Parallel Graph Algorithms

Sathish Vadhiyar

Graph Traversal

Graph search plays an important role in
analyzing large data sets

Relationship between data objects
represented in the form of graphs

Breadth first search used in finding
shortest path or sets of paths

Parallel BFS
Level-synchronized algorithm

B

Proceeds level-by-level starting with the source
vertex

Level of a vertex - its graph distance from the
source

Also, called frontier-based algorithm

The parallel processes process a level, synchronize
at the end of the level, before moving to the next
level - Bulk Synchronous Parallelism (BSP) model

How to decompose the graph (vertices, edges and
adjacency matrix) among processors?

Distributed BFS with 1D
Partitioning

Each vertex and edges emanating from it
are owned by one processor
1-D partitioning of the adjacency matrix

A
A

Edges emanating from vertex v is its
edge list = list of vertex indices in row v
of adjacency matrix A

1-D Partitioning

At each level, each processor owns a set F -
set of frontier vertices owned by the
processor

Edge lists of vertices in F are merged to
form a set of neighboring vertices, N

Some vertices of N owned by the same
processor, while others owned by other
processors

Messages are sent to those processors to
d 4 ices to their fronti £
the next level

Algorithm 1 Distributed Breadth-First Expansion with 1D Partitioning

1: Initialize L, _(v) = {
2: for [=0 to oo do

o]

ke
o=

14:
15:
16:

QRS ew

p—
e

0, v = v, where v, 18 a source
~c. otherwise

F «— {v| L, (v) =1}, the set of local vertices with level [
if ' = () for all processors then

Terminate main loop
end if
N «— {neighbors of vertices in I’ (not necessarily local) }
for all processors g do

N, « {vertices in N owned by processor ¢}

Send N, to processor g

Receive ﬁq from processor g L,..(v) - level of v, i.e,
end for graph distance from
N U, N, (The N, may overlap) SOUIceVs
for v € N and L,_(v) = oo do

Ly, (v) —1+1
end for

17: end for

BFS on GPUs

1 bfs_kernel(int curLevel){

2 v=>blockldx.x*blockDim.x +threadldx.x:
3 if dist|v] == curLevel then

4 forall the n € neighbors(v) do

5 if visited|n] == 0 then

6 dist[n| = dist[v] + 1:

7 visited[n] = 1;

8 end

9 end

10 end

11 }

BFS on GPUs

One GPU thread for a vertex

For each level, a GPU kernel is launched
with the number of threads equal to the
number of vertices in the graph

Only those vertices whose assigned
vertices are frontiers will become active

Do we need atomics?
Severe load imbalance among the treads

Cﬁnh ! +4-
dbUlJ B

MST (Prim’s), SSSP, APSP

Single Source Shortest Path
(SSSP)

Find the shortest distance from a
source s to all vertices

Dijkstra’s algorithm

Single Source Shortest Path
(SSSP)

input : a graph graph(V,E) with N vertices in aset V, and M edges in a set, E, and M
weights, w of the edges. A source 5
forall the v £ V do
| dist[v] +—=e=
end
dist[s] + 0
Initialize a priority queue, (J, with all the vertices ordered by the distances ;
while 0 # 0 do
Remove i with minimum distance from () ;
forall the v € neighbors(u) do
if (dist[u] +wlu,v)) < dist[v] then
10 dist[v] = dist[u] +w(u,v) ;
11 Update position of vin (J ;
12 end
13 end
14 end

N de Taad i =

Lr=T =" - N I

Fig. 4.21: Sequential Dijkstra’s S55P Algorithm

Single Source Shortest Path
(SSSP)

[he operation of updating the
distances of neighbors using the
minimum distance of a vertex -
relaxation

Parallelization
B Vertices distributed across processors

B Each processor owns a set of vertices
and their outgoing edges
B Priority queue distributed - each
| v i ’ ot

oriority queue

Parallel SSSP Steps

In each iteration:

Minimum of all priority queues found
using reduction

Processor with the lowest rank
removes vertex with the minimum
distance

Parallel SSSP Steps

Performs distributed edge relaxations

B Processor communicates distance of u to
Drocessors that owns u’s neighbors

B Processors update the tentative
distances of neighbors and update their
positions in local priority queue

Disadvantages?

Parallel SSSP

It is important to parallelize outer
loop

Some heuristics have been proposed:

All vertices with distances < threshold
L can be removed

A large L can promote parallelism but
can result in poor work efficiency due
to unwanted computations due to

reinsertions and repeated relaxations

Parallel Dijkstra’s SSSP

Parallelism depends on graph
topology

Number of vertices that can be
removed and processed in parallel

Number of edges that can be relaxed
in parallel

Bellman-Ford

Larger parallelism, low work efficiency

All edges are relaxed in all iterations till
convergence

input : a graph graph(V,E) with N vertices in a set V., and M edges in a set, E, and M
weights, w of the edges. A source s
1 forall the ve V do
2 | dist[v] ===
3 end
4 dist[s] 0
5§ for(i=0i < N;yi++)do

6 forall the (u,v) edge € E do

7 if (dist[u] +w(u.v)) < dist[v] then
8 | dist[v] = dist[u] +w(u,v)

0 end

10 end

11 end

Fig. 4.22: Sequential Bellman-Ford 555P Algorithm

Suitable for GPUs; Inner loop needs to

SSSP.
Delta-stepping

Balance between the two

Balances work efficiency and
parallelism

Maintains tentative distances in
buckets

Each bucket maintains a range of
tentative distances

Range is given by delta

Delta stepping

Assign source vertex to BO; all
vertices to Binf

Outer loop of phases; inner loop of
steps

In each phase, algorithms considers
the non-empty bucket of lowest index
Let Bj be such a bucket
At the beginning of the phase, all

th final dist | .
(delta.j+1) would have been settled

Delta stepping

Algorithm removes vertices from Bj
and relaxes all its outgoing edges

[his can migrate vertices from higher
indexed bucket to a lower index
bucket, k, with k>=j

Perform until Bj becomes empty

What happens if delta=1, and
delta=inf?

Delta stepping

input : a graph graph(V,E) with N vertices in a set V, and M edges in a set, E, and M
weights, w of the edges. A source s

1 forall the v 2 V do
2 | dist[v] ===
3 end

4 dist[s] + 0,

5 Bp==;

[

B.=veVv#nr

Delta stepping

7 while 9 a non-empry bucker do

10
11

12
13
14
15

=

16
17

18

19
20
21
22
23
24

end

/+ For each phase

Find the non-empty bucket, B, that is not empty :
while B; # 0 do

/* For each step

forall the u € B; do

forall the v € neighbors(u) do

/+ Relax (u,v) edge

if (dist[u] +w(u,v)) < dist[v] then
oldDist = dist[v] ;

dist[v] = dist[u] 4+ w(u.v) :
newDist = dist[v] ;

| = (oldDisr—1) |

/+ old bucket index
k= (mewlisg—1)

J+ new bucket index
Migrate v from B; to B ;

end
end

end

end

Fig. 4.23: A-stepping S55P Algorithm

*

oy

*

*

Delta-stepping
Parallelization

Inner loop is parallelized where all
relaxations in a bucket are
parallelized

Shared memory parallelism — updates
of the distances will have to be
protected by atomics

Delta-stepping
Parallelization

Distributed memory parallelism

Vertices distributed

Non-empty buckets maintained by all
processors

Each processor stores and processes
only its vertices in its buckets

Allreduce for finding the lowest index
bucket

Simultaneous relaxations using BSP
(Bulk synchronous parallelism) model

SSSP on GPUs

Most follow Bellman-Ford: Large number
of edges processes by threads

Two models:

Topology-driven: All vertices with non-
infinite distances are processed by
corresponding threads

Data-driven: Only those whose
distances have changed in the previous
iteration are processed. A work list is

- maintained.

Topology-driven Algorithm

main(){
forall the v £ V do
| dist[v] +=-oo

end

dist[s] + 0

change =1 ;

while change do
change =0 ;
sssp_kernel(change) ;

end

}

ssspkernel(INOUT change){
forall u £ V parallel
if 1 # == then
for v € neighbors(u) do
if (dist[u] +wiu,v)) < dist[v] then
dist [v] = dist[u] +w(u,v) ;
change =1

= e oe =0 S R e e b e

[—— [
LTI]

[y
[=

e]
oe =1 = N

end

=
k=]

end

end

[I
=

[
[——

Fig. 4.24: Topology-driven SSSP Algorithm

Data-driven Algorithm

I main(){
forall the v £ V do
| dist[v] +—=o=
end
dist[s] + 0
Add s to worklist_in ;
worklist_ow =0 ;
while worklist_in # 0 do
sssp_kernel(worklist _in, worklist_ma) ;
10 copy worklist _out to worklisi_in ;
11 worklist_owg =@
12 end
13 }

14 sssp_kernel(IN worklist_in, OUT worklist_out){
15 for u & worklist_in parallel

U ds fed bl =

L= - I

16 for v € neighbors(u) do

17 if (dist[u] +w(u,v)) < dist[v] then

18 atomicMin(dist [v], dist [u] +w(u,v)) :
19 Add v to worklist_out ;

20 end

21 end

2 }

Fig. 4.25: Data-driven S55P Algorithm

Pros and Cons

[opology-driven: Low work efficiency

Data-driven: Need atomics,
atomicMin

23

I %
"y

Can result in lost updates of minimum

distances

Pros and Cons

Topology-driven version does not need
atomics

This is because SSSP has monotonicity

property: the distance value of a vertex
IS non-increasing

Property utilized in topology-driven

version to avoid atomics

Pros and Cons

Since all active vertices with non-infinite
distances are processed in all iterations,
the lost updates will be reconsidered in
the subsequent iterations.

Even if there is a lost update, the thread
with the minimum distance will get its
chance in the next iteration

Reducing Atomics in Atomic
Addition to Worklist

Work chunking: Perform atomic
updates for a chunk of elements
rather than for every element

Prefix sums can be used to avoid
atomics

Prefix sums themselves can be
hierarchically constructed:
hierarchical prefix sum

Redundancy in Worklists

[wo threads can add the same
neighbour vertex to a worklist

Duplicates can be huge!

[wo ways to avoid:
B A post-processing filtering kernel

B Hash-based culling; a thread uses
hashing to find if its neighbour has been
added

Load Balancing

[0 A major challenge among graph processing
algorithms is the load imbalance among thread

[0 Modern-day graphs in social networks are
scale-free graphs

[0 These graphs follow power-law distribution of

d eg rees Degree distribution of Twitter follower network [WWW 2010]
(V] = 41.65M, |E| = 1468.36M)

107

it
[=]

N

=]
]
A ua

/

et
=
(=)

Number of nodes

=l
o]
]

=t
=

|

-
=
= o
=4

10! 10¢ 10* 104 10°
Degree

Load Balancing Strategies:
Workload Decomposition

Edges decomposed across threads in
a block distribution

€Y, P
/r:h"‘-. - ", 7 ?—*’C‘,‘ ‘
e _"1-..‘:"‘
AT Y A A A7 F Y A A
12 3 @9 & @ @ 38 & 6 1) 0 7

L L L [| L [|
Thread 1 Thread 2 Thread 3 Thread 4

Load Balancing Strategies:
Node Splitting

Split each high degree node into
multiple low-degree nodes called
virtual nodes

L/ [

E—FB

child
.Lm /7' N

11{."? ullll:l'
Th

Prim’s Minimal Spanning Tree, APSP
using Dijkstra’s

(Book by Grama et al. — Pages
starting from 432, then from 438)

Minimal Spanning Tree — Prim’s
Algorithm

Spanning tree of a graph, G (V,E) - tree
containing all vertices of G

MST - spanning tree with minimum sum
of weights

Follows similar structure as Dijkstra's
SSSP.

Vertices are added to a set Vt that
holds vertices of MST; Initially contains
an arbitrary vertex,r, as root vertex

Minimal Spanning Tree — Prim’s
Algorithm

An array d such that d[v in (V-V1)] holds
weight of the edge with least weight

between v and any vertex in V1; Initially
d[v] = w[r,v]

Find the vertex in d with minimum weight
and add to Vt

Update d
Time complexity - O(n?)

Parallelization

Vertex V and d array partitioned across P
processors

Each processor finds local minimum in d

Then global minimum across all d performed
by reduction on a processor

The processor finds the next vertex u, and
broadcasts to all processors

Parallelization

All processors update d; The owning
processor of u marks u as belonging to V1

Process responsible for v must know w[u,v]
to update d[v]; 1-D block mapping of
adjacency matrix

Complexity - O(n?/P) + (OnlogP) for
communication

All-Pairs Shortest Paths

To find shortest paths between all pairs
of vertices

Dijikstra's algorithm for single-source
shortest path can be used for all
vertices

Two approaches

All-Pairs Shortest Paths

B

Source-partitioned formulation: Partition the
vertices across processors

B Works well if p<=n; No communication

B Can at best use only n processors

B Time complexity?

Source-parallel formulation: Parallelize SSSP for a
vertex across a subset of processors

Do for all vertices with different subsets of
processors

Hierarchical formulation
Exploits more parallelism

I I

Time complexity?

Graph Partitioning

Graph Partitioning

0 For many parallel graph algorithms, the graph has
to be partitioned into multiple partitions and each
processor takes care of a partition

O Criteria:

The partitions must be balanced (uniform computations)

The edge cuts between partitions must be minimal
(minimizing communications)

[0 Some methods

BFS: Find BFS and descend down the tree until the
cumulative number of nodes = desired partition size

Mostly: Multi-level partitioning based on coarsening and
refinement (a bit advanced)

Another popular method: Kernighan-Lin

Partitioning without nodal coordinates - Kernighan/Lin

“ Take a initial partition and iteratively improve it
+ Kernighan/Lin (1970), cost = O(|N|?) but easy to understand

» Fiduccia/Mattheyses (1982), cost = O(|E|), much better, but more
complicated

; iflt Glgl(N,E,WE} be partitioned as N= A U B, where

° T =cost(A,B) =% {W(e) where e connects nodes in A
and B}

° Find subsets X of A and Y of B with |X]| = |Y| so that
swapping X and Y decreases cost:

- newA=A-XUY and newB=B-Y UX
- newT = costinewA , newB) < cost(A,B)
Keep choosing X and Y until cost no longer decreases

" Need to compute newT efficiently for many possible
X and Y, choose smallest

CE267T LAS Graph Partitizning 1.5 Cemmel Sp 1999

Kernighan!Lin - F’reliminary Definitions

T =cost(A, B), newT =cost(hewA, newB)

“ Need an efficient formula for newT; will use
« E{a) =external costof ain A =X {W{a,b) for b in B}
« l{a) =internal costofain A =X {W{a.,a") for other a'in A}
« D{a)=costofain A = E(a) - l{a)
- Moving a from A to B would decrease T by D{a)
« E{b), I(b) and D{b) defined analogously for b in B

“ Consider swapping X ={a} and Y = {b}
+ newA=A-{a}U{b}), newB=B - {b} U{a}
“newTl =T -(D(a) + D(b) - 2*w{a,b)) = T - gain(a,b)

+ gain{a,b) measures improvement gotten by swapping a and b

* Update formulas, after a and b are swapped
« newD{a’y=D0D{a’") + 2*w(a’,a) - 2'w{a’,b) fora’'in A,a’'!=a
- newD(b’) = D(b’) + 2*w(b",b) - 2*w(b’,a) forb'inB,b'!=b

CS2G7 L15 Graph Partitioning ILG Demmel Sp 1999

Kernighan!Lin Algﬂrithm

Compute T=cost{A,B) forinitial A, B ... cost= CJ{|H|E}
Repeat
... One pass greedily computes |N|/2 possible XY to swap, picks best
Compute costs D{n) foralln in N ... COSt = -[]~[|H|2}
Unmark all nodes in N ... cost =0({|N|)
While there are unmarked nodes ... |N|/2 iterations
Find an unmarked pair {a,b) maximizing gain{a.b) ... cost = {]i|H|2}
Mark a and b {but do not swap them) ... cost =0(1)
Update Din) for all unmarked n.
as though a and b had been swapped ... cost = 0O{|N|)
Endwhile
... At this point we have computed a sequence of pairs
. {a1,b1). (ak.bk) and gains gain{1),...., gain(k)
... where k = |N|/2, numbered in the order in which we marked them
Pick m maximizing Gain = k=1 to m aain(k) ... cost = 0O(|N|)

... Gain is reduction in cost from swapping {(a1,b1) through (am,bm)
If Gain > 0 then ... it is worth swapping

Update newA=A-{al,....am}U{bl,....bm} .. cOst =0({|N|}

Update newB =B -{b1....bm }U{al.....am} .. cOst = 0({|N|)

Update T =T - Gain ... cost =0({1)
endif

Until Gain == 0

CHIGT L15 Graph Partitizning L7 Demmeal Sp 1999

Parallel partitioning

Can use divide and conquer strategy
A master node creates two partitions

Keeps one for itself and gives the
other partition to another processor

Further partitioning by the two
processors and so on...

Multi-level partitioning

K-way multilevel partitioning
algorithm

Has 3 phases: coarsening, partitioning,
refinement (uncoarsening)

Coarsening - a sequence of smaller
graphs constructed out of an input graph
by collapsing vertices together

Coarsening

Ll
L

Formulated as a maximal matching problem

Matching - finding a set of non-adjacent
edges, i.e., edges are not incident on same
vertices

Maximal matching: A matching where addition
of one more edge results in the loss of
matching property

Commonly used heuristic: heaviest edge
matching

K-way multilevel partitioning
algorithm

When enough vertices are collapsed
together so that the coarsest graph is

sufficiently small, a k-way partition is
found

Finally, the partition of the coarsest
graph is projected back to the original
graph by refining it at each uncoarsening
level using a k-way partitioning
refinement algorithm

K-way partitioning refinement

A simple randomized algorithm that
moves vertices among the partitions to
minimize edge-cut and improve balance

For a vertex v, let neighborhood N(v) be
the union of the partitions to which the
vertices adjacent to v belong

In a k-way refinement algorithm,
vertices are visited randomly

K-way partitioning refinement

A vertex v is moved to one of the
neighboring partitions N(v) if any of the
following vertex migration criteria is
satisfied

B The edge-cut is reduced while maintaining the
balance

B The balance improves while maintaining the
edge-cut

This process is repeated until no further

reduction in edge-cut is obtained

Graph Coloring

Graph Coloring Problem

Given G(A) = (V, E)
o.V_.{1,2,...,s} is s-coloring of G if
o(i) # o(j) for every (i, j) edge in E
Minimum possible value of s is
chromatic number of G

Graph coloring problem is to color
nodes with chromatic number of
colors

NP-complete problem

Parallel graph Coloring - General
algorithm

ParallelColoring(G = (V, E))
begin
U+—V
G+ G
while (G' is not empty) do in parallel
Find an independent set I in G"
Color the vertices in
U+ UN\T
G + graph induced by U
end-while
end

Parallel Graph Coloring — Finding
Maximal Independent Sets — Luby

(1986)

=)
V=V
G'=G

While G’ # empty
Choose an independent set I’ in G’
I=IUTI; X=TUN) (N(I')-adjacent verticesto ')
V=V\X; G =G\V)

end

For choosing independent set I': (Monte Carlo Heuristic)
1. For each vertex, v in V' determine a distinct random number p(v)
2. vinlIiff p(v) > p(w) for every w in adj(v)

Color each MIS a different color

Disadvantage:
OO0 Each new choice of random numbers requires a global

—_synchronization of the processors.

Parallel Graph Coloring -
Gebremedhin and Manne (2003)

Block PartitionBasedC'oloring(G, p)
begin
1. Partition V' into p equal blocks V1 ...V}, where [2] < |V < [T]
for + =1 to p do in parallel
for each v; £V do Pseudo-Coloring
assign the smallest legal color to vertex v;
barrier synchromnize
end-for
end-for

Sources/References

Ll

Paper: A Scalable Distributed Parallel Breadth-
First Search Algorithm on BlueGene/L. Yoo et
al. SC 2005.

Paper:Accelerating large graph algorithms on
the GPU usingCUDA. Harish and Narayanan.
HiPC 2007.

M. Luby. A simple parallel algorithm for the
maximal independent set problem. SIAM
Journal on Computing. 15(4)1036-1054 (1986)

A.H. Gebremedhin, F. Manne, Scalable parallel

graph coloring algorlthms Concurrency
Practice and Experience 12 (2000) 1131-1146.

Community Detection

Given a graph, the goal is to partition
into communities such that related
vertices are assigned to the same
community

Metric

O
O
O

Modularity — Measure to evaluate the goodness of a community
Measures the fraction of edges that lie within the community

Measures the difference between fraction of edges within
communities compared to the expected fraction that would
exist on a random graph with identical vertex and degree
distributions

| . [.
— — (A;; — =)d(e;, ;)
@ Emz‘ N 2m

i,

where:
m = sum of all the edge-weights (1)
fz; = weighted degree of vertex i
¢; = community that contains vertex i

d(e;,e5) = 11if ¢; = e;, 0 otherwise.

Modularity

Or

=3 5 (5) |

where:
€ij = z wi; Vi, jEe, and {i,7} € E

. = E ks
=

(2)

Louvain Method

Multi-phase, multi-iteration heuristic

Iteratively improves the quality of the
community until the gain in quality
becomes negligible

Complete sweep of a graph per
iteration

Graph coarsenings between phases

Louvain Method

Each phase runs for a number of
iterations until convergence

Initially, each vertex is a community

In each iteration:

B Gain in modularity calculated when moving
a vertex to each of its neighboring
communities

B If positive gain moved

Iterations continued until convergence
At the end of the phase. the vertices are

@I T\ I-Il l\.«l\)\a, Wi T\
collapsed

Sequential Algorithm

Algorithm 1: Serial Louvain algorithm.
Input: Graph &G = (V. '), threshold 7
Input: Initial community assignment, C,,;;

l: Qprev +— —o0

2: Cprew +— Initialize each vertex in its own community
3: while true do

4 forallve V do

5: N{v) + neighboring communities of v

6 targetComm +— arg max; -y, AQ(v moving to t)
7: if the gain 1s positive then

8 Move v to targetComm and update Ceyrr
9. Qeurr +— Compute Modularity(V, E, Ceurr)
10: i Qeurr — Qpres = 7 then
11: break
12: else
13: Q_r.:rr—:v — Q:‘:urr

Challenges in Parallel Algorithm

Lag of Community updates

Significant communication overhead
at every iteration of every phase

Modularity calculation requires global
accumulation of weights, hence global
collectives

New vertex-community mapping
must be communicated at the end of
every phase

Parallel Louvain Algorithm

s Ll Ped e

2 LA

10:

12:
13:
14:
15:

16:
17:

—

function LOUVAINITERATION(G;, Claprr)
Vy + ExchangeGhostVertices(G;)
while true do
send latest information on those local vertices that are
stored as ghost vertices on remote processes
receive latest information on all ghost vertices
for v € Vi do
Compute AC) that can be achieved by moving v to each
of its neighboring communities
Determine target community for v based on the migration
that maximizes AQ)
Update community information for both the source and
destination communities of v
send updated information on ghost communities to owner
Processes
Cinfo + receive and update information on local
communities
currM od; +— Compute modulanty based on &; and Cy;, 5
currMod + all-reduce: >, currMod;
if currMod — prevMod < 7 then
break
prevM od +— currM od
return prev\ od

Optimizations

One of the major contributors of

communication is the communication of

ghost vertex information

Observation: Rate of modularity

iIncrease decreases with the number of
iterations — diminishing benefits

This fact can be used to drop out certain

vertices from computations and

communications

M:rI/ \/nr-mnc ac Aactive an
1\ A G\ \ | |

probabilistically

Optimizations

If the vertex has not moved recently,
the probability that it will stay active
is reduced

e.g.:

(3)

P For1*(l—a), HC, 1 1=0C,_o
" 1. otherwise

Optimizations within a node

Within a node, concurrent updates
need locking

Can identify non-colliding vertices
and update them concurrently
without locks?

How?

Paper: Distributed Louvain Algorithm
for Graph Community Detection

