Parallel I/O Optimizations

Sources/Credits:

[0 R. Thakur, W. Gropp, E. Lusk. A Case for Using MPI's Derived Datatypes to
Improve I/O Performance. Supercomputing 98

OURL: http://www.mcs.anl.gov/~thakur/dtype

http://www.mcs.anl.gov/~thakur/dtype

High Performance I/O with Derived
Data Types

Potential of parallel file systems not fully
utilized because of application’s I/O access
patterns

B Parallel file systems: Tuned for access to large
contiguous blocks

B User applications: Many small requests to non-
contiguous blocks

Can be improved using a single call made
using derived data types

Using templates with holes can improve
performance

Datatype Constructors in MPI

. contiguous 1[1]1]1

. vector/hvector [1]1]1]1 1[1]1]1

. iIndexed/hindexed/indexed block
I 1|1 I I|I|1 I1I
. Struct
I 1|1 D DID|D C|C
. Subarray
. darray

O U1l A W N

Different levels of access

Large arrey P4 B3 P& E? Erch square represents
distributed

g subarrey in the memaory
AMons of & single
16 processes Ps = P10 P11 B SINSE Process

Bl Pi1i | P14 | Pla

i PIY P13 P14 P15 P12, P13, P14 P15
I

Access pettern in the file

IMPI File openi.., "filename”, .., &fh)
for (i=0; i=n local rows; i++)
MPI File seekifh, ..}
MPI_File_read(fth, row(i], ..}

¥
IMPI File close{&th)

Level 0
(e tndependen?, coRTiTUONS requanta)

MPI Type create subarray(.. &subarray, ..

MPI Type commit{&subarray)
IMPI_File_openi.., "filename”, ..., &fh)
IMPI File set wiewifh, .., subarray, ..)
MPI File read(th, local array,..)

IMPI File closel&fh)

Level 2
(zingle independant, RORcoRETUOUS reqUEst)

)

Different levels of access

MPI File openiMPI COMM WORLL, "filename”, ..., &fh;

for {i=0; i=n local rows; -+ {
IMPI File seekifh, ..}
IMPI_File read_allith, row[i], ...;

¥
MPI Fie close{&fh)

Level 1

(reorey collzotive, contiguons requests)

IMPI Type create subarray(., &subarray, ..
IMPI Type commit{&subarray;

IMPI_File open{MPI COMM_ WORLD, "filename”, ..., &fh)

IMPI File set wiewifh, .., subarray, ..)
IMPI File read allifh,local array,.)
IMPI File close]&fh)

Level 3
(2ingle colleative, RoRcoREiTUOUS reqUEsT)

Different levels of access

Fle

Space F——————~—~—~————————-—— 1
l P
[|_4-r|— independent contiguous
: T D : request [level O
| | ; | ; -
| o Lo Dol
i R
I ' E_,a*’:l' .;:_,_,l— collective contiznous
: b f]. o1 Do : requests {level
T

Lbr . e .
B o ; | b : independent, nonc ontiguous
[H - L = request using aderiv
i S - AR datatype (level 2)
= P
- : | 1 E-l-; |
|- i 1
Co c = collective, noncontipnous requests

i] i uging derived datatypes (level 3)
! !

0 L 2 3 Processes

MPI I/O Optimizations

[1 2 popular optimizations — data
sieving and collective I/0

Optimizations for derived-datatype
noncontiguous access

1. Data sieving

e Make a few, large contiguous requests to the
file system even if the user’s requests consists
of several, small, nocontiguous requests

e Extract (pick out data) in memory that is really
needed

e This is ok for read? For write?

Read-modify-write along with locking

e Use small buffer for writing with data sieving
than for reading with data sieving. Why?

Greater the size of the write buffer, greater the

—_contention among processes forlocks

Optimizations for derived-datatype
noncontiguous access

1. Data sieving

2. Collective 1I/0

e During collective-I/0 functions, the imPIementation
can analyze and merge the requests of different
processes

e The merged request can be large and
continuous although the individual requests
were noncontiguous.

e Perform I/O in 2 phases:

e [/O phase - processes perform I/0O for the merged
request. Some data may belong to other processes. If
the merged request is not contiguous, use data sieving

e Communication phase — processes redistribute data to
obtain the desired distribution

e Additional cost of communication phase can be offset
by performance gain due to contiguous access.
“ata cieving and callective-1/0 alea help imr

caching and refetching in underlying file system

Collective I/0 Illustration

