Parallel Sorting

Sathish Vadhiyar
Parallel Sorting Problem

• The input sequence of size N is distributed across P processors

• The output is such that
 • elements in each processor P_i is sorted
 • elements in P_i is greater than elements in P_{i-1} and lesser than elements in P_{i+1}
Parallel quick sort

• Naïve approach

• Start with a single processor; divide array into two sub-arrays
• Now involve one more processor
• Both the processors perform the next step of quick sort within their local subarrays
• And so on....till the number of subarrays equal the number of processors

• Disadvantage: Inefficient utilization of processors
Another algorithm

• This algorithm involves all the processors in all the iterations
• One of the processors, P0, begins by broadcasting one of its elements as the pivot element to all the processors
• Each processor then divides its local array into two sub-arrays
 • L_i: elements less than the pivot
 • G_i: elements greater than the pivot
Parallel Quick Sort

• Processors then divided into two groups:
 • First group will process the subsequent steps with $L_i s$
 • Second group with $G_i s$

• The sizes of the processor groups must be in the ratio of the number of elements in L_s and G_s to achieve load balance

• These number of elements can be found using an allreduce operation
Shared memory implementation

• All L’s are formed in the first part of the array; all G’s in the second part
• Each processor needs to know the locations in the shared memory where it has to write its L_i and G_i
• Prefix sums of the sizes of the subarrays can be used

• Prefix sum can be done in $O(\log P)$
Example: Prefix sum illustration

• In this example, 36 is the pivot element
Message Passing Version

• A processor should know which elements in its Li and Gi it should send to which processor
• Distributed prefix sum is used
• A processor can then deduce its destination processor for sending its L array using:
 • Total number of elements of L subarrays
 • prefix sums of sizes
 • Size of the processor group that will be responsible for L subarray
• Similarly for the G subarray
• In worst case, this requires all-to-all with time complexity O(N/P)
Parallel Quick sort

• The process now repeats with the subgroups
• Until the number of subgroups equal the number of processors
• At this stage, each processor performs a local quick sort: $O(N/P\log(N/P))$
Complexity and analysis

• log P times:
 • Broadcast: $O(\log P)$
 • Allreduce: $O(\log P)$
 • Prefix sum and all-to-all: $O(\log P + N/P)$

• Then local quick sort: $O(N/P.\log P)$

• Total: $O(N/P.\log P) + O(\log^2 P + N/P.\log P)$

• Weaknesses: Load imbalance and under-utilization
Bitonic Sort
Bitonic sequence

• A sequence of length n is a bitonic sequence if
 • for an element i
 • elements $a_1 \leq a_2 \leq a_3 \leq \ldots \leq a_i$ and
 • Elements $a_i \geq a_{i-1} \geq a_{i-2} \geq \ldots \geq a_n$
 • Any cyclic rotation of such a sequence is also a bitonic sequence
Bitonic property

• Given a bitonic sequence A, let us form another sequence B such that:
 • \(B[i] = \min(A[i], A[i+N/2]) \)
 • \(B[i+N/2] = \max(A[i], A[i+N/2]) \)

• It is easy to prove that:
 • Lower half \(B[0] \ldots B[N/2-1] \leq \) upper half \(B[N/2] \ldots B[N-1] \)
 • Both the halves themselves are bitonic sequences of lengths \(N/2 \)
Converting bitonic sequence into a sorted sequence

- To convert bitonic sequence of length N into a sorted sequence, we repeat the above recursively:
 - In the first stage, form two bitonic sub-sequences of N/2 each
 - In the second stage, form four bitonic sub-sequences of N/4 each
 -
 - After logN stages, a sorted sequence is formed
- This process is called **bitonic merge**
Bitonic sort

• Convert the original unsorted sequence into a bitonic sequence, then use the above procedure to convert to a sorted sequence

• Converting unsorted sequence of length N into a bitonic sequence of length N:

• Larger and larger bitonic sequences are built starting from sequences of lengths 2

• Note that any sequence of length 2 is a bitonic sequence
Bitonic sort

• In the first phase:
 • Sort two consecutive sub-sequences of lengths 2 such that
 • the first subsequence is sorted in ascending order, second in descending order
 • Now the two sorted sub-sequences are merged to form a bitonic sequence of length 4.

• In the second phase:
 • Consider two consecutive sub-sequences of lengths 4
 • Sort them into ascending and descending
 • Merge them into bitonic sequence of length 8
Bitonic sort

• So on....
• At the end of logN phases, a bitonic sequence of length N formed, which is converted into a sorted sequence

• Time complexity:
 • logN phases
 • Phase i has i stages
 • O(log^2 N)
<table>
<thead>
<tr>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Phase 4</th>
<th>Phase 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>49</td>
<td>31</td>
<td>31</td>
<td>3</td>
</tr>
<tr>
<td>31</td>
<td>99</td>
<td>49</td>
<td>49</td>
<td>9</td>
</tr>
<tr>
<td>99</td>
<td>31</td>
<td>61</td>
<td>61</td>
<td>13</td>
</tr>
<tr>
<td>80</td>
<td>61</td>
<td>96</td>
<td>68</td>
<td>20</td>
</tr>
<tr>
<td>61</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>27</td>
</tr>
<tr>
<td>68</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>31</td>
</tr>
<tr>
<td>96</td>
<td>68</td>
<td>61</td>
<td>99</td>
<td>36</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>9</td>
<td>70</td>
<td>49</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>20</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>9</td>
<td>36</td>
<td>27</td>
<td>36</td>
<td>61</td>
</tr>
<tr>
<td>36</td>
<td>9</td>
<td>36</td>
<td>27</td>
<td>68</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>70</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>51</td>
<td>13</td>
<td>80</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
<td>13</td>
<td>9</td>
<td>96</td>
</tr>
<tr>
<td>51</td>
<td>51</td>
<td>1</td>
<td>99</td>
<td>31</td>
</tr>
<tr>
<td>91</td>
<td>56</td>
<td>56</td>
<td>2</td>
<td>95</td>
</tr>
<tr>
<td>56</td>
<td>91</td>
<td>56</td>
<td>8</td>
<td>91</td>
</tr>
<tr>
<td>95</td>
<td>95</td>
<td>91</td>
<td>14</td>
<td>85</td>
</tr>
<tr>
<td>56</td>
<td>56</td>
<td>95</td>
<td>15</td>
<td>80</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>15</td>
<td>56</td>
<td>65</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>14</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>8</td>
<td>91</td>
<td>56</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>2</td>
<td>95</td>
<td>30</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>1</td>
<td>85</td>
<td>26</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>24</td>
<td>80</td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>25</td>
<td>65</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>26</td>
<td>30</td>
<td>14</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>85</td>
<td>26</td>
<td>8</td>
</tr>
<tr>
<td>85</td>
<td>85</td>
<td>80</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>65</td>
<td>80</td>
<td>65</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>80</td>
<td>65</td>
<td>30</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Bitonic sequences of length 4 Bitonic sequences of length 8 Bitonic sequences of length 16 Bitonic sequence of length 32 Output sequence

Sort bitonic Sort bitonic Sort bitonic Sort bitonic Sort bitonic sequences of length 2 sequences of length 4 sequences of length 8 sequences of length 16 sequences of length 32
Sequential complexity

• Has $\log N$ phases
• Each phase i has i stages
• Each stage i performs N compare-exchange operations
• Hence $O(N\log^2 N)$
Parallelization

Hypercube and mesh networks

• Maps well to hypercubes
• Processors are mapped to corresponding hypercube nodes
• Processors that need to interact for compare-exchange operations in the phases are mapped to hypercube nodes that have direct connections
• For mesh networks, a shuffle-row mapping is used
Parallel implementation
General networks

• Array distributed into block distribution across P processors
• The last $\log P$ of the $\log N$ phases require communications for exchanging elements
• In the last phase, out of the $\log N$ stages, the first $\log P$ stages involve communications
• Each communication is a compare-and-exchange
• Hence $O(\log^2 P)$ communication steps

• $O(N/P.\log^2 P)$ communications
• $O(N/P\log^2 N)$ computations
Observations

• In general, applied to small sequences due to high computation complexity
• Has poor speedup for greater than thousand processors due to high communication complexities
• Sample Sort
Parallel Sorting by Regular Sampling (PSRS)

1. Each processor sorts its local data
2. Each processor selects a sample vector of size $p-1$; kth element is $(n/p \times (k+1)/p)$
3. Samples are sent and merge-sorted on processor 0
4. Processor 0 defines a vector of $p-1$ splitters starting from $p/2$ element; i.e., kth element is $p(k+1/2)$; broadcasts to the other processors
Example
PSRS

5. Each processor sends local data to correct destination processors based on splitters; all-to-all exchange

6. Each processor merges the data chunk it receives
Step 5

• Each processor finds where each of the p-1 pivots divides its list, using a binary search
• i.e., finds the index of the largest element number larger than the jth pivot
• At this point, each processor has p sorted sublists with the property that each element in sublist i is greater than each element in sublist i-1 in any processor
Step 6

• Each processor i performs a p-way merge-sort to merge the ith sublists of p processors
Example Continued
Analysis

• The first phase of local sorting takes $O((n/p)\log(n/p))$
• 2nd phase:
 • Sorting $p(p-1)$ elements in processor 0 - $O(p^2\log^2 p)$
 • Each processor performs $p-1$ binary searches of n/p elements - $p\log(n/p)$
• 3rd phase: Each processor merges $(p-1)$ sublists
 • Size of data merged by any processor is no more than $2n/p$ (proof)
 • Complexity of this merge sort $2(n/p)\log p$
• Summing up: $O((n/p)\log n)$
Analysis

• 1st phase – no communication
• 2nd phase – p(p-1) data collected; p-1 data broadcast
• 3rd phase: Each processor sends (p-1) sublists to other p-1 processors; processors work on the sublists independently
Analysis

Not scalable for large number of processors

Merging of $p(p-1)$ elements done on one processor; 16384 processors require 16 GB memory
Sorting by Random Sampling

• An interesting alternative; random sample is flexible in size and collected randomly from each processor’s local data

• Advantage
 • A random sampling can be retrieved before local sorting; overlap between sorting and splitter calculation
Radix Sort

- During every step, the algorithm puts every key in a bucket corresponding to the value of some subset of the key's bits
- A k-bit radix sort looks at k bits every iteration
- Easy to parallelize - assign some subset of buckets to each processor
- Load balance - assign variable number of buckets to each processor
Radix Sort – Load Balancing

• Each processor counts how many of its keys will go to each bucket
• Sum up these histograms with reductions
• Once a processor receives this combined histogram, it can adaptively assign buckets
Radix Sort - Analysis

• Requires multiple iterations of costly all-to-all

• Cache efficiency is low - any given key can move to any bucket irrespective of the destination of the previously indexed key

• Affects communication as well
Histogram Sort

- Another splitter-based method
- Histogram also determines a set of p-1 splitters
- It achieves this task by taking an iterative approach rather than one big sample
- A processor broadcasts k (> p-1) initial splitter guesses called a probe
- The initial guesses are spaced evenly over data range
Histogram Sort
Steps

1. Each processor sorts local data
2. Creates a histogram based on local data and splitter guesses
3. Reduction sums up histograms
4. A processor analyzes which splitter guesses were satisfactory (in terms of load)
5. If unsatisfactory splitters, the processor broadcasts a new probe, go to step 2; else proceed to next steps
Histogram Sort
Steps

6. Each processor sends local data to appropriate processors – all-to-all exchange

7. Each processor merges the data chunk it receives

Merits:
• Only moves the actual data once
• Deals with uneven distributions
Sources/References