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Graph Traversal

 Graph search plays an important role in 
analyzing large data sets

 Relationship between data objects 
represented in the form of graphs

 Breadth first search used in finding 
shortest path or sets of paths



Parallel BFS
Level-synchronized algorithm

 Proceeds level-by-level starting with the source 
vertex

 Level of a vertex – its graph distance from the 
source

 Also, called frontier-based algorithm

 The parallel processes process a level, synchronize 
at the end of the level, before moving to the next 
level – Bulk Synchronous Parallelism (BSP) model

 How to decompose the graph (vertices, edges and 
adjacency matrix) among processors?



Distributed BFS with 1D 
Partitioning

 Each vertex and edges emanating from it 
are owned by one processor

 1-D partitioning of the adjacency matrix

 Edges emanating from vertex v is its 
edge list = list of vertex indices in row v 
of adjacency matrix A



1-D Partitioning

 At each level, each processor owns a set F –
set of frontier vertices owned by the 
processor

 Edge lists of vertices in F are merged to 
form a set of neighboring vertices, N

 Some vertices of N owned by the same 
processor, while others owned by other 
processors

 Messages are sent to those processors to 
add these vertices to their frontier set for 
the next level



Lvs(v) – level of v, i.e, 
graph distance from 
source vs



BFS on GPUs



BFS on GPUs

 One GPU thread for a vertex

 For each level, a GPU kernel is launched 
with the number of threads equal to the 
number of vertices in the graph

 Only those vertices whose assigned 
vertices are frontiers will become active

 Do we need atomics?

 Severe load imbalance among the treads

 Scope for improvement



 MST (Prim’s), SSSP, APSP



Single Source Shortest Path 
(SSSP)

 Find the shortest distance from a 
source s to all vertices

 Dijkstra’s algorithm



Single Source Shortest Path 
(SSSP)



Single Source Shortest Path 
(SSSP)

 The operation of updating the 
distances of neighbors using the 
minimum distance of a vertex –
relaxation

 Parallelization

 Vertices distributed across processors

 Each processor owns a set of vertices 
and their outgoing edges

 Priority queue distributed – each 
processor updates only its vertices in the 
priority queue 



Parallel SSSP Steps

 In each iteration:

 Minimum of all priority queues found 
using reduction

 Processor with the lowest rank 
removes vertex with the minimum 
distance



Parallel SSSP Steps

 Performs distributed edge relaxations

 Processor communicates distance of u to 
processors that owns u’s neighbors

 Processors update the tentative 
distances of neighbors and update their 
positions in local priority queue

 Disadvantages?



Parallel SSSP

 It is important to parallelize outer 
loop

 Some heuristics have been proposed:

 All vertices with distances < threshold 
L can be removed

 A large L can promote parallelism but 
can result in poor work efficiency due 
to unwanted computations due to 
reinsertions and repeated relaxations



Parallel Dijkstra’s SSSP

 Parallelism depends on graph 
topology

 Number of vertices that can be 
removed and processed in parallel

 Number of edges that can be relaxed 
in parallel



Bellman-Ford

 Larger parallelism, low work efficiency

 All edges are relaxed in all iterations till 
convergence

 Suitable for GPUs; Inner loop needs to 
be protected by atomics



SSSP:
Delta-stepping

 Balance between the two

 Balances work efficiency and 
parallelism

 Maintains tentative distances in 
buckets

 Each bucket maintains a range of 
tentative distances

 Range is given by delta



Delta stepping

 Assign source vertex to B0; all 
vertices to Binf

 Outer loop of phases; inner loop of 
steps

 In each phase, algorithms considers 
the non-empty bucket of lowest index

 Let Bj be such a bucket

 At the beginning of the phase, all 
vertices with final distances less than 
(delta.j+1) would have been settled



Delta stepping

 Algorithm removes vertices from Bj 
and relaxes all its outgoing edges

 This can migrate vertices from higher 
indexed bucket to a lower index 
bucket, k, with k>=j

 Perform until Bj becomes empty

 What happens if delta=1, and 
delta=inf?



Delta stepping



Delta stepping



Delta-stepping
Parallelization

 Inner loop is parallelized where all 
relaxations in a bucket are 
parallelized

 Shared memory parallelism – updates 
of the distances will have to be 
protected by atomics



Delta-stepping
Parallelization

 Distributed memory parallelism

 Vertices distributed

 Non-empty buckets maintained by all 
processors

 Each processor stores and processes 
only its vertices in its buckets

 Allreduce for finding the lowest index 
bucket

 Simultaneous relaxations using BSP 
(Bulk synchronous parallelism) model



SSSP on GPUs

 Most follow Bellman-Ford: Large number 
of edges processes by threads

 Two models:

 Topology-driven: All vertices with non-
infinite distances are processed by 
corresponding threads

 Data-driven: Only those whose 
distances have changed in the previous 
iteration are processed. A work list is 
maintained.



Topology-driven Algorithm



Data-driven Algorithm



Pros and Cons

 Topology-driven: Low work efficiency

 Data-driven: Need atomics, 
atomicMin

 Can result in lost updates of minimum 
distances



Pros and Cons

 Topology-driven version does not need 
atomics

 This is because SSSP has monotonicity
property: the distance value of a vertex 
is non-increasing

 Property utilized in topology-driven 
version to avoid atomics



Pros and Cons

 Since all active vertices with non-infinite 
distances are processed in all iterations, 
the lost updates will be reconsidered in 
the subsequent iterations.

 Even if there is a lost update, the thread 
with the minimum distance will get its 
chance in the next iteration



Reducing Atomics in Atomic 
Addition to Worklist

 Work chunking: Perform atomic 
updates for a chunk of elements 
rather than for every element

 Prefix sums can be used to avoid 
atomics

 Prefix sums themselves can be 
hierarchically constructed: 
hierarchical prefix sum



Redundancy in Worklists

 Two threads can add the same 
neighbour vertex to a worklist

 Duplicates can be huge!

 Two ways to avoid:

 A post-processing filtering kernel

 Hash-based culling; a thread uses 
hashing to find if its neighbour has been 
added



Load Balancing

 A major challenge among graph processing 
algorithms is the load imbalance among thread

 Modern-day graphs in social networks are 
scale-free graphs

 These graphs follow power-law distribution of 
degrees



Load Balancing Strategies:
Workload Decomposition

 Edges decomposed across threads in 
a block distribution



Load Balancing Strategies:
Node Splitting

 Split each high degree node into 
multiple low-degree nodes called 
virtual nodes



 Prim’s Minimal Spanning Tree, APSP 
using Dijkstra’s

 (Book by Grama et al. – Pages 
starting from 432, then from 438)



Minimal Spanning Tree – Prim’s 
Algorithm

 Spanning tree of a graph, G (V,E) – tree 
containing all vertices of G

 MST – spanning tree with minimum sum 
of weights

 Follows similar structure as Dijkstra’s 
SSSP.

 Vertices are added to a set Vt that 
holds vertices of MST; Initially contains 
an arbitrary vertex,r, as root vertex



Minimal Spanning Tree – Prim’s 
Algorithm

 An array d such that d[v in (V-Vt)] holds 
weight of the edge with least weight 
between v and any vertex in Vt; Initially 
d[v] = w[r,v]

 Find the vertex in d with minimum weight 
and add to Vt

 Update d

 Time complexity – O(n2)



Parallelization

 Vertex V and d array partitioned across P 
processors

 Each processor finds local minimum in d

 Then global minimum across all d performed 
by reduction on a processor

 The processor finds the next vertex u, and 
broadcasts to all processors 



Parallelization

 All processors update d; The owning 
processor of u marks u as belonging to Vt

 Process responsible for v must know w[u,v] 
to update d[v]; 1-D block mapping of 
adjacency matrix

 Complexity – O(n2/P) + (OnlogP) for 
communication



All-Pairs Shortest Paths

 To find shortest paths between all pairs 
of vertices

 Dijikstra’s algorithm for single-source 
shortest path can be used for all 
vertices

 Two approaches



All-Pairs Shortest Paths

 Source-partitioned formulation: Partition the 
vertices across processors
 Works well if p<=n; No communication

 Can at best use only n processors

 Time complexity?

 Source-parallel formulation: Parallelize SSSP for a 
vertex across a subset of processors

 Do for all vertices with different subsets of 
processors

 Hierarchical formulation

 Exploits more parallelism

 Time complexity?



Graph Partitioning



Graph Partitioning

 For many parallel graph algorithms, the graph has 
to be partitioned into multiple partitions and each 
processor takes care of a partition

 Criteria:
 The partitions must be balanced (uniform computations)

 The edge cuts between partitions must be minimal 
(minimizing communications)

 Some methods
 BFS: Find BFS and descend down the tree until the 

cumulative number of nodes = desired partition size

 Mostly: Multi-level partitioning based on coarsening and 
refinement (a bit advanced)

 Another popular method: Kernighan-Lin









Parallel partitioning

 Can use divide and conquer strategy

 A master node creates two partitions

 Keeps one for itself and gives the 
other partition to another processor

 Further partitioning by the two 
processors and so on…



 Multi-level partitioning



K-way multilevel partitioning 
algorithm

 Has 3 phases: coarsening, partitioning, 
refinement (uncoarsening)

 Coarsening - a sequence of smaller 
graphs constructed out of an input graph 
by collapsing vertices together



Coarsening

 Formulated as a maximal matching problem

 Matching – finding a set of non-adjacent 
edges, i.e., edges are not incident on same 
vertices

 Maximal matching: A matching where addition 
of one more edge results in the loss of 
matching property

 Commonly used heuristic: heaviest edge 
matching



K-way multilevel partitioning 
algorithm

 When enough vertices are collapsed 
together so that the coarsest graph is 
sufficiently small, a k-way partition is 
found

 Finally, the partition of the coarsest 
graph is projected back to the original 
graph by refining it at each uncoarsening 
level using a k-way partitioning 
refinement algorithm



K-way partitioning refinement

 A simple randomized algorithm that 
moves vertices among the partitions to 
minimize edge-cut and improve balance

 For a vertex v, let neighborhood N(v) be 
the union of the partitions to which the 
vertices adjacent to v belong

 In a k-way refinement algorithm, 
vertices are visited randomly



K-way partitioning refinement

 A vertex v is moved to one of the 
neighboring partitions N(v) if any of the 
following vertex migration criteria is 
satisfied
 The edge-cut is reduced while maintaining the 

balance

 The balance improves while maintaining the 
edge-cut

 This process is repeated until no further 
reduction in edge-cut is obtained



Graph Coloring



Graph Coloring Problem

 Given G(A) = (V, E)

 σ: V      {1,2,…,s} is s-coloring of G if 
σ(i) ≠ σ(j) for every (i, j) edge in E

 Minimum possible value of s is 
chromatic number of G

 Graph coloring problem is to color 
nodes with chromatic number of 
colors

 NP-complete problem



Parallel graph Coloring – General 
algorithm



Parallel Graph Coloring – Finding 
Maximal Independent Sets – Luby 
(1986)
I = null
V’ = V
G’ = G
While G’ ≠ empty

Choose an independent set I’ in G’

I = I U I’;   X = I’ U N(I’)    (N(I’) – adjacent vertices to I’)
V’ = V’ \ X;  G’ = G(V’)

end

For choosing independent set I’: (Monte Carlo Heuristic)
1. For each vertex, v in V’ determine a distinct random number p(v)

2. v in I iff p(v) > p(w) for every w in adj(v)

Color each MIS a different color

Disadvantage:
 Each new choice of random numbers requires a global 

synchronization of the processors.



Parallel Graph Coloring –
Gebremedhin and Manne (2003)

Pseudo-Coloring
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Community Detection

 Given a graph, the goal is to partition 
into communities such that related 
vertices are assigned to the same 
community



Metric

 Modularity – Measure to evaluate the goodness of a community

 Measures the fraction of edges that lie within the community

 Measures the difference between fraction of edges within 
communities compared to the expected fraction that would 
exist on a random graph with identical vertex and degree 
distributions



Modularity

 Or



Louvain Method

 Multi-phase, multi-iteration heuristic

 Iteratively improves the quality of the 
community until the gain in quality 
becomes negligible

 Complete sweep of a graph per 
iteration

 Graph coarsenings between phases



Louvain Method

 Each phase runs for a number of 
iterations until convergence

 Initially, each vertex is a community

 In each iteration:

 Gain in modularity calculated when moving 
a vertex to each of its neighboring 
communities

 If positive gain moved

 Iterations continued until convergence

 At the end of the phase, the vertices are 
collapsed



Sequential Algorithm



Challenges in Parallel Algorithm

 Lag of Community updates

 Significant communication overhead 
at every iteration of every phase

 Modularity calculation requires global 
accumulation of weights, hence global 
collectives

 New vertex-community mapping 
must be communicated at the end of 
every phase



Parallel Louvain Algorithm



Optimizations

 One of the major contributors of 
communication is the communication of 
ghost vertex information

 Observation: Rate of modularity 
increase decreases with the number of 
iterations – diminishing benefits

 This fact can be used to drop out certain 
vertices from computations and 
communications

 Mark vertices as active and inactive 
probabilistically



Optimizations

 If the vertex has not moved recently, 
the probability that it will stay active 
is reduced

 e.g.:



Optimizations within a node

 Within a node, concurrent updates 
need locking

 Can identify non-colliding vertices 
and update them concurrently 
without locks?

 How?



 Paper: Distributed Louvain Algorithm 
for Graph Community Detection


