graph

 Only those vertices whose assigned 
vertices are frontiers will become active

 Do we need atomics?

 Severe load imbalance among the treads

 Scope for improvement



 MST (Prim’s), SSSP, APSP



Single Source Shortest Path 
(SSSP)

 Find the shortest distance from a 
source s to all vertices

 Dijkstra’s algorithm



Single Source Shortest Path 
(SSSP)



Single Source Shortest Path 
(SSSP)

 The operation of updating the 
distances of neighbors using the 
minimum distance of a vertex –
relaxation

 Parallelization

 Vertices distributed across processors

 Each processor owns a set of vertices 
and their outgoing edges

 Priority queue distributed – each 
processor updates only its vertices in the 
priority queue 



Parallel SSSP Steps

 In each iteration:

 Minimum of all priority queues found 
using reduction

 Processor with the lowest rank 
removes vertex with the minimum 
distance



Parallel SSSP Steps

 Performs distributed edge relaxations

 Processor communicates distance of u to 
processors that owns u’s neighbors

 Processors update the tentative 
distances of neighbors and update their 
positions in local priority queue

 Disadvantages?



Parallel SSSP

 It is important to parallelize outer 
loop

 Some heuristics have been proposed:

 All vertices with distances < threshold 
L can be removed

 A large L can promote parallelism but 
can result in poor work efficiency due 
to unwanted computations due to 
reinsertions and repeated relaxations



Parallel Dijkstra’s SSSP

 Parallelism depends on graph 
topology

 Number of vertices that can be 
removed and processed in parallel

 Number of edges that can be relaxed 
in parallel



Bellman-Ford

 Larger parallelism, low work efficiency

 All edges are relaxed in all iterations till 
convergence

 Suitable for GPUs; Inner loop needs to 
be protected by atomics



SSSP:
Delta-stepping

 Balance between the two

 Balances work efficiency and 
parallelism

 Maintains tentative distances in 
buckets

 Each bucket maintains a range of 
tentative distances

 Range is given by delta



Delta stepping

 Assign source vertex to B0; all 
vertices to Binf

 Outer loop of phases; inner loop of 
steps

 In each phase, algorithms considers 
the non-empty bucket of lowest index

 Let Bj be such a bucket

 At the beginning of the phase, all 
vertices with final distances less than 
(delta.j+1) would have been settled



Delta stepping

 Algorithm removes vertices from Bj 
and relaxes all its outgoing edges

 This can migrate vertices from higher 
indexed bucket to a lower index 
bucket, k, with k>=j

 Perform until Bj becomes empty

 What happens if delta=1, and 
delta=inf?



Delta stepping



Delta stepping



Delta-stepping
Parallelization

 Inner loop is parallelized where all 
relaxations in a bucket are 
parallelized

 Shared memory parallelism – updates 
of the distances will have to be 
protected by atomics



Delta-stepping
Parallelization

 Distributed memory parallelism

 Vertices distributed

 Non-empty buckets maintained by all 
processors

 Each processor stores and processes 
only its vertices in its buckets

 Allreduce for finding the lowest index 
bucket

 Simultaneous relaxations using BSP 
(Bulk synchronous parallelism) model



SSSP on GPUs

 Most follow Bellman-Ford: Large number 
of edges processes by threads

 Two models:

 Topology-driven: All vertices with non-
infinite distances are processed by 
corresponding threads

 Data-driven: Only those whose 
distances have changed in the previous 
iteration are processed. A work list is 
maintained.



Topology-driven Algorithm



Data-driven Algorithm



Pros and Cons

 Topology-driven: Low work efficiency

 Data-driven: Need atomics, 
atomicMin

 Can result in lost updates of minimum 
distances



Pros and Cons

 Topology-driven version does not need 
atomics

 This is because SSSP has monotonicity
property: the distance value of a vertex 
is non-increasing

 Property utilized in topology-driven 
version to avoid atomics



Pros and Cons

 Since all active vertices with non-infinite 
distances are processed in all iterations, 
the lost updates will be reconsidered in 
the subsequent iterations.

 Even if there is a lost update, the thread 
with the minimum distance will get its 
chance in the next iteration



Reducing Atomics in Atomic 
Addition to Worklist

 Work chunking: Perform atomic 
updates for a chunk of elements 
rather than for every element

 Prefix sums can be used to avoid 
atomics

 Prefix sums themselves can be 
hierarchically constructed: 
hierarchical prefix sum



Redundancy in Worklists

 Two threads can add the same 
neighbour vertex to a worklist

 Duplicates can be huge!

 Two ways to avoid:

 A post-processing filtering kernel

 Hash-based culling; a thread uses 
hashing to find if its neighbour has been 
added



Load Balancing

 A major challenge among graph processing 
algorithms is the load imbalance among thread

 Modern-day graphs in social networks are 
scale-free graphs

 These graphs follow power-law distribution of 
degrees



Load Balancing Strategies:
Workload Decomposition

 Edges decomposed across threads in 
a block distribution



Load Balancing Strategies:
Node Splitting

 Split each high degree node into 
multiple low-degree nodes called 
virtual nodes



 Prim’s Minimal Spanning Tree, APSP 
using Dijkstra’s

 (Book by Grama et al. – Pages 
starting from 432, then from 438)



Minimal Spanning Tree – Prim’s 
Algorithm

 Spanning tree of a graph, G (V,E) – tree 
containing all vertices of G

 MST – spanning tree with minimum sum 
of weights

 Follows similar structure as Dijkstra’s 
SSSP.

 Vertices are added to a set Vt that 
holds vertices of MST; Initially contains 
an arbitrary vertex,r, as root vertex



Minimal Spanning Tree – Prim’s 
Algorithm

 An array d such that d[v in (V-Vt)] holds 
weight of the edge with least weight 
between v and any vertex in Vt; Initially 
d[v] = w[r,v]

 Find the vertex in d with minimum weight 
and add to Vt

 Update d

 Time complexity – O(n2)



Parallelization

 Vertex V and d array partitioned across P 
processors

 Each processor finds local minimum in d

 Then global minimum across all d performed 
by reduction on a processor

 The processor finds the next vertex u, and 
broadcasts to all processors 



Parallelization

 All processors update d; The owning 
processor of u marks u as belonging to Vt

 Process responsible for v must know w[u,v] 
to update d[v]; 1-D block mapping of 
adjacency matrix

 Complexity – O(n2/P) + (OnlogP) for 
communication



All-Pairs Shortest Paths

 To find shortest paths between all pairs 
of vertices

 Dijikstra’s algorithm for single-source 
shortest path can be used for all 
vertices

 Two approaches



All-Pairs Shortest Paths

 Source-partitioned formulation: Partition the 
vertices across processors
 Works well if p<=n; No communication

 Can at best use only n processors

 Time complexity?

 Source-parallel formulation: Parallelize SSSP for a 
vertex across a subset of processors

 Do for all vertices with different subsets of 
processors

 Hierarchical formulation

 Exploits more parallelism

 Time complexity?



Graph Partitioning



Graph Partitioning

 For many parallel graph algorithms, the graph has 
to be partitioned into multiple partitions and each 
processor takes care of a partition

 Criteria:
 The partitions must be balanced (uniform computations)

 The edge cuts between partitions must be minimal 
(minimizing communications)

 Some methods
 BFS: Find BFS and descend down the tree until the 

cumulative number of nodes = desired partition size

 Mostly: Multi-level partitioning based on coarsening and 
refinement (a bit advanced)

 Another popular method: Kernighan-Lin









Parallel partitioning

 Can use divide and conquer strategy

 A master node creates two partitions

 Keeps one for itself and gives the 
other partition to another processor

 Further partitioning by the two 
processors and so on…



 Multi-level partitioning



K-way multilevel partitioning 
algorithm

 Has 3 phases: coarsening, partitioning, 
refinement (uncoarsening)

 Coarsening - a sequence of smaller 
graphs constructed out of an input graph 
by collapsing vertices together



Coarsening

 Formulated as a maximal matching problem

 Matching – finding a set of non-adjacent 
edges, i.e., edges are not incident on same 
vertices

 Maximal matching: A matching where addition 
of one more edge results in the loss of 
matching property

 Commonly used heuristic: heaviest edge 
matching



K-way multilevel partitioning 
algorithm

 When enough vertices are collapsed 
together so that the coarsest graph is 
sufficiently small, a k-way partition is 
found

 Finally, the partition of the coarsest 
graph is projected back to the original 
graph by refining it at each uncoarsening 
level using a k-way partitioning 
refinement algorithm



K-way partitioning refinement

 A simple randomized algorithm that 
moves vertices among the partitions to 
minimize edge-cut and improve balance

 For a vertex v, let neighborhood N(v) be 
the union of the partitions to which the 
vertices adjacent to v belong

 In a k-way refinement algorithm, 
vertices are visited randomly



K-way partitioning refinement

 A vertex v is moved to one of the 
neighboring partitions N(v) if any of the 
following vertex migration criteria is 
satisfied
 The edge-cut is reduced while maintaining the 

balance

 The balance improves while maintaining the 
edge-cut

 This process is repeated until no further 
reduction in edge-cut is obtained



Graph Coloring



Graph Coloring Problem

 Given G(A) = (V, E)

 σ: V      {1,2,…,s} is s-coloring of G if 
σ(i) ≠ σ(j) for every (i, j) edge in E

 Minimum possible value of s is 
chromatic number of G

 Graph coloring problem is to color 
nodes with chromatic number of 
colors

 NP-complete problem



Parallel graph Coloring – General 
algorithm



Parallel Graph Coloring – Finding 
Maximal Independent Sets – Luby 
(1986)
I = null
V’ = V
G’ = G
While G’ ≠ empty

Choose an independent set I’ in G’

I = I U I’;   X = I’ U N(I’)    (N(I’) – adjacent vertices to I’)
V’ = V’ \ X;  G’ = G(V’)

end

For choosing independent set I’: (Monte Carlo Heuristic)
1. For each vertex, v in V’ determine a distinct random number p(v)

2. v in I iff p(v) > p(w) for every w in adj(v)

Color each MIS a different color

Disadvantage:
 Each new choice of random numbers requires a global 

synchronization of the processors.



Parallel Graph Coloring –
Gebremedhin and Manne (2003)

Pseudo-Coloring
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Community Detection

 Given a graph, the goal is to partition 
into communities such that related 
vertices are assigned to the same 
community



Metric

 Modularity – Measure to evaluate the goodness of a community

 Measures the fraction of edges that lie within the community

 Measures the difference between fraction of edges within 
communities compared to the expected fraction that would 
exist on a random graph with identical vertex and degree 
distributions



Modularity

 Or



Louvain Method

 Multi-phase, multi-iteration heuristic

 Iteratively improves the quality of the 
community until the gain in quality 
becomes negligible

 Complete sweep of a graph per 
iteration

 Graph coarsenings between phases



Louvain Method

 Each phase runs for a number of 
iterations until convergence

 Initially, each vertex is a community

 In each iteration:

 Gain in modularity calculated when moving 
a vertex to each of its neighboring 
communities

 If positive gain moved

 Iterations continued until convergence

 At the end of the phase, the vertices are 
collapsed



Sequential Algorithm



Challenges in Parallel Algorithm

 Lag of Community updates

 Significant communication overhead 
at every iteration of every phase

 Modularity calculation requires global 
accumulation of weights, hence global 
collectives

 New vertex-community mapping 
must be communicated at the end of 
every phase



Parallel Louvain Algorithm



Optimizations

 One of the major contributors of 
communication is the communication of 
ghost vertex information

 Observation: Rate of modularity 
increase decreases with the number of 
iterations – diminishing benefits

 This fact can be used to drop out certain 
vertices from computations and 
communications

 Mark vertices as active and inactive 
probabilistically



Optimizations

 If the vertex has not moved recently, 
the probability that it will stay active 
is reduced

 e.g.:



Optimizations within a node

 Within a node, concurrent updates 
need locking

 Can identify non-colliding vertices 
and update them concurrently 
without locks?

 How?



 Paper: Distributed Louvain Algorithm 
for Graph Community Detection


