
Parallel Graph Algorithms

Sathish Vadhiyar

Graph Traversal

 Graph search plays an important role in
analyzing large data sets

 Relationship between data objects
represented in the form of graphs

 Breadth first search used in finding
shortest path or sets of paths

Parallel BFS
Level-synchronized algorithm

 Proceeds level-by-level starting with the source
vertex

 Level of a vertex – its graph distance from the
source

 Also, called frontier-based algorithm

 The parallel processes process a level, synchronize
at the end of the level, before moving to the next
level – Bulk Synchronous Parallelism (BSP) model

 How to decompose the graph (vertices, edges and
adjacency matrix) among processors?

Distributed BFS with 1D
Partitioning

 Each vertex and edges emanating from it
are owned by one processor

 1-D partitioning of the adjacency matrix

 Edges emanating from vertex v is its
edge list = list of vertex indices in row v
of adjacency matrix A

1-D Partitioning

 At each level, each processor owns a set F –
set of frontier vertices owned by the
processor

 Edge lists of vertices in F are merged to
form a set of neighboring vertices, N

 Some vertices of N owned by the same
processor, while others owned by other
processors

 Messages are sent to those processors to
add these vertices to their frontier set for
the next level

Lvs(v) – level of v, i.e,
graph distance from
source vs

BFS on GPUs

BFS on GPUs

 One GPU thread for a vertex

 For each level, a GPU kernel is launched
with the number of threads equal to the
number of vertices in the graph

 Only those vertices whose assigned
vertices are frontiers will become active

 Do we need atomics?

 Severe load imbalance among the treads

 Scope for improvement

 MST (Prim’s), SSSP, APSP

Single Source Shortest Path
(SSSP)

 Find the shortest distance from a
source s to all vertices

 Dijkstra’s algorithm

Single Source Shortest Path
(SSSP)

Single Source Shortest Path
(SSSP)

 The operation of updating the
distances of neighbors using the
minimum distance of a vertex –
relaxation

 Parallelization

 Vertices distributed across processors

 Each processor owns a set of vertices
and their outgoing edges

 Priority queue distributed – each
processor updates only its vertices in the
priority queue

Parallel SSSP Steps

 In each iteration:

 Minimum of all priority queues found
using reduction

 Processor with the lowest rank
removes vertex with the minimum
distance

Parallel SSSP Steps

 Performs distributed edge relaxations

 Processor communicates distance of u to
processors that owns u’s neighbors

 Processors update the tentative
distances of neighbors and update their
positions in local priority queue

 Disadvantages?

Parallel SSSP

 It is important to parallelize outer
loop

 Some heuristics have been proposed:

 All vertices with distances < threshold
L can be removed

 A large L can promote parallelism but
can result in poor work efficiency due
to unwanted computations due to
reinsertions and repeated relaxations

Parallel Dijkstra’s SSSP

 Parallelism depends on graph
topology

 Number of vertices that can be
removed and processed in parallel

 Number of edges that can be relaxed
in parallel

Bellman-Ford

 Larger parallelism, low work efficiency

 All edges are relaxed in all iterations till
convergence

 Suitable for GPUs; Inner loop needs to
be protected by atomics

SSSP:
Delta-stepping

 Balance between the two

 Balances work efficiency and
parallelism

 Maintains tentative distances in
buckets

 Each bucket maintains a range of
tentative distances

 Range is given by delta

Delta stepping

 Assign source vertex to B0; all
vertices to Binf

 Outer loop of phases; inner loop of
steps

 In each phase, algorithms considers
the non-empty bucket of lowest index

 Let Bj be such a bucket

 At the beginning of the phase, all
vertices with final distances less than
(delta.j+1) would have been settled

Delta stepping

 Algorithm removes vertices from Bj
and relaxes all its outgoing edges

 This can migrate vertices from higher
indexed bucket to a lower index
bucket, k, with k>=j

 Perform until Bj becomes empty

 What happens if delta=1, and
delta=inf?

Delta stepping

Delta stepping

Delta-stepping
Parallelization

 Inner loop is parallelized where all
relaxations in a bucket are
parallelized

 Shared memory parallelism – updates
of the distances will have to be
protected by atomics

Delta-stepping
Parallelization

 Distributed memory parallelism

 Vertices distributed

 Non-empty buckets maintained by all
processors

 Each processor stores and processes
only its vertices in its buckets

 Allreduce for finding the lowest index
bucket

 Simultaneous relaxations using BSP
(Bulk synchronous parallelism) model

SSSP on GPUs

 Most follow Bellman-Ford: Large number
of edges processes by threads

 Two models:

 Topology-driven: All vertices with non-
infinite distances are processed by
corresponding threads

 Data-driven: Only those whose
distances have changed in the previous
iteration are processed. A work list is
maintained.

Topology-driven Algorithm

Data-driven Algorithm

Pros and Cons

 Topology-driven: Low work efficiency

 Data-driven: Need atomics,
atomicMin

 Can result in lost updates of minimum
distances

Pros and Cons

 Topology-driven version does not need
atomics

 This is because SSSP has monotonicity
property: the distance value of a vertex
is non-increasing

 Property utilized in topology-driven
version to avoid atomics

Pros and Cons

 Since all active vertices with non-infinite
distances are processed in all iterations,
the lost updates will be reconsidered in
the subsequent iterations.

 Even if there is a lost update, the thread
with the minimum distance will get its
chance in the next iteration

Reducing Atomics in Atomic
Addition to Worklist

 Work chunking: Perform atomic
updates for a chunk of elements
rather than for every element

 Prefix sums can be used to avoid
atomics

 Prefix sums themselves can be
hierarchically constructed:
hierarchical prefix sum

Redundancy in Worklists

 Two threads can add the same
neighbour vertex to a worklist

 Duplicates can be huge!

 Two ways to avoid:

 A post-processing filtering kernel

 Hash-based culling; a thread uses
hashing to find if its neighbour has been
added

Load Balancing

 A major challenge among graph processing
algorithms is the load imbalance among thread

 Modern-day graphs in social networks are
scale-free graphs

 These graphs follow power-law distribution of
degrees

Load Balancing Strategies:
Workload Decomposition

 Edges decomposed across threads in
a block distribution

Load Balancing Strategies:
Node Splitting

 Split each high degree node into
multiple low-degree nodes called
virtual nodes

 Prim’s Minimal Spanning Tree, APSP
using Dijkstra’s

 (Book by Grama et al. – Pages
starting from 432, then from 438)

Minimal Spanning Tree – Prim’s
Algorithm

 Spanning tree of a graph, G (V,E) – tree
containing all vertices of G

 MST – spanning tree with minimum sum
of weights

 Follows similar structure as Dijkstra’s
SSSP.

 Vertices are added to a set Vt that
holds vertices of MST; Initially contains
an arbitrary vertex,r, as root vertex

Minimal Spanning Tree – Prim’s
Algorithm

 An array d such that d[v in (V-Vt)] holds
weight of the edge with least weight
between v and any vertex in Vt; Initially
d[v] = w[r,v]

 Find the vertex in d with minimum weight
and add to Vt

 Update d

 Time complexity – O(n2)

Parallelization

 Vertex V and d array partitioned across P
processors

 Each processor finds local minimum in d

 Then global minimum across all d performed
by reduction on a processor

 The processor finds the next vertex u, and
broadcasts to all processors

Parallelization

 All processors update d; The owning
processor of u marks u as belonging to Vt

 Process responsible for v must know w[u,v]
to update d[v]; 1-D block mapping of
adjacency matrix

 Complexity – O(n2/P) + (OnlogP) for
communication

All-Pairs Shortest Paths

 To find shortest paths between all pairs
of vertices

 Dijikstra’s algorithm for single-source
shortest path can be used for all
vertices

 Two approaches

All-Pairs Shortest Paths

 Source-partitioned formulation: Partition the
vertices across processors
 Works well if p<=n; No communication

 Can at best use only n processors

 Time complexity?

 Source-parallel formulation: Parallelize SSSP for a
vertex across a subset of processors

 Do for all vertices with different subsets of
processors

 Hierarchical formulation

 Exploits more parallelism

 Time complexity?

Graph Partitioning

Graph Partitioning

 For many parallel graph algorithms, the graph has
to be partitioned into multiple partitions and each
processor takes care of a partition

 Criteria:
 The partitions must be balanced (uniform computations)

 The edge cuts between partitions must be minimal
(minimizing communications)

 Some methods
 BFS: Find BFS and descend down the tree until the

cumulative number of nodes = desired partition size

 Mostly: Multi-level partitioning based on coarsening and
refinement (a bit advanced)

 Another popular method: Kernighan-Lin

Parallel partitioning

 Can use divide and conquer strategy

 A master node creates two partitions

 Keeps one for itself and gives the
other partition to another processor

 Further partitioning by the two
processors and so on…

 Multi-level partitioning

K-way multilevel partitioning
algorithm

 Has 3 phases: coarsening, partitioning,
refinement (uncoarsening)

 Coarsening - a sequence of smaller
graphs constructed out of an input graph
by collapsing vertices together

Coarsening

 Formulated as a maximal matching problem

 Matching – finding a set of non-adjacent
edges, i.e., edges are not incident on same
vertices

 Maximal matching: A matching where addition
of one more edge results in the loss of
matching property

 Commonly used heuristic: heaviest edge
matching

K-way multilevel partitioning
algorithm

 When enough vertices are collapsed
together so that the coarsest graph is
sufficiently small, a k-way partition is
found

 Finally, the partition of the coarsest
graph is projected back to the original
graph by refining it at each uncoarsening
level using a k-way partitioning
refinement algorithm

K-way partitioning refinement

 A simple randomized algorithm that
moves vertices among the partitions to
minimize edge-cut and improve balance

 For a vertex v, let neighborhood N(v) be
the union of the partitions to which the
vertices adjacent to v belong

 In a k-way refinement algorithm,
vertices are visited randomly

K-way partitioning refinement

 A vertex v is moved to one of the
neighboring partitions N(v) if any of the
following vertex migration criteria is
satisfied
 The edge-cut is reduced while maintaining the

balance

 The balance improves while maintaining the
edge-cut

 This process is repeated until no further
reduction in edge-cut is obtained

Graph Coloring

Graph Coloring Problem

 Given G(A) = (V, E)

 σ: V {1,2,…,s} is s-coloring of G if
σ(i) ≠ σ(j) for every (i, j) edge in E

 Minimum possible value of s is
chromatic number of G

 Graph coloring problem is to color
nodes with chromatic number of
colors

 NP-complete problem

Parallel graph Coloring – General
algorithm

Parallel Graph Coloring – Finding
Maximal Independent Sets – Luby
(1986)
I = null
V’ = V
G’ = G
While G’ ≠ empty

Choose an independent set I’ in G’

I = I U I’; X = I’ U N(I’) (N(I’) – adjacent vertices to I’)
V’ = V’ \ X; G’ = G(V’)

end

For choosing independent set I’: (Monte Carlo Heuristic)
1. For each vertex, v in V’ determine a distinct random number p(v)

2. v in I iff p(v) > p(w) for every w in adj(v)

Color each MIS a different color

Disadvantage:
 Each new choice of random numbers requires a global

synchronization of the processors.

Parallel Graph Coloring –
Gebremedhin and Manne (2003)

Pseudo-Coloring

Sources/References

 Paper: A Scalable Distributed Parallel Breadth-
First Search Algorithm on BlueGene/L. Yoo et
al. SC 2005.

 Paper:Accelerating large graph algorithms on
the GPU usingCUDA. Harish and Narayanan.
HiPC 2007.

 M. Luby. A simple parallel algorithm for the
maximal independent set problem. SIAM
Journal on Computing. 15(4)1036-1054 (1986)

 A.H. Gebremedhin, F. Manne, Scalable parallel
graph coloring algorithms, Concurrency:
Practice and Experience 12 (2000) 1131-1146.

Community Detection

 Given a graph, the goal is to partition
into communities such that related
vertices are assigned to the same
community

Metric

 Modularity – Measure to evaluate the goodness of a community

 Measures the fraction of edges that lie within the community

 Measures the difference between fraction of edges within
communities compared to the expected fraction that would
exist on a random graph with identical vertex and degree
distributions

Modularity

 Or

Louvain Method

 Multi-phase, multi-iteration heuristic

 Iteratively improves the quality of the
community until the gain in quality
becomes negligible

 Complete sweep of a graph per
iteration

 Graph coarsenings between phases

Louvain Method

 Each phase runs for a number of
iterations until convergence

 Initially, each vertex is a community

 In each iteration:

 Gain in modularity calculated when moving
a vertex to each of its neighboring
communities

 If positive gain moved

 Iterations continued until convergence

 At the end of the phase, the vertices are
collapsed

Sequential Algorithm

Challenges in Parallel Algorithm

 Lag of Community updates

 Significant communication overhead
at every iteration of every phase

 Modularity calculation requires global
accumulation of weights, hence global
collectives

 New vertex-community mapping
must be communicated at the end of
every phase

Parallel Louvain Algorithm

Optimizations

 One of the major contributors of
communication is the communication of
ghost vertex information

 Observation: Rate of modularity
increase decreases with the number of
iterations – diminishing benefits

 This fact can be used to drop out certain
vertices from computations and
communications

 Mark vertices as active and inactive
probabilistically

Optimizations

 If the vertex has not moved recently,
the probability that it will stay active
is reduced

 e.g.:

Optimizations within a node

 Within a node, concurrent updates
need locking

 Can identify non-colliding vertices
and update them concurrently
without locks?

 How?

 Paper: Distributed Louvain Algorithm
for Graph Community Detection

