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Parallel Sorting Problem

• The input sequence of size N is distributed across P 
processors

• The output is such that
• elements in each processor Pi is sorted

• elements in Pi is greater than elements in Pi-1 and lesser 
than elements in Pi+1



Parallel quick sort

• Naïve approach

• Start with a single processor; divide array into two sub-
arrays

• Now involve one more processor

• Both the processors perform the next step of quick sort 
within their local subarrays

• And so on….till the number of subarrays equal the number 
of processors

• Disadvantage: Inefficient utilization of processors



Another algorithm

• This algorithm involves all the processors in all the 
iterations

• One of the processors, P0, begins by broadcasting 
one of its elements as the pivot element to all the 
processors

• Each processor then divides its local array into two 
sub-arrays
• Li: elements less than the pivot

• Gi: elements greater than the pivot



Parallel Quick Sort

• Processors then divided into two groups:
• First group will process the subsequent steps with Li s
• Second group with Gi s

• The sizes of the processor groups must be in the 
ratio of the number of elements in Ls and Gs to 
achieve load balance

• These number of elements can be found using an 
allreduce operation



Shared memory implementation

• All L’s are formed in the first part of the array; all 
G’s in the second part

• Each processor needs to know the locations in the 
shared memory where it has to write its Li and Gi

• Prefix sums of the sizes of the subarrays can be 
used

• Prefix sum can be done in O(logP)



Example: Prefix sum illustration

• In this example, 36 is the pivot element



Message Passing Version

• A processor should know which elements in its Li and 
Gi it should send to which processor

• Distributed prefix sum is used
• A processor can then deduce its destination processor 

for sending its L array using:
• Total number of elements of L subarrays
• prefix sums of sizes
• Size of the processor group that will be responsible for L 

subarray

• Similarly for the G subarray
• In worst case, this requires all-to-all with time 

complexity O(N/P)



Parallel Quick sort

• The process now repeats with the subgroups

• Until the number of subgroups equal the number 
of processors

• At this stage, each processor performs a local quick 
sort: O(N/Plog(N/P))



Complexity and analysis

• log P times:
• Broadcast: O(logP)

• Allreduce: O(logP)

• Prefix sum and all-to-all: O(logP + N/P)

• Then local quick sort: O(N/P.logP)

• Total: O(N/P.log(N/P)) + O(log2P)+O(N/P.logP)

• Weaknesses: Load imbalance and under-utilization



Bitonic Sort



Bitonic sequence

• A sequence of length n is a bitonic sequence if
• for an element i

• elements a1<=a2<=a3<=….<=ai and 

• Elements ai >= ai-1 >= ai-2>=…>=an

• Any cyclic rotation of such a sequence is also a bitonic
sequence



Bitonic property

• Given a bitonic sequence A, let us form another 
sequence B such that:
• B[i] = min(A[i],A[i+N/2])

• B[i+N/2] = max(A[i],A[i+N/2])

• It is easy to prove that:
• Lower half B[0]….B[N/2-1]  <= upper half B[N/2]…B[N-1]

• Both the halves themselves are bitonic sequences of 
lengths N/2



Converting bitonic sequence into 
a sorted sequence
• To convert bitonic sequence of length N into a 

sorted sequence, we repeat the above recursively:

• In the first stage, form two bitonic sub-sequences 
of N/2 each

• In the second stage, form four bitonic sub-
sequences of N/4 each

• ….

• After logN stages, a sorted sequence is formed

• This process is called bitonic merge





Bitonic sort

• Convert the original unsorted sequence into a 
bitonic sequence, then use the above procedure to 
convert to a sorted sequence

• Converting unsorted sequence of length N into a 
bitonic sequence of length N:

• Larger and larger bitonic sequences are built 
starting from sequences of lengths 2

• Note that any sequence of length 2 is a bitonic
sequence



Bitonic sort

• In the first phase:
• Sort two consecutive sub-sequences of lengths 2 such 

that
• the first subsequence is sorted in ascending order, second in 

descending order

• Now the two sorted sub-sequences are merged to form 
a bitonic sequence of length 4.

• In the second phase:
• Consider two consecutive sub-sequences of lengths 4
• Sort them into ascending and descending
• Merge them into bitonic sequence of length 8



Bitonic sort

• So on….

• At the end of logN phases, a bitonic sequence of 
length N formed, which is converted into a sorted 
sequence

• Time complexity:

• logN phases

• Phase i has i stages

• O(log2N)





Sequential complexity

• Has logN phases

• Each phase i has i stages

• Each stage i performs N compare-exchange 
operations

• Hence O(Nlog2N)



Parallelization
Hypercube and mesh networks
• Maps well to hypercubes

• Processors are mapped to corresponding 
hypercube nodes

• Processors that need to interact for compare-
exchange operations in the phases are mapped to 
hypercube nodes that have direct connections

• For mesh networks, a shuffle-row mapping is used



Parallel implementation
General networks
• Array distributed into block distribution across P 

processors
• The last logP of the logN phases require 

communications for exchanging elements
• In the last phase, out of the logN stages, the first logP

stages involve communications
• Each communication is a compare-and-exchange
• Hence O(log2P) communication steps

• O(N/P.log2P) communications
• O(N/Plog2N) computations



Observations

• In general, applied to small sequences due to high 
computation complexity

• Has poor speedup for greater than thousand 
processors due to high communication 
complexities



• Sample Sort



Parallel Sorting by Regular 
Sampling (PSRS)
1. Each processor sorts its local data

2. Each processor selects a sample vector of 
size p-1; kth element is  (n/p * (k+1)/p)

3. Samples are sent and merge-sorted on 
processor 0

4. Processor 0 defines a vector of p-1 
splitters starting from p/2 element; i.e., 
kth element is p(k+1/2); broadcasts to the 
other processors



Example



PSRS

5. Each processor sends local data to correct 
destination processors based on splitters; 
all-to-all exchange

6. Each processor merges the data chunk it 
receives



Step 5

• Each processor finds where each of the p-1 
pivots divides its list, using a binary search

• i.e., finds the index of the largest element 
number larger than the jth pivot

• At this point, each processor has p sorted 
sublists with the property that each element 
in sublist i is greater than each element in 
sublist i-1 in any processor



Step 6

• Each processor i performs a p-way merge-
sort to merge the ith sublists of p 
processors



Example Continued



Analysis

• The first phase of local sorting takes O((n/p)log(n/p))

• 2nd phase:
• Sorting p(p-1) elements in processor 0 – O(p2logp2)

• Each processor performs p-1 binary searches of n/p elements – plog(n/p)

• 3rd phase: Each processor merges (p-1) sublists
• Size of data merged by any processor is no more than 2n/p (proof)

• Complexity of this merge sort 2(n/p)logp

• Summing up: O((n/p)logn)



Analysis

• 1st phase – no communication

• 2nd phase – p(p-1) data collected; p-1 data 
broadcast

• 3rd phase: Each processor sends (p-1) 
sublists to other p-1 processors; processors 
work on the sublists independently



Analysis

Not scalable for large number of processors

Merging of p(p-1) elements done on one 
processor; 16384 processors require 16 GB 
memory



Sorting by Random Sampling

• An interesting alternative; random sample is 
flexible in size and collected randomly from 
each processor’s local data

• Advantage
• A random sampling can be retrieved before local 

sorting; overlap between sorting and splitter 
calculation



Radix Sort

• During every step, the algorithm puts every 
key in a bucket corresponding to the value 
of some subset of the key’s bits

• A k-bit radix sort looks at k bits every 
iteration

• Easy to parallelize – assign some subset of 
buckets to each processor

• Load balance – assign variable number of 
buckets to each processor



Radix Sort – Load Balancing

• Each processor counts how many of its keys 
will go to each bucket

• Sum up these histograms with reductions

• Once a processor receives this combined 
histogram, it can adaptively assign buckets



Radix Sort - Analysis

• Requires multiple iterations of costly all-to-
all

• Cache efficiency is low – any given key can 
move to any bucket irrespective of the 
destination of the previously indexed key

• Affects communication as well



Histogram Sort

• Another splitter-based method

• Histogram also determines a set of p-1 
splitters

• It achieves this task by taking an iterative 
approach rather than one big sample

• A processor broadcasts k (> p-1) initial 
splitter guesses called a probe

• The initial guesses are spaced evenly over 
data range



Histogram Sort
Steps
1. Each processor sorts local data

2. Creates a histogram based on local data and 
splitter guesses

3. Reduction sums up histograms

4. A processor analyzes which splitter guesses 
were satisfactory (in terms of load)

5. If unsatisfactory splitters, the , processor 
broadcasts a new probe, go to step 2; else 
proceed to next steps



Histogram Sort
Steps
6. Each processor sends local data to 

appropriate processors – all-to-all exchange

7. Each processor merges the data chunk it 
receives

Merits:

• Only moves the actual data once

• Deals with uneven distributions
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