
Parallel Sorting
Sathish Vadhiyar

Parallel Sorting Problem

• The input sequence of size N is distributed across P
processors

• The output is such that
• elements in each processor Pi is sorted

• elements in Pi is greater than elements in Pi-1 and lesser
than elements in Pi+1

Parallel quick sort

• Naïve approach

• Start with a single processor; divide array into two sub-
arrays

• Now involve one more processor

• Both the processors perform the next step of quick sort
within their local subarrays

• And so on….till the number of subarrays equal the number
of processors

• Disadvantage: Inefficient utilization of processors

Another algorithm

• This algorithm involves all the processors in all the
iterations

• One of the processors, P0, begins by broadcasting
one of its elements as the pivot element to all the
processors

• Each processor then divides its local array into two
sub-arrays
• Li: elements less than the pivot

• Gi: elements greater than the pivot

Parallel Quick Sort

• Processors then divided into two groups:
• First group will process the subsequent steps with Li s
• Second group with Gi s

• The sizes of the processor groups must be in the
ratio of the number of elements in Ls and Gs to
achieve load balance

• These number of elements can be found using an
allreduce operation

Shared memory implementation

• All L’s are formed in the first part of the array; all
G’s in the second part

• Each processor needs to know the locations in the
shared memory where it has to write its Li and Gi

• Prefix sums of the sizes of the subarrays can be
used

• Prefix sum can be done in O(logP)

Example: Prefix sum illustration

• In this example, 36 is the pivot element

Message Passing Version

• A processor should know which elements in its Li and
Gi it should send to which processor

• Distributed prefix sum is used
• A processor can then deduce its destination processor

for sending its L array using:
• Total number of elements of L subarrays
• prefix sums of sizes
• Size of the processor group that will be responsible for L

subarray

• Similarly for the G subarray
• In worst case, this requires all-to-all with time

complexity O(N/P)

Parallel Quick sort

• The process now repeats with the subgroups

• Until the number of subgroups equal the number
of processors

• At this stage, each processor performs a local quick
sort: O(N/Plog(N/P))

Complexity and analysis

• log P times:
• Broadcast: O(logP)

• Allreduce: O(logP)

• Prefix sum and all-to-all: O(logP + N/P)

• Then local quick sort: O(N/P.logP)

• Total: O(N/P.log(N/P)) + O(log2P)+O(N/P.logP)

• Weaknesses: Load imbalance and under-utilization

Bitonic Sort

Bitonic sequence

• A sequence of length n is a bitonic sequence if
• for an element i

• elements a1<=a2<=a3<=….<=ai and

• Elements ai >= ai-1 >= ai-2>=…>=an

• Any cyclic rotation of such a sequence is also a bitonic
sequence

Bitonic property

• Given a bitonic sequence A, let us form another
sequence B such that:
• B[i] = min(A[i],A[i+N/2])

• B[i+N/2] = max(A[i],A[i+N/2])

• It is easy to prove that:
• Lower half B[0]….B[N/2-1] <= upper half B[N/2]…B[N-1]

• Both the halves themselves are bitonic sequences of
lengths N/2

Converting bitonic sequence into
a sorted sequence
• To convert bitonic sequence of length N into a

sorted sequence, we repeat the above recursively:

• In the first stage, form two bitonic sub-sequences
of N/2 each

• In the second stage, form four bitonic sub-
sequences of N/4 each

• ….

• After logN stages, a sorted sequence is formed

• This process is called bitonic merge

Bitonic sort

• Convert the original unsorted sequence into a
bitonic sequence, then use the above procedure to
convert to a sorted sequence

• Converting unsorted sequence of length N into a
bitonic sequence of length N:

• Larger and larger bitonic sequences are built
starting from sequences of lengths 2

• Note that any sequence of length 2 is a bitonic
sequence

Bitonic sort

• In the first phase:
• Sort two consecutive sub-sequences of lengths 2 such

that
• the first subsequence is sorted in ascending order, second in

descending order

• Now the two sorted sub-sequences are merged to form
a bitonic sequence of length 4.

• In the second phase:
• Consider two consecutive sub-sequences of lengths 4
• Sort them into ascending and descending
• Merge them into bitonic sequence of length 8

Bitonic sort

• So on….

• At the end of logN phases, a bitonic sequence of
length N formed, which is converted into a sorted
sequence

• Time complexity:

• logN phases

• Phase i has i stages

• O(log2N)

Sequential complexity

• Has logN phases

• Each phase i has i stages

• Each stage i performs N compare-exchange
operations

• Hence O(Nlog2N)

Parallelization
Hypercube and mesh networks
• Maps well to hypercubes

• Processors are mapped to corresponding
hypercube nodes

• Processors that need to interact for compare-
exchange operations in the phases are mapped to
hypercube nodes that have direct connections

• For mesh networks, a shuffle-row mapping is used

Parallel implementation
General networks
• Array distributed into block distribution across P

processors
• The last logP of the logN phases require

communications for exchanging elements
• In the last phase, out of the logN stages, the first logP

stages involve communications
• Each communication is a compare-and-exchange
• Hence O(log2P) communication steps

• O(N/P.log2P) communications
• O(N/Plog2N) computations

Observations

• In general, applied to small sequences due to high
computation complexity

• Has poor speedup for greater than thousand
processors due to high communication
complexities

• Sample Sort

Parallel Sorting by Regular
Sampling (PSRS)
1. Each processor sorts its local data

2. Each processor selects a sample vector of
size p-1; kth element is (n/p * (k+1)/p)

3. Samples are sent and merge-sorted on
processor 0

4. Processor 0 defines a vector of p-1
splitters starting from p/2 element; i.e.,
kth element is p(k+1/2); broadcasts to the
other processors

Example

PSRS

5. Each processor sends local data to correct
destination processors based on splitters;
all-to-all exchange

6. Each processor merges the data chunk it
receives

Step 5

• Each processor finds where each of the p-1
pivots divides its list, using a binary search

• i.e., finds the index of the largest element
number larger than the jth pivot

• At this point, each processor has p sorted
sublists with the property that each element
in sublist i is greater than each element in
sublist i-1 in any processor

Step 6

• Each processor i performs a p-way merge-
sort to merge the ith sublists of p
processors

Example Continued

Analysis

• The first phase of local sorting takes O((n/p)log(n/p))

• 2nd phase:
• Sorting p(p-1) elements in processor 0 – O(p2logp2)

• Each processor performs p-1 binary searches of n/p elements – plog(n/p)

• 3rd phase: Each processor merges (p-1) sublists
• Size of data merged by any processor is no more than 2n/p (proof)

• Complexity of this merge sort 2(n/p)logp

• Summing up: O((n/p)logn)

Analysis

• 1st phase – no communication

• 2nd phase – p(p-1) data collected; p-1 data
broadcast

• 3rd phase: Each processor sends (p-1)
sublists to other p-1 processors; processors
work on the sublists independently

Analysis

Not scalable for large number of processors

Merging of p(p-1) elements done on one
processor; 16384 processors require 16 GB
memory

Sorting by Random Sampling

• An interesting alternative; random sample is
flexible in size and collected randomly from
each processor’s local data

• Advantage
• A random sampling can be retrieved before local

sorting; overlap between sorting and splitter
calculation

Radix Sort

• During every step, the algorithm puts every
key in a bucket corresponding to the value
of some subset of the key’s bits

• A k-bit radix sort looks at k bits every
iteration

• Easy to parallelize – assign some subset of
buckets to each processor

• Load balance – assign variable number of
buckets to each processor

Radix Sort – Load Balancing

• Each processor counts how many of its keys
will go to each bucket

• Sum up these histograms with reductions

• Once a processor receives this combined
histogram, it can adaptively assign buckets

Radix Sort - Analysis

• Requires multiple iterations of costly all-to-
all

• Cache efficiency is low – any given key can
move to any bucket irrespective of the
destination of the previously indexed key

• Affects communication as well

Histogram Sort

• Another splitter-based method

• Histogram also determines a set of p-1
splitters

• It achieves this task by taking an iterative
approach rather than one big sample

• A processor broadcasts k (> p-1) initial
splitter guesses called a probe

• The initial guesses are spaced evenly over
data range

Histogram Sort
Steps
1. Each processor sorts local data

2. Creates a histogram based on local data and
splitter guesses

3. Reduction sums up histograms

4. A processor analyzes which splitter guesses
were satisfactory (in terms of load)

5. If unsatisfactory splitters, the , processor
broadcasts a new probe, go to step 2; else
proceed to next steps

Histogram Sort
Steps
6. Each processor sends local data to

appropriate processors – all-to-all exchange

7. Each processor merges the data chunk it
receives

Merits:

• Only moves the actual data once

• Deals with uneven distributions

Sources/References

• On the versatility of parallel sorting by regular
sampling. Li et al. Parallel Computing. 1993.

• Parallel Sorting by regular sampling. Shi and
Schaeffer. JPDC 1992.

• Highly scalable parallel sorting. Solomonic and Kale.
IPDPS 2010.

	Slide 1: Parallel Sorting
	Slide 2: Parallel Sorting Problem
	Slide 3: Parallel quick sort
	Slide 4: Another algorithm
	Slide 5: Parallel Quick Sort
	Slide 6: Shared memory implementation
	Slide 7: Example: Prefix sum illustration
	Slide 8: Message Passing Version
	Slide 9: Parallel Quick sort
	Slide 10: Complexity and analysis
	Slide 11: Bitonic Sort
	Slide 12: Bitonic sequence
	Slide 13: Bitonic property
	Slide 14: Converting bitonic sequence into a sorted sequence
	Slide 15
	Slide 16: Bitonic sort
	Slide 17: Bitonic sort
	Slide 18: Bitonic sort
	Slide 19
	Slide 20: Sequential complexity
	Slide 21: Parallelization Hypercube and mesh networks
	Slide 22: Parallel implementation General networks
	Slide 23: Observations
	Slide 24
	Slide 25: Parallel Sorting by Regular Sampling (PSRS)
	Slide 26: Example
	Slide 27: PSRS
	Slide 28: Step 5
	Slide 29: Step 6
	Slide 30: Example Continued
	Slide 31: Analysis
	Slide 32: Analysis
	Slide 33: Analysis
	Slide 34: Sorting by Random Sampling
	Slide 35: Radix Sort
	Slide 36: Radix Sort – Load Balancing
	Slide 37: Radix Sort - Analysis
	Slide 38: Histogram Sort
	Slide 39: Histogram Sort Steps
	Slide 40: Histogram Sort Steps
	Slide 41: Sources/References

