Parallel Sorting

Sathish Vadhiyar

Parallel Sorting Problem

* The input sequence of size N is distributed across P
processors

* The output is such that

* elements in each processor P, is sorted

* elements in P, is greater than elements in P, ; and lesser
than elementsin P,

Parallel quick sort

* Naive approach

e Start with a single processor; divide array into two sub-
arrays

* Now involve one more processor

* Both the processors perform the next step of quick sort
within their local subarrays

* And so on....till the number of subarrays equal the number
of processors

* Disadvantage: Inefficient utilization of processors

Another algorithm

* This algorithm involves all the processors in all the
iterations

* One of the processors, PO, begins by broadcasting
one of its elements as the pivot element to all the
pProcessors

* Each processor then divides its local array into two
sub-arrays
* L: elements less than the pivot
* G;: elements greater than the pivot

Parallel Quick Sort

* Processors then divided into two groups:
* First group will process the subsequent steps with L;s
* Second group with G;s

* The sizes of the processor groups must be in the
ratio of the number of elements in Ls and Gs to
achieve load balance

* These number of elements can be found using an
allreduce operation

Shared memory implementation

* All U's are formed in the first part of the array; all
G’s in the second part

* Each processor needs to know the locations in the
shared memory where it has to write its L, and G,

* Prefix sums of the sizes of the subarrays can be
used

* Prefix sum can be done in O(logP)

Example: Prefix sum illustra

* In this example, 36 is the pivot element

tion

B A Py Py Py B
EQ|:I|:!‘.'_|BQ ED‘G]‘GE‘%) ff|ﬂ|:¥j|‘|||:5_?ﬁ] 51 | & |||2||5[']1 0G| 85 | 5G| 24 25|2ﬁ|‘.|:3‘:]‘&5 65 | B0 E'i|f|ﬁ|-‘ﬂ|5“_’ 49 7:!‘4']|E—l] ;J|:|':]|'|3|g? 52 33‘98‘56|
-\--H--"-\._H_-\- l|Il IIII ----—-)___.
., - I'|I |.I. e -~
|II|;5 ﬂ||:;||5§ 18 ."""\--..__ Y ~ |I:I 5 7|]1|]4|2‘3|
--\--\-"'\. III " lI
Profix sum of L subarray #ies T \ Profix sum of G subarray sizes
e \ \
T - Y 4
— \ \
\ \
% Y
- \ \
- '|I '.I
0| 3] 15 = = 11, 14, 2
fg|:||:!‘-'_|ﬁll T ':J‘:S{J 1 15| 8 1 1|:3-1]|5|:5-1]|'}9|811|61‘68 'jﬁ"r‘t] 51 | 91 5!3‘95 56 | 8BS | 65 Eﬂ|&’l|-‘lﬁ‘41 52 [49| T3 49|E~9|43|9? 52 33‘98‘56|

Message Passing Version

* A processor should know which elements in its Li and
Gi it should send to which processor

 Distributed prefix sum is used

* A processor can then deduce its destination processor
for sending its L array using:
* Total number of elements of L subarrays
e prefix sums of sizes

 Size of the processor group that will be responsible for L
subarray

* Similarly for the G subarray

* In worst case, this requires all-to-all with time
complexity O(N/P)

Parallel Quick sort

* The process now repeats with the subgroups

e Until the number of subgroups equal the number
of processors

* At this stage, each processor performs a local quick
sort: O(N/Plog(N/P))

Complexity and analysis

* log P times:
e Broadcast: O(logP)
 Allreduce: O(logP)
e Prefix sum and all-to-all: O(logP + N/P)

* Then local quick sort: O(N/P.logP)
* Total: O(N/P.log(N/P)) + O(log?P)+O(N/P.logP)

 \Weaknesses: Load imbalance and under-utilization

Bitonic Sort

Bitonic sequence

* A sequence of length n is a bitonic sequence if

e for an element i
* elements al<=a2<=a3<=....<=ai and
* Elements ai >= ai-1 >= ai-2>=...>=an
* Any cyclic rotation of such a sequence is also a bitonic
sequence

Bitonic property

* Given a bitonic sequence A, let us form another
sequence B such that:
* B[i] = min(A[i],A[i+N/2])
e B[i+N/2] = max(A[i],A[i+N/2])

* It is easy to prove that:
* Lower half B[0]....B[N/2-1] <= upper half B[N/2]...B[N-1]

* Both the halves themselves are bitonic sequences of
lengths N/2

Converting bitonic sequence into
a sorted sequence

* To convert bitonic sequence of length N into a
sorted sequence, we repeat the above recursively:

* In the first stage, form two bitonic sub-sequences
of N/2 each

* In the second stage, form four bitonic sub-
sequences of N/4 each

* After logN stages, a sorted sequence is formed
* This process is called bitonic merge

3
9
13
20
27
31
36
49
51
G1
63
7O
S0

99
95
o1

85
S0
G5
56
56
30
26
25

15

Stage 1 Stage 2 Stg. 3 Stg.
<4
1 1 1 1
3 3 3 1
9 9 2 2
13 13 1 3
20 8 8 =8
o7 4 4 4
31 2 9 9
30 1 13 13
206 206 20 15
25 25 25 14
15 15 15 20
14 14 14 25
S 20 26 - 26
-1 27 27 27
2 31 31 31
1 30 30 30
05 49 49 49
o1 51 51 36
85 G1 56 56
S0 GS 36 51
G5 G5 G5 G1
56 56 56 56
56 56 Gl G5
36 36 GS 68
49 95 70 70
51 91 S0 S0
G1 8|5 85 85
GS S0 - S0 S0
70 70 05 05
S0 S0 o1 o1
96 96 96 - 96
- 99 929 99 99

HHHHHHHHHHHHHHHH

27

70
S0
S0
S5
91

95
96
99

Bitonic sort

e Convert the original unsorted sequence into a
bitonic sequence, then use the above procedure to
convert to a sorted sequence

* Converting unsorted sequence of length N into a
bitonic sequence of length N:

 Larger and larger bitonic sequences are built
starting from sequences of lengths 2

* Note that any sequence of length 2 is a bitonic
seguence

Bitonic sort

* In the first phase:

 Sort two consecutive sub-sequences of lengths 2 such
that
* the first subsequence is sorted in ascending order, second in
descending order

* Now the two sorted sub-sequences are merged to form
a bitonic sequence of length 4.

* |In the second phase:
* Consider two consecutive sub-sequences of lengths 4
e Sort them into ascending and descending
* Merge them into bitonic sequence of length 8

Bitonic sort

e Soon....

* At the end of logN phases, a bitonic sequence of
length N formed, which is converted into a sorted
sequence

* Time complexity:

* logN phases

* Phase i has i stages
* O(log?N)

Phase 1

49 ‘\7_\ = 3 =3 1
83 =49 31 31 =3
31— 99 49 49 9
09 ——— 31—~ 09 G1 13
=0 —T Gl — 96 G \ 20
Gl —— =0 =0 =0 \ 27
OGN tS 187 G S 167 \ =31
96 — GR G1 —— > 99 \ 26
20 —T 20 9 7O \ 49
27T —— 27 20 51 \ 51
9 —— 36 27 36 \ Gl
a6 ——_ o\ 34 o7 \ Gs
1 —T 1T TO 20 \ TO
13 — 13 51 13 \ =0
T ————— TO 133 = \ (S 181
51 — 51 1 1 \ 290
o1 _\7_‘ 56 5G 2 95
56 —————— 91 566G & f 91
95 —mMmMm 95 91 14 / =25
56 — 56— 05 15 / 80
= T 8 — 15 56 / G5
14— 1 1< 56 / 56
2 15 b= 91 // 56
5 —— 5 2 ——— N o5 30
24 T 24 B =5 / 206
25— 25 24 =0 / 25
26 7;)' 26 25 G5 / 15
1 B 26 30 // 1
30 T 30— =5 26 =
=5 =5 =0 25 <1
G5 7? =0 G5 -1 2
=20 G5 30 T 1

Bitonic Bitonic Bitonic Ritonic
sSoequences Seouences Seouences soqguence
of length < of length 5 of length 16 ol lengsth
Sort Sort Sort Sort
bitonic bitonic bhitonic bhitonic
sequences seduences Soeqguences soqguoences
of length 2 of length < of length = of length 16

Phase 2

Phase 3

Phase 5

oL

\ 95

22

Sort
bhitonic
sodlience

ol length 32

96
\ 5o
COutput

Seg ueloe

Sequential complexity

* Has logN phases
* Each phase i has i stages

* Each stage i performs N compare-exchange
operations

* Hence O(Nlog?N)

Parallelization
Hypercube and mesh networks

* Maps well to hypercubes

* Processors are mapped to corresponding
hypercube nodes

* Processors that need to interact for compare-
exchange operations in the phases are mapped to
hypercube nodes that have direct connections

* For mesh networks, a shuffle-row mapping is used

Parallel implementation
General networks

* Array distributed into block distribution across P
processors

* The last logP of the logN phases require
communications for exchanging elements

* In the last phase, out of the logN stages, the first logP
stages involve communications

 Each communication is a compare-and-exchange
* Hence O(log?P) communication steps

* O(N/P.log?P) communications
e O(N/Plog?N) computations

Observations

* In general, applied to small sequences due to high
computation complexity

e Has poor speedup for greater than thousand
processors due to high communication
complexities

 Sample Sort

Parallel Sorting by Regular
Sampling (PSRS)

1. Each processor sorts its local data

2. Each processor selects a sample vector of
size p-1; kth element is (n/p * (k+1)/p)

3. Samples are sent and merge-sorted on
processor O

4. Processor O defines a vector of p-1
splitters starting from p/2 element; i.e.,
kth element is p(k+1/2); broadcasts to the
other processors

Example

Phase 1

Frocessor | Frocessor 2 Processor 3

[16] 2] 17)24] 33] 28[50 1] o] 27] ofa2s| |[34] 23] 1o a8 11] 7]2a[13] s[35]12] 20| [6] 3| 4] 1] 22] 15] 32] 10] 26] 31] 20] 5]
Sorted
et tiocks || 0] 1] 2| o[16] 17| 2] 25 27 28] 30] 33] || 7]] 11] 12] 13] 1] 10] 21 23 29] 34 35| | || 3] 4] 5[6] 10] 14 15] 20] 22] 26] 31] 32]

Local
Regular Samples

16] 27]

Phase 2

FProcessor |

3] 10

Gathered Regular Sample 23 22

| o] 16l 27] 713

A - -
Serted Reguiar Sampte || 0] 3] 7] 10[13] 16] 22[23] 27]

PSRS

5. Each processor sends local data to correct
destination processors based on splitters;
all-to-all exchange

6. Each processor merges the data chunk it
receives

Step 5

* Each processor finds where each of the p-1
pivots divides its list, using a binary search

* i.e., finds the index of the largest element
number larger than the jth pivot

* At this point, each processor has p sorted
sublists with the property that each element
in sublist i is greater than each element in
sublist i-1 in any processor

Step 6

* Each processor i performs a p-way merge-
sort o merge the ith sublists of p
processors

Example Continued

Fivots
Phase 3

Formed partitions

FPracessor |

Provessaor 2

Processar 3

L o] 1] 2] o] [us17] [24]25[27[28] 30[33] [7| s] [11]12[13]1s[10]21] [23[20]34[3s] | 5[a] s[6[10] [1a[1s[20]22] [26]51]32]
Phase 4
Re-assigned partitions
ponsar [A[2[3] pomr 1 [16[17]
From Proc. 2 E From Self IE From Proc. 2
Final merged partitions 11 keys 12keys 13 keys
[o] 1] 2] 5] 4] 5] 6] 7[8] o 10 [11] 12] 13] 14 15] 16] 17] 18] 19] 20] 1] 22 | 23] 24] 25 26] 27] 28] 20] 30] 31] 32 33] 34] 35]

[0l

[

Analysis

The first phase of local sorting takes O((n/p)log(n/p))

2"d phase:
« Sorting p(p-1) elements in processor O - O(p?logp?)
 Each processor performs p-1 binary searches of n/p elements - plog(n/p)

3rd phase: Each processor merges (p-1) sublists
* Size of data merged by any processor is ho more than 2n/p (proof)
« Complexity of this merge sort 2(n/p)logp

Summing up: O((n/p)logn)

Analysis

* 1s* phase - no communication
P

» 2"d phase - p(p-1) data collected; p-1 data
broadcast

» 3rd phase: Each processor sends (p-1)
sublists to other p-1 processors; processors
work on the sublists independently

Analysis

Not scalable for large number of processors

Merging of p(p-1) elements done on one
processor; 16384 processors require 16 GB
memory

Sorting by Random Sampling

* An interesting alternative; random sample is
flexible in size and collected randomly from
each processor’s local data

« Advantage

* A random sampling can be retrieved before local
sorting; overlap between sorting and splitter
calculation

Radix Sort

* During every step, the algorithm puts every
key in a bucket corresponding to the value
of some subset of the key's bits

* A k-bit radix sort looks at k bits every
iteration

» Easy to parallelize - assign some subset of
buckets to each processor

» Load balance - assign variable number of
buckets to each processor

Radix Sort — Load Balancing

» Each processor counts how many of its keys
will go to each bucket

« Sum up these histograms with reductions

» Once a processor receives this combined
histogram, it can adaptively assign buckets

Radix Sort - Analysis

* Requires multiple iterations of costly all-to-
all

» Cache efficiency is low - any given key can
move to any bucket irrespective of the
destination of the previously indexed key

« Affects communication as well

Histogram Sort

 Another splitter-based method

 Histogram also determines a set of p-1
splitters

* It achieves this task by taking an iterative
approach rather than one big sample

» A processor broadcasts k (> p-1) initial
splitter guesses called a probe

* The initial guesses are spaced evenly over
data range

Histogram Sort
Steps

1. Each processor sorts local data

2. Creates a histogram based on local data and
splitter guesses

3. Reduction sums up histograms

4. A processor analyzes which splitter guesses
were satisfactory (in ferms of load)

5. If unsatisfactory splitters, the , processor
broadcasts a new probe, go to step 2; else
proceed to hext steps

Histogram Sort
Steps

6. Each processor sends local data to

appropriate processors - all-to-all exchange

7. Each processor merges the data chunk it
receives

Merits:
* Only moves the actual data once
e Deals with uneven distributions

Sources/References

* On the versatility of parallel sorting by regular
sampling. Li et al. Parallel Computing. 1993.

* Parallel Sorting by regular sampling. Shi and
Schaeffer. JPDC 1992.

* Highly scalable parallel sorting. Solomonic and Kale.
IPDPS 2010.

	Slide 1: Parallel Sorting
	Slide 2: Parallel Sorting Problem
	Slide 3: Parallel quick sort
	Slide 4: Another algorithm
	Slide 5: Parallel Quick Sort
	Slide 6: Shared memory implementation
	Slide 7: Example: Prefix sum illustration
	Slide 8: Message Passing Version
	Slide 9: Parallel Quick sort
	Slide 10: Complexity and analysis
	Slide 11: Bitonic Sort
	Slide 12: Bitonic sequence
	Slide 13: Bitonic property
	Slide 14: Converting bitonic sequence into a sorted sequence
	Slide 15
	Slide 16: Bitonic sort
	Slide 17: Bitonic sort
	Slide 18: Bitonic sort
	Slide 19
	Slide 20: Sequential complexity
	Slide 21: Parallelization Hypercube and mesh networks
	Slide 22: Parallel implementation General networks
	Slide 23: Observations
	Slide 24
	Slide 25: Parallel Sorting by Regular Sampling (PSRS)
	Slide 26: Example
	Slide 27: PSRS
	Slide 28: Step 5
	Slide 29: Step 6
	Slide 30: Example Continued
	Slide 31: Analysis
	Slide 32: Analysis
	Slide 33: Analysis
	Slide 34: Sorting by Random Sampling
	Slide 35: Radix Sort
	Slide 36: Radix Sort – Load Balancing
	Slide 37: Radix Sort - Analysis
	Slide 38: Histogram Sort
	Slide 39: Histogram Sort Steps
	Slide 40: Histogram Sort Steps
	Slide 41: Sources/References

