
Parallel I/O Optimizations

Sources/Credits:
 R. Thakur, W. Gropp, E. Lusk. A Case for Using MPI's Derived Datatypes to 
Improve I/O Performance. Supercomputing 98
URL: http://www.mcs.anl.gov/~thakur/dtype

http://www.mcs.anl.gov/~thakur/dtype


High Performance I/O with Derived 
Data Types

 Potential of parallel file systems not fully 
utilized because of application’s I/O access 
patterns
 Parallel file systems: Tuned for access to large 

contiguous blocks
 User applications: Many small requests to non-

contiguous blocks

 Can be improved using a single call made 
using derived data types

 Using templates with holes can improve 
performance



Datatype Constructors in MPI

1. contiguous

2. vector/hvector

3. indexed/hindexed/indexed_block

4. struct

5. subarray

6. darray

I I I I

I I I I I I I I I I

I I I I I I I I I

I I I D D D D C C



Different levels of access



Different levels of access



Different levels of access



MPI I/O Optimizations

 2 popular optimizations – data 
sieving and collective I/O



Optimizations for derived-datatype 
noncontiguous access

1. Data sieving

• Make a few, large contiguous requests to the 
file system even if the user’s requests consists 
of several, small, nocontiguous requests

• Extract (pick out data) in memory that is really 
needed

• This is ok for read? For write?

• Use small buffer for writing with data sieving 
than for reading with data sieving. Why?

Read-modify-write along with locking 

Greater the size of the write buffer, greater the 
contention among processes for locks



Optimizations for derived-datatype 
noncontiguous access

1. Data sieving
2. Collective I/O

• During collective-I/O functions, the implementation 
can analyze and merge the requests of different 
processes

• The merged request can be large and 
continuous although the individual requests 
were noncontiguous.

• Perform I/O in 2 phases:
• I/O phase – processes perform I/O for the merged 

request. Some data may belong to other processes. If 
the merged request is not contiguous, use data sieving

• Communication phase – processes redistribute data to 
obtain the desired distribution

• Additional cost of communication phase can be offset 
by performance gain due to contiguous access.

• Data sieving and collective-I/O also help improve 
caching and prefetching in underlying file system



Collective I/O Illustration

P0 P1 P0 P1

P0 P1

P0 P1 P0 P1

P0 P1 P0 P1


