Parallel Graph Algorithms

Sathish Vadhiyar

Graph Traversal

- Graph search plays an important role in analyzing large data sets
- Relationship between data objects represented in the form of graphs
- Breadth first search used in finding shortest path or sets of paths

Parallel BFS Level-synchronized algorithm

- Proceeds level-by-level starting with the source vertex
- Level of a vertex its graph distance from the source
- □ Also, called **frontier-based** algorithm
- The parallel processes process a level, synchronize at the end of the level, before moving to the next level - Bulk Synchronous Parallelism (BSP) model
- How to decompose the graph (vertices, edges and adjacency matrix) among processors?

Distributed BFS with 1D Partitioning

Each vertex and edges emanating from it are owned by one processor

□ 1-D partitioning of the adjacency matrix

Edges emanating from vertex v is its edge list = list of vertex indices in row v of adjacency matrix A

1-D Partitioning

- At each level, each processor owns a set F set of frontier vertices owned by the processor
- Edge lists of vertices in F are merged to form a set of neighboring vertices, N
- Some vertices of N owned by the same processor, while others owned by other processors
- Messages are sent to those processors to add these vertices to their frontier set for the next level

Algorithm 1 Distributed Breadth-First Expansion with 1D Partitioning

- 1: Initialize $L_{v_s}(v) = \begin{cases} 0, & v = v_s, \text{ where } v_s \text{ is a source} \\ \infty, & \text{otherwise} \end{cases}$
- 2: for l = 0 to ∞ do

B:
$$F \leftarrow \{v \mid L_{v_s}(v) = l\}$$
, the set of local vertices with level l

- 4: if $F = \emptyset$ for all processors then
 - Terminate main loop
- 6: end if

5:

7:

9:

13:

- $N \leftarrow \{\text{neighbors of vertices in } F \text{ (not necessarily local)}\}$
- 8: for all processors q do
 - $N_q \leftarrow \{ \text{vertices in } N \text{ owned by processor } q \}$
- 10: Send N_q to processor q
- 11: Receive \bar{N}_q from processor q
- 12: end for
 - $\bar{N} \leftarrow \bigcup_q \bar{N}_q$ (The \bar{N}_q may overlap)

14: for
$$v \in \overline{N}$$
 and $L_{v_s}(v) = \infty$ do

15:
$$L_{v_s}(v) \leftarrow l+1$$

- 16: end for
- 17: end for

 $L_{vs}(v)$ – level of v, i.e, graph distance from source vs

BFS on GPUs

1 bfs_kernel(int curLevel){ 2 v = blockIdx.x * blockDim.x + threadIdx.x;3 if dist[v] == curLevel then forall the $n \in neighbors(v)$ do 4 if visited [n] == 0 then 5 dist[n] = dist[v] + 1;6 *visited*[n] = 1;7 end 8 end 9 10 end 11 }

BFS on GPUs

One GPU thread for a vertex

- For each level, a GPU kernel is launched with the number of threads equal to the number of vertices in the graph
- Only those vertices whose assigned vertices are frontiers will become active
- Do we need atomics?
- Severe load imbalance among the treads
- Scope for improvement

□ MST (Prim's), SSSP, APSP

Single Source Shortest Path (SSSP)

Find the shortest distance from a source s to all vertices

Dijkstra's algorithm

Single Source Shortest Path (SSSP)

input : a graph graph(V, E) with N vertices in a set V, and M edges in a set, E, and M weights, w of the edges. A source s 1 forall the $v \in V$ do $dist[v] \leftarrow = \infty$; 2 3 end 4 dist[s] $\leftarrow 0$; 5 Initialize a priority queue, Q, with all the vertices ordered by the distances; 6 while $Q \neq 0$ do Remove u with minimum distance from Q; 7 for all the $v \in neighbors(u)$ do 8 if (dist[u] + w(u,v)) < dist[v] then 9 dist[v] = dist[u] + w(u,v);10Update position of v in Q; 11 12 end 13 end 14 end

Fig. 4.21: Sequential Dijkstra's SSSP Algorithm

Single Source Shortest Path (SSSP)

- The operation of updating the distances of neighbors using the minimum distance of a vertex relaxation
- Parallelization
 - Vertices distributed across processors
 - Each processor owns a set of vertices and their outgoing edges

Priority queue distributed – each processor updates only its vertices in the priority queue

Parallel SSSP Steps

□ In each iteration:

Minimum of all priority queues found using reduction

Processor with the lowest rank removes vertex with the minimum distance

Parallel SSSP Steps

Performs distributed edge relaxations

- Processor communicates distance of u to processors that owns u's neighbors
- Processors update the tentative distances of neighbors and update their positions in local priority queue

Disadvantages?

Parallel SSSP

- It is important to parallelize outer loop
- □ Some heuristics have been proposed:
- All vertices with distances < threshold L can be removed
- A large L can promote parallelism but can result in poor work efficiency due to unwanted computations due to reinsertions and repeated relaxations

Parallel Dijkstra's SSSP

- Parallelism depends on graph topology
- Number of vertices that can be removed and processed in parallel
- Number of edges that can be relaxed in parallel

Bellman-Ford

□ Larger parallelism, low work efficiency

All edges are relaxed in all iterations till convergence

Fig. 4.22: Sequential Bellman-Ford SSSP Algorithm

Suitable for GPUs; Inner loop needs to

SSSP: Delta-stepping

- Balance between the two
- Balances work efficiency and parallelism
- Maintains tentative distances in buckets
- Each bucket maintains a range of tentative distances
- Range is given by delta

- Assign source vertex to B0; all vertices to Binf
- Outer loop of phases; inner loop of steps
- In each phase, algorithms considers the non-empty bucket of lowest index
- Let Bj be such a bucket
- At the beginning of the phase, all vertices with final distances less than (delta.j+1) would have been settled

- Algorithm removes vertices from Bj and relaxes all its outgoing edges
- This can migrate vertices from higher indexed bucket to a lower index bucket, k, with k>=j
- Perform until Bj becomes empty
- What happens if delta=1, and delta=inf?

input : a graph graph(V, E) with N vertices in a set V, and M edges in a set, E, and M weights, w of the edges. A source s
1 forall the v ∈ V do

```
2 dist[v] \leftarrow = \infty;

3 end

4 dist[s] \leftarrow 0;

5 B_0 = s;

6 B_{\infty} = v \in V, v \neq s;
```


Fig. 4.23: ∆-stepping SSSP Algorithm

Delta-stepping Parallelization

Inner loop is parallelized where all relaxations in a bucket are parallelized

Shared memory parallelism – updates of the distances will have to be protected by atomics

Delta-stepping Parallelization

- Distributed memory parallelism
 - Vertices distributed
 - Non-empty buckets maintained by all processors
 - Each processor stores and processes only its vertices in its buckets
 - Allreduce for finding the lowest index bucket
 - Simultaneous relaxations using BSP (Bulk synchronous parallelism) model

SSSP on GPUs

- Most follow Bellman-Ford: Large number of edges processes by threads
- □ Two models:
- Topology-driven: All vertices with noninfinite distances are processed by corresponding threads
- Data-driven: Only those whose distances have changed in the previous iteration are processed. A work list is maintained.

Topology-driven Algorithm

```
1 main(){
 2 for all the v \in V do
        dist[v] \leftarrow = \infty;
 3
 4 end
 5 dist[s] \leftarrow 0;
 6 change = 1;
 7 while change do
        change = 0;
 8
        sssp_kernel(change);
 9
10 end
11
   ł
12 sssp_kernel(INOUT change){
13 forall u \in V parallel
        if u \neq \infty then
14
             for v \in neighbors(u) do
15
                  if (dist[u] + w(u, v)) < dist[v] then
16
                       dist[v] = dist[u] + w(u, v);
17
                       change = 1;
18
19
                  end
20
             end
21
        end
22 }
```

Fig. 4.24: Topology-driven SSSP Algorithm

Data-driven Algorithm

1 main(){ 2 forall the $v \in V$ do $dist[v] \leftarrow = \infty$; 3 4 end 5 dist[s] $\leftarrow 0$; 6 Add s to worklist_in; 7 worklist_out = \emptyset ; 8 while worklist_in $\neq 0$ do sssp_kernel(worklist_in, worklist_out); 9 copy worklist_out to worklist_in; 10worklist_out = \emptyset : 11 12 end 13 } 14 sssp_kernel(IN worklist_in, OUT worklist_out){ 15 for $u \in worklist_in$ parallel for $v \in neighbors(u)$ do 16 if (dist[u] + w(u, v)) < dist[v] then 17 $\operatorname{atomicMin}(\operatorname{dist}[v], \operatorname{dist}[u] + w(u, v));$ 18 Add v to worklist_out ; 19 20 end 21 end 22

Fig. 4.25: Data-driven SSSP Algorithm

Pros and Cons

atomicMin

Topology-driven: Low work efficiency

Data-driven: Need atomics,

Can result in lost updates of minimum distances

Pros and Cons

- Topology-driven version does not need atomics
- This is because SSSP has monotonicity property: the distance value of a vertex is non-increasing
- Property utilized in topology-driven version to avoid atomics

Pros and Cons

- Since all active vertices with non-infinite distances are processed in all iterations, the lost updates will be reconsidered in the subsequent iterations.
- Even if there is a lost update, the thread with the minimum distance will get its chance in the next iteration

Reducing Atomics in Atomic Addition to Worklist

- Work chunking: Perform atomic updates for a chunk of elements rather than for every element
- Prefix sums can be used to avoid atomics
- Prefix sums themselves can be hierarchically constructed: hierarchical prefix sum

Redundancy in Worklists

- Two threads can add the same neighbour vertex to a worklist
- Duplicates can be huge!
- □ Two ways to avoid:
 - A post-processing *filtering* kernel
 - Hash-based culling; a thread uses hashing to find if its neighbour has been added

Load Balancing

- A major challenge among graph processing algorithms is the load imbalance among thread
- Modern-day graphs in social networks are scale-free graphs
- These graphs follow power-law distribution of

Load Balancing Strategies: Workload Decomposition

Edges decomposed across threads in a block distribution

Load Balancing Strategies: Node Splitting

Split each high degree node into multiple low-degree nodes called virtual nodes

Prim's Minimal Spanning Tree, APSP using Dijkstra's

□ (Book by Grama et al. – Pages starting from 432, then from 438)
Minimal Spanning Tree – Prim's Algorithm

- Spanning tree of a graph, G (V,E) tree containing all vertices of G
- MST spanning tree with minimum sum of weights
- Follows similar structure as Dijkstra's SSSP.
- Vertices are added to a set Vt that holds vertices of MST; Initially contains an arbitrary vertex,r, as root vertex

Minimal Spanning Tree – Prim's Algorithm

- An array d such that d[v in (V-Vt)] holds weight of the edge with least weight between v and any vertex in Vt; Initially d[v] = w[r,v]
- Find the vertex in d with minimum weight and add to Vt
- Update d
- \Box Time complexity $O(n^2)$

Parallelization

- Vertex V and d array partitioned across P processors
- Each processor finds local minimum in d
- Then global minimum across all d performed by reduction on a processor
- The processor finds the next vertex u, and broadcasts to all processors

Parallelization

- All processors update d; The owning processor of u marks u as belonging to Vt
- Process responsible for v must know w[u,v] to update d[v]; 1-D block mapping of adjacency matrix
- Complexity O(n²/P) + (OnlogP) for communication

All-Pairs Shortest Paths

- To find shortest paths between all pairs of vertices
- Dijikstra's algorithm for single-source shortest path can be used for all vertices
- Two approaches

All-Pairs Shortest Paths

- Source-partitioned formulation: Partition the vertices across processors
 - Works well if p<=n; No communication</p>
 - Can at best use only n processors
 - Time complexity?
- Source-parallel formulation: Parallelize SSSP for a vertex across a subset of processors
- Do for all vertices with different subsets of processors
- Hierarchical formulation
- Exploits more parallelism
- □ Time complexity?

Graph Partitioning

Graph Partitioning

- For many parallel graph algorithms, the graph has to be partitioned into multiple partitions and each processor takes care of a partition
- 🗆 Criteria:
 - The partitions must be balanced (uniform computations)
 - The edge cuts between partitions must be minimal (minimizing communications)
- Some methods
 - BFS: Find BFS and descend down the tree until the cumulative number of nodes = desired partition size
 - Mostly: Multi-level partitioning based on coarsening and refinement (a bit advanced)
 - Another popular method: Kernighan-Lin

Partitioning without nodal coordinates - Kernighan/Lin

- ° Take a initial partition and iteratively improve it
 - Kernighan/Lin (1970), cost = O(|N|³) but easy to understand
 - Fiduccia/Mattheyses (1982), cost = O(|E|), much better, but more complicated
- ° Let G = (N,E,W_E) be partitioned as N = A U B, where |A| = |B|
- ° T = cost(A,B) = Σ {W(e) where e connects nodes in A and B}
- ° Find subsets X of A and Y of B with |X| = |Y| so that swapping X and Y decreases cost:
 - newA = A X U Y and newB = B Y U X
 - newT = cost(newA , newB) < cost(A,B)
 - Keep choosing X and Y until cost no longer decreases
- ^o Need to compute newT efficiently for many possible X and Y, choose smallest

CS267 L15 Graph Partitioning II.5

Demmel Sp 1999

Kernighan/Lin - Preliminary Definitions

° T = cost(A, B), newT = cost(newA, newB)

° Need an efficient formula for newT; will use

- E(a) = external cost of a in A = Σ {W(a,b) for b in B}
- I(a) = internal cost of a in A = Σ {W(a,a') for other a' in A}
- D(a) = cost of a in A = E(a) I(a)
 - Moving a from A to B would decrease T by D(a)
- E(b), I(b) and D(b) defined analogously for b in B
- ° Consider swapping X = {a} and Y = {b}
 - newA = A {a} U {b}, newB = B {b} U {a}
- ° newT = T (D(a) + D(b) 2*w(a,b)) = T gain(a,b)
 - gain(a,b) measures improvement gotten by swapping a and b
- ° Update formulas, after a and b are swapped

newD(a') = D(a') + 2*w(a',a) - 2*w(a',b) for a' in A, a' != a

• newD(b') = D(b') + 2*w(b',b) - 2*w(b',a) for b' in B, b' != b

Kernighan/Lin Algorithm

Compute T = cost(A,B) for initial A, B Repeat	cost = O(N ²)
One pass greedily computes [N]/2 possible X.Y to s	wap, picks best
Compute costs D(n) for all n in N	cost = O(INI ²)
Unmark all nodes in N	cost = O(N)
While there are unmarked nodes	INI/2 iterations
Find an unmarked pair (a,b) maximizing gain(a,b)	cost = O(INI ²)
Mark a and b (but do not swap them)	cost = O(1)
Update D(n) for all unmarked n.	
as though a and b had been swapped	cost = O(N)
Endwhile	ST 18
At this point we have computed a sequence of p	airs
(a1,b1), , (ak,bk) and gains gain(1),, gain(k)
where k = N /2, numbered in the order in which	we marked them
Pick m maximizing Gain = $\Sigma k=1$ to m gain(k)	cost = O(N)
Gain is reduction in cost from swapping (a1,b1)	through (am,bm)
If Gain > 0 then it is worth swapping	
Update newA = A - { a1,,am } U { b1,,bm }	cost = O(N)
Update newB = B - { b1,,bm } U { a1,,am }	cost = O(N)
Update T = T - Gain	cost = O(1)
endif	
Until Gain <= 0	

CS267 L15 Graph Partitioning II.7

Demmel Sp 1999

Parallel partitioning

- Can use divide and conquer strategy
- □ A master node creates two partitions
- Keeps one for itself and gives the other partition to another processor
- Further partitioning by the two processors and so on...

Multi-level partitioning

K-way multilevel partitioning algorithm

- Has 3 phases: coarsening, partitioning, refinement (uncoarsening)
- Coarsening a sequence of smaller graphs constructed out of an input graph by collapsing vertices together

Coarsening

- Formulated as a maximal matching problem
- Matching finding a set of non-adjacent edges, i.e., edges are not incident on same vertices
- Maximal matching: A matching where addition of one more edge results in the loss of matching property
- Commonly used heuristic: heaviest edge matching

K-way multilevel partitioning algorithm

- When enough vertices are collapsed together so that the coarsest graph is sufficiently small, a k-way partition is found
- Finally, the partition of the coarsest graph is projected back to the original graph by refining it at each uncoarsening level using a k-way partitioning refinement algorithm

K-way partitioning refinement

- A simple randomized algorithm that moves vertices among the partitions to minimize edge-cut and improve balance
- For a vertex v, let neighborhood N(v) be the union of the partitions to which the vertices adjacent to v belong
- In a k-way refinement algorithm, vertices are visited randomly

K-way partitioning refinement

- A vertex v is moved to one of the neighboring partitions N(v) if any of the following vertex migration criteria is satisfied
 - The edge-cut is reduced while maintaining the balance
 - The balance improves while maintaining the edge-cut
- This process is repeated until no further reduction in edge-cut is obtained

Graph Coloring

Graph Coloring Problem

$\Box \text{ Given } G(A) = (V, E)$

- $\Box \sigma: V \longrightarrow \{1,2,...,s\} \text{ is s-coloring of G if} \\ \sigma(i) \neq \sigma(j) \text{ for every } (i, j) \text{ edge in E}$
- Minimum possible value of s is chromatic number of G
- Graph coloring problem is to color nodes with chromatic number of colors
- NP-complete problem

Parallel graph Coloring – General algorithm

ParallelColoring(G = (V, E))begin $U \leftarrow V$ $G' \leftarrow G$ while (G' is not empty) do in parallel Find an independent set I in G'Color the vertices in I $U \leftarrow U \setminus I$ $G' \leftarrow \text{graph induced by } U$ end-while end

Parallel Graph Coloring – Finding Maximal Independent Sets – Luby (1986)

I = null V' = V G' = GWhile G' \neq empty Choose an independent set I' in G' $I = I \cup I'; \quad X = I' \cup N(I') \quad (N(I') - adjacent vertices to I')$ $V' = V' \setminus X; \quad G' = G(V')$ end

For choosing independent set I': (Monte Carlo Heuristic)

- **1**. For each vertex, v in V' determine a distinct random number p(v)
- 2. v in I iff p(v) > p(w) for every w in adj(v)

Color each MIS a different color

Disadvantage:

Each new choice of random numbers requires a global synchronization of the processors.

Parallel Graph Coloring – Gebremedhin and Manne (2003)

 $\begin{array}{l} BlockPartitionBasedColoring(G,p)\\ \text{begin}\\ 1. \text{ Partition } V \text{ into } p \text{ equal blocks } V_1 \dots V_p, \text{ where } \lfloor \frac{n}{p} \rfloor \leq |V_i| \leq \lceil \frac{n}{p} \rceil\\ \text{ for } i=1 \text{ to } p \text{ do in parallel}\\ \text{ for each } v_j \in V_i \text{ do} \\ \text{ assign the smallest legal color to vertex } v_j\\ \text{ barrier synchronize}\\ \text{ end-for}\\ \text{ end-for} \end{array}$

Sources/References

- Paper: A Scalable Distributed Parallel Breadth-First Search Algorithm on BlueGene/L. Yoo et al. SC 2005.
- Paper:Accelerating large graph algorithms on the GPU usingCUDA. Harish and Narayanan. HiPC 2007.
- M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM Journal on Computing. 15(4)1036-1054 (1986)
- A.H. Gebremedhin, F. Manne, Scalable parallel graph coloring algorithms, Concurrency: Practice and Experience 12 (2000) 1131-1146.

Community Detection

Given a graph, the goal is to partition into communities such that related vertices are assigned to the same community

Metric

- Modularity Measure to evaluate the goodness of a community
- Measures the fraction of edges that lie within the community
- Measures the difference between fraction of edges within communities compared to the expected fraction that would exist on a random graph with identical vertex and degree distributions

$$Q = \frac{1}{2m} \sum_{i,j} (A_{ij} - \frac{k_i * k_j}{2m}) \delta(c_i, c_j)$$

where:
$$m = \text{sum of all the edge-weights}$$
(1)
$$k_i = \text{weighted degree of vertex } i$$

$$c_i = \text{community that contains vertex } i$$

$$\delta(c_i, c_j) = 1 \text{ if } c_i = c_j, 0 \text{ otherwise.}$$

Modularity

□ Or

 $Q = \sum_{c \in C} \left[\frac{e_{ij}}{2m} - \left(\frac{a_c}{2m} \right)^2 \right]$ where: $e_{ij} = \sum w_{ij} : \forall i, j \in c, \text{ and } \{i, j\} \in E$ $a_c = \sum_{i \in c} k_i$ (2)

Louvain Method

- Multi-phase, multi-iteration heuristic
- Iteratively improves the quality of the community until the gain in quality becomes negligible
- Complete sweep of a graph per iteration
- □ Graph coarsenings between phases

Louvain Method

- Each phase runs for a number of iterations until convergence
- □ Initially, each vertex is a community
- In each iteration:
 - Gain in modularity calculated when moving a vertex to each of its neighboring communities
 - If positive gain moved
- Iterations continued until convergence
- At the end of the phase, the vertices are collapsed

Sequential Algorithm

Algorithm 1: Serial Louvain algorithm. **Input**: Graph G = (V, E), threshold τ Input: Initial community assignment, Cinit 1: $Q_{prev} \leftarrow -\infty$ 2: $C_{prev} \leftarrow$ Initialize each vertex in its own community while true do for all $v \in V$ do 4: $N(v) \leftarrow$ neighboring communities of v 5: $targetComm \leftarrow \arg \max_{t \in N_v} \Delta Q(v \text{ moving to } t)$ 6: if the gain is positive then 7: Move v to targetComm and update C_{curr} 8: $Q_{curr} \leftarrow ComputeModularity(V, E, C_{curr})$ 9: if $Q_{curr} - Q_{prev} \leq \tau$ then 10: break 11: else 12: $Q_{prev} \leftarrow Q_{curr}$ 13:

Challenges in Parallel Algorithm

□ Lag of Community updates

- Significant communication overhead at every iteration of every phase
- Modularity calculation requires global accumulation of weights, hence global collectives

New vertex-community mapping must be communicated at the end of every phase

Parallel Louvain Algorithm

- 1: function LOUVAINITERATION(G_i, C_{curr})
- 2: $V_g \leftarrow ExchangeGhostVertices(G_i)$
- 3: while true do
- 4: send latest information on those local vertices that are stored as ghost vertices on remote processes
- receive latest information on all ghost vertices
- 6: for $v \in V_i$ do
- Compute ΔQ that can be achieved by moving v to each of its neighboring communities
- 8: Determine target community for v based on the migration that maximizes ΔQ
- Update community information for both the source and destination communities of v
- send updated information on ghost communities to owner processes
- C_{info} ← receive and update information on local communities
- 12: $currMod_i \leftarrow Compute modularity based on G_i and C_{info}$
- 13: $currMod \leftarrow all-reduce: \sum_{\forall i} currMod_i$
- 14: if $currMod prevMod \le \tau$ then
- 15: break
- 16: $prevMod \leftarrow currMod$
- 17: return prevMod

Optimizations

- One of the major contributors of communication is the communication of ghost vertex information
- Observation: Rate of modularity increase decreases with the number of iterations – diminishing benefits
- This fact can be used to drop out certain vertices from computations and communications
- Mark vertices as active and inactive probabilistically

Optimizations

If the vertex has not moved recently, the probability that it will stay active is reduced

□ e.g.:

$$P_{v,k} = \begin{cases} P_{v,k-1} * (1 - \alpha), & \text{if } C_{v,k-1} = C_{v,k-2} \\ 1, & \text{otherwise} \end{cases}$$
(3)

Optimizations within a node

- Within a node, concurrent updates need locking
- Can identify non-colliding vertices and update them concurrently without locks?
- □ How?

Paper: Distributed Louvain Algorithm for Graph Community Detection