
Parallel Graph Algorithms

Sathish Vadhiyar

Graph Traversal

 Graph search plays an important role in
analyzing large data sets

 Relationship between data objects
represented in the form of graphs

 Breadth first search used in finding
shortest path or sets of paths

Parallel BFS
Level-synchronized algorithm

 Proceeds level-by-level starting with the source
vertex

 Level of a vertex – its graph distance from the
source

 Also, called frontier-based algorithm

 The parallel processes process a level, synchronize
at the end of the level, before moving to the next
level – Bulk Synchronous Parallelism (BSP) model

 How to decompose the graph (vertices, edges and
adjacency matrix) among processors?

Distributed BFS with 1D
Partitioning

 Each vertex and edges emanating from it
are owned by one processor

 1-D partitioning of the adjacency matrix

 Edges emanating from vertex v is its
edge list = list of vertex indices in row v
of adjacency matrix A

1-D Partitioning

 At each level, each processor owns a set F –
set of frontier vertices owned by the
processor

 Edge lists of vertices in F are merged to
form a set of neighboring vertices, N

 Some vertices of N owned by the same
processor, while others owned by other
processors

 Messages are sent to those processors to
add these vertices to their frontier set for
the next level

Lvs(v) – level of v, i.e,
graph distance from
source vs

BFS on GPUs

BFS on GPUs

 One GPU thread for a vertex

 For each level, a GPU kernel is launched
with the number of threads equal to the
number of vertices in the graph

 Only those vertices whose assigned
vertices are frontiers will become active

 Do we need atomics?

 Severe load imbalance among the treads

 Scope for improvement

 MST (Prim’s), SSSP, APSP

Single Source Shortest Path
(SSSP)

 Find the shortest distance from a
source s to all vertices

 Dijkstra’s algorithm

Single Source Shortest Path
(SSSP)

Single Source Shortest Path
(SSSP)

 The operation of updating the
distances of neighbors using the
minimum distance of a vertex –
relaxation

 Parallelization

 Vertices distributed across processors

 Each processor owns a set of vertices
and their outgoing edges

 Priority queue distributed – each
processor updates only its vertices in the
priority queue

Parallel SSSP Steps

 In each iteration:

 Minimum of all priority queues found
using reduction

 Processor with the lowest rank
removes vertex with the minimum
distance

Parallel SSSP Steps

 Performs distributed edge relaxations

 Processor communicates distance of u to
processors that owns u’s neighbors

 Processors update the tentative
distances of neighbors and update their
positions in local priority queue

 Disadvantages?

Parallel SSSP

 It is important to parallelize outer
loop

 Some heuristics have been proposed:

 All vertices with distances < threshold
L can be removed

 A large L can promote parallelism but
can result in poor work efficiency due
to unwanted computations due to
reinsertions and repeated relaxations

Parallel Dijkstra’s SSSP

 Parallelism depends on graph
topology

 Number of vertices that can be
removed and processed in parallel

 Number of edges that can be relaxed
in parallel

Bellman-Ford

 Larger parallelism, low work efficiency

 All edges are relaxed in all iterations till
convergence

 Suitable for GPUs; Inner loop needs to
be protected by atomics

SSSP:
Delta-stepping

 Balance between the two

 Balances work efficiency and
parallelism

 Maintains tentative distances in
buckets

 Each bucket maintains a range of
tentative distances

 Range is given by delta

Delta stepping

 Assign source vertex to B0; all
vertices to Binf

 Outer loop of phases; inner loop of
steps

 In each phase, algorithms considers
the non-empty bucket of lowest index

 Let Bj be such a bucket

 At the beginning of the phase, all
vertices with final distances less than
(delta.j+1) would have been settled

Delta stepping

 Algorithm removes vertices from Bj
and relaxes all its outgoing edges

 This can migrate vertices from higher
indexed bucket to a lower index
bucket, k, with k>=j

 Perform until Bj becomes empty

 What happens if delta=1, and
delta=inf?

Delta stepping

Delta stepping

Delta-stepping
Parallelization

 Inner loop is parallelized where all
relaxations in a bucket are
parallelized

 Shared memory parallelism – updates
of the distances will have to be
protected by atomics

Delta-stepping
Parallelization

 Distributed memory parallelism

 Vertices distributed

 Non-empty buckets maintained by all
processors

 Each processor stores and processes
only its vertices in its buckets

 Allreduce for finding the lowest index
bucket

 Simultaneous relaxations using BSP
(Bulk synchronous parallelism) model

SSSP on GPUs

 Most follow Bellman-Ford: Large number
of edges processes by threads

 Two models:

 Topology-driven: All vertices with non-
infinite distances are processed by
corresponding threads

 Data-driven: Only those whose
distances have changed in the previous
iteration are processed. A work list is
maintained.

Topology-driven Algorithm

Data-driven Algorithm

Pros and Cons

 Topology-driven: Low work efficiency

 Data-driven: Need atomics,
atomicMin

 Can result in lost updates of minimum
distances

Pros and Cons

 Topology-driven version does not need
atomics

 This is because SSSP has monotonicity
property: the distance value of a vertex
is non-increasing

 Property utilized in topology-driven
version to avoid atomics

Pros and Cons

 Since all active vertices with non-infinite
distances are processed in all iterations,
the lost updates will be reconsidered in
the subsequent iterations.

 Even if there is a lost update, the thread
with the minimum distance will get its
chance in the next iteration

Reducing Atomics in Atomic
Addition to Worklist

 Work chunking: Perform atomic
updates for a chunk of elements
rather than for every element

 Prefix sums can be used to avoid
atomics

 Prefix sums themselves can be
hierarchically constructed:
hierarchical prefix sum

Redundancy in Worklists

 Two threads can add the same
neighbour vertex to a worklist

 Duplicates can be huge!

 Two ways to avoid:

 A post-processing filtering kernel

 Hash-based culling; a thread uses
hashing to find if its neighbour has been
added

Load Balancing

 A major challenge among graph processing
algorithms is the load imbalance among thread

 Modern-day graphs in social networks are
scale-free graphs

 These graphs follow power-law distribution of
degrees

Load Balancing Strategies:
Workload Decomposition

 Edges decomposed across threads in
a block distribution

Load Balancing Strategies:
Node Splitting

 Split each high degree node into
multiple low-degree nodes called
virtual nodes

 Prim’s Minimal Spanning Tree, APSP
using Dijkstra’s

 (Book by Grama et al. – Pages
starting from 432, then from 438)

Minimal Spanning Tree – Prim’s
Algorithm

 Spanning tree of a graph, G (V,E) – tree
containing all vertices of G

 MST – spanning tree with minimum sum
of weights

 Follows similar structure as Dijkstra’s
SSSP.

 Vertices are added to a set Vt that
holds vertices of MST; Initially contains
an arbitrary vertex,r, as root vertex

Minimal Spanning Tree – Prim’s
Algorithm

 An array d such that d[v in (V-Vt)] holds
weight of the edge with least weight
between v and any vertex in Vt; Initially
d[v] = w[r,v]

 Find the vertex in d with minimum weight
and add to Vt

 Update d

 Time complexity – O(n2)

Parallelization

 Vertex V and d array partitioned across P
processors

 Each processor finds local minimum in d

 Then global minimum across all d performed
by reduction on a processor

 The processor finds the next vertex u, and
broadcasts to all processors

Parallelization

 All processors update d; The owning
processor of u marks u as belonging to Vt

 Process responsible for v must know w[u,v]
to update d[v]; 1-D block mapping of
adjacency matrix

 Complexity – O(n2/P) + (OnlogP) for
communication

All-Pairs Shortest Paths

 To find shortest paths between all pairs
of vertices

 Dijikstra’s algorithm for single-source
shortest path can be used for all
vertices

 Two approaches

All-Pairs Shortest Paths

 Source-partitioned formulation: Partition the
vertices across processors
 Works well if p<=n; No communication

 Can at best use only n processors

 Time complexity?

 Source-parallel formulation: Parallelize SSSP for a
vertex across a subset of processors

 Do for all vertices with different subsets of
processors

 Hierarchical formulation

 Exploits more parallelism

 Time complexity?

Graph Partitioning

Graph Partitioning

 For many parallel graph algorithms, the graph has
to be partitioned into multiple partitions and each
processor takes care of a partition

 Criteria:
 The partitions must be balanced (uniform computations)

 The edge cuts between partitions must be minimal
(minimizing communications)

 Some methods
 BFS: Find BFS and descend down the tree until the

cumulative number of nodes = desired partition size

 Mostly: Multi-level partitioning based on coarsening and
refinement (a bit advanced)

 Another popular method: Kernighan-Lin

Parallel partitioning

 Can use divide and conquer strategy

 A master node creates two partitions

 Keeps one for itself and gives the
other partition to another processor

 Further partitioning by the two
processors and so on…

 Multi-level partitioning

K-way multilevel partitioning
algorithm

 Has 3 phases: coarsening, partitioning,
refinement (uncoarsening)

 Coarsening - a sequence of smaller
graphs constructed out of an input graph
by collapsing vertices together

Coarsening

 Formulated as a maximal matching problem

 Matching – finding a set of non-adjacent
edges, i.e., edges are not incident on same
vertices

 Maximal matching: A matching where addition
of one more edge results in the loss of
matching property

 Commonly used heuristic: heaviest edge
matching

K-way multilevel partitioning
algorithm

 When enough vertices are collapsed
together so that the coarsest graph is
sufficiently small, a k-way partition is
found

 Finally, the partition of the coarsest
graph is projected back to the original
graph by refining it at each uncoarsening
level using a k-way partitioning
refinement algorithm

K-way partitioning refinement

 A simple randomized algorithm that
moves vertices among the partitions to
minimize edge-cut and improve balance

 For a vertex v, let neighborhood N(v) be
the union of the partitions to which the
vertices adjacent to v belong

 In a k-way refinement algorithm,
vertices are visited randomly

K-way partitioning refinement

 A vertex v is moved to one of the
neighboring partitions N(v) if any of the
following vertex migration criteria is
satisfied
 The edge-cut is reduced while maintaining the

balance

 The balance improves while maintaining the
edge-cut

 This process is repeated until no further
reduction in edge-cut is obtained

Graph Coloring

Graph Coloring Problem

 Given G(A) = (V, E)

 σ: V {1,2,…,s} is s-coloring of G if
σ(i) ≠ σ(j) for every (i, j) edge in E

 Minimum possible value of s is
chromatic number of G

 Graph coloring problem is to color
nodes with chromatic number of
colors

 NP-complete problem

Parallel graph Coloring – General
algorithm

Parallel Graph Coloring – Finding
Maximal Independent Sets – Luby
(1986)
I = null
V’ = V
G’ = G
While G’ ≠ empty

Choose an independent set I’ in G’

I = I U I’; X = I’ U N(I’) (N(I’) – adjacent vertices to I’)
V’ = V’ \ X; G’ = G(V’)

end

For choosing independent set I’: (Monte Carlo Heuristic)
1. For each vertex, v in V’ determine a distinct random number p(v)

2. v in I iff p(v) > p(w) for every w in adj(v)

Color each MIS a different color

Disadvantage:
 Each new choice of random numbers requires a global

synchronization of the processors.

Parallel Graph Coloring –
Gebremedhin and Manne (2003)

Pseudo-Coloring

Sources/References

 Paper: A Scalable Distributed Parallel Breadth-
First Search Algorithm on BlueGene/L. Yoo et
al. SC 2005.

 Paper:Accelerating large graph algorithms on
the GPU usingCUDA. Harish and Narayanan.
HiPC 2007.

 M. Luby. A simple parallel algorithm for the
maximal independent set problem. SIAM
Journal on Computing. 15(4)1036-1054 (1986)

 A.H. Gebremedhin, F. Manne, Scalable parallel
graph coloring algorithms, Concurrency:
Practice and Experience 12 (2000) 1131-1146.

Community Detection

 Given a graph, the goal is to partition
into communities such that related
vertices are assigned to the same
community

Metric

 Modularity – Measure to evaluate the goodness of a community

 Measures the fraction of edges that lie within the community

 Measures the difference between fraction of edges within
communities compared to the expected fraction that would
exist on a random graph with identical vertex and degree
distributions

Modularity

 Or

Louvain Method

 Multi-phase, multi-iteration heuristic

 Iteratively improves the quality of the
community until the gain in quality
becomes negligible

 Complete sweep of a graph per
iteration

 Graph coarsenings between phases

Louvain Method

 Each phase runs for a number of
iterations until convergence

 Initially, each vertex is a community

 In each iteration:

 Gain in modularity calculated when moving
a vertex to each of its neighboring
communities

 If positive gain moved

 Iterations continued until convergence

 At the end of the phase, the vertices are
collapsed

Sequential Algorithm

Challenges in Parallel Algorithm

 Lag of Community updates

 Significant communication overhead
at every iteration of every phase

 Modularity calculation requires global
accumulation of weights, hence global
collectives

 New vertex-community mapping
must be communicated at the end of
every phase

Parallel Louvain Algorithm

Optimizations

 One of the major contributors of
communication is the communication of
ghost vertex information

 Observation: Rate of modularity
increase decreases with the number of
iterations – diminishing benefits

 This fact can be used to drop out certain
vertices from computations and
communications

 Mark vertices as active and inactive
probabilistically

Optimizations

 If the vertex has not moved recently,
the probability that it will stay active
is reduced

 e.g.:

Optimizations within a node

 Within a node, concurrent updates
need locking

 Can identify non-colliding vertices
and update them concurrently
without locks?

 How?

 Paper: Distributed Louvain Algorithm
for Graph Community Detection

