
Parallelization Principles

Sathish Vadhiyar

2

Parallel Programming and Challenges

◼ Recall the advantages and motivation of
parallelism

◼ But parallel programs incur overheads not
seen in sequential programs
❑ Communication delay

❑ Idling

❑ Synchronization

3

Challenges

P0

P1

Idle time
Computation

Communication

Synchronization

4

How do we evaluate a parallel program?

◼ Execution time, Tp

◼ Speedup, S
❑ S(p, n) = T(1, n) / T(p, n)
❑ Usually, S(p, n) < p
❑ Sometimes S(p, n) > p (superlinear speedup)

◼ Efficiency, E
❑ E(p, n) = S(p, n)/p
❑ Usually, E(p, n) < 1
❑ Sometimes, greater than 1

◼ Scalability – Limitations in parallel computing,
relation to n and p.

5

Speedups and efficiency

Ideal p

S

Practical

p

E

6

Limitations on speedup – Amdahl’s law

◼ Amdahl's law states that the performance
improvement to be gained from using some faster
mode of execution is limited by the fraction of
the time the faster mode can be used.

◼ Overall speedup in terms of fractions of
computation time with and without enhancement,
% increase in enhancement.

◼ Places a limit on the speedup due to parallelism.
◼ Speedup = 1
 (fs + (fp/P))

Gustafson’s Law

◼ Increase problem size proportionally so as to

keep the overall time constant

◼ The scaling keeping the problem size

constant (Amdahl’s law) is called strong

scaling

◼ The scaling due to increasing problem size is

called weak scaling

7

8

Scalability and Isoefficiency

◼ Efficiency decreases with increasing P; increases
with increasing N

◼ How effectively the parallel algorithm can use an
increasing number of processors

◼ How the amount of computations performed must
scale with P to keep E constant

◼ This function of computation in terms of P is
called isoefficiency function.

Example: ScaLAPACK PDGESV

◼

◼

◼

◼ As P is increased, N should be increased by

approx.

◼ As amount of computations is , the

isoefficiency function is
9

Isoefficiency

◼ Smaller isoefficiency functions imply higher

scalability

◼ Consider two parallel algorithms with

isoefficiency functions W1=O(P) and

W2=O(root-P)

◼ The second algorithm is considered to be more

scalable since only small amount of work needs

to be added

◼ Similarly, an algorithm with an isoefficiency

function of O(P) is highly scalable while an

algorithm with quadratic or exponential

isoefficiency function is poorly scalable
10

PARALLEL PROGRAMMING

CLASSIFICATION AND STEPS

11

12

Parallel Program Models

◼ Single Program
Multiple Data (SPMD)

◼ Multiple Program
Multiple Data (MPMD)

Courtesy: http://www.llnl.gov/computing/tutorials/parallel_comp/

13

Programming Paradigms

◼ Shared memory model – Threads, OpenMP,
CUDA

◼ Message passing model – MPI

14

Parallelizing a Program

Given a sequential program/algorithm, how to
go about producing a parallel version

Four steps in program parallelization
1. Decomposition

Identifying parallel tasks with large extent of possible
concurrent activity; splitting the problem into tasks

2. Assignment
Grouping the tasks into processes with best load

balancing

3. Orchestration
Reducing synchronization and communication costs

4. Mapping
Mapping of processes to processors (if possible)

15

Steps in Creating a Parallel Program

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

16

Decomposition and Assignment

◼ Specifies how to group tasks together for a process
❑ Balance workload, reduce communication and

management cost

◼ Structured approaches usually work well
❑ Code inspection (parallel loops) or understanding of

application
❑ Static versus dynamic assignment

◼ Both decomposition and assignment are usually
independent of architecture or prog model

❑ But cost and complexity of using primitives may
affect decisions

◼In practical cases, both steps combined into
one step, trying to answer the question “What
is the role of each parallel processing entity?”

Data Parallelism and Domain

Decomposition
◼ Given data divided across the processing

entitites

◼ Each process owns and computes a portion

of the data – owner-computes rule

◼ Multi-dimensional domain in simulations

divided into subdomains equal to processing

entities

◼ This is called domain decomposition

17

Domain decomposition and Process

Grids
◼ Process grid used to specify domain

decomposition

◼ The given P processes arranged in multi-

dimensions forming a process grid

◼ The domain of the problem divided into

process grid

18

Illustrations

19

2x4

Data Distributions

◼ For dividing the data in a dimension using the

processes in a dimension, data distribution

schemes are followed

◼ Common data distributions:

❑ Block: for regular

computations

❑ Block-cyclic: when

there is load

imbalance across

space

20

Task parallelism

◼ Independent tasks identified

◼ The task may or may not process different

data

◼ The tasks are grouped by a process called

mapping

◼ Two objectives:

❑ Balance the groups

❑ Minimize inter-group dependencies

◼ Represented as task graph

◼ Mapping problem is NP-hard
21

22

Based on Task Partitioning

◼ Based on task dependency graph

◼ In general the problem is NP complete

0

0 4

0 2 4 6

0 1 2 3 4 5 6 7

23

Orchestration
◼ Goals

❑Structuring communication

❑Synchronization

◼ Challenges

❑Organizing data structures – packing

❑Small or large messages?

❑How to organize communication and
synchronization ?

24

Orchestration
◼ Maximizing data locality

❑ Minimizing volume of data exchange
◼ Not communicating intermediate results – e.g. dot product

❑ Minimizing frequency of interactions - packing

◼ Minimizing contention and hot spots
❑ Do not use the same communication pattern with the

other processes in all the processes

◼ Overlapping computations with interactions
❑ Split computations into phases: those that depend on

communicated data (type 1) and those that do not (type
2)

❑ Initiate communication for type 1; During
communication, perform type 2

◼ Replicating data or computations
❑ Balancing the extra computation or storage cost with

the gain due to less communication

25

Mapping

◼ Which process runs on which particular
processor?

❑Can depend on network topology, communication
pattern of processes

❑On processor speeds in case of heterogeneous
systems

26

Mapping

◼ All data and task parallel strategies follow
static mapping

◼ Dynamic Mapping
❑ A process/global memory can hold a set of

tasks

❑ Distribute some tasks to all processes

❑ Once a process completes its tasks, it asks the
coordinator process for more tasks

❑ Referred to as self-scheduling, work-stealing

27

High-level Goals

Table 2.1 Steps in the Parallelization Process and Their Goals

Step
Architecture-
Dependent? Major Performance Goals

Decomposition Mostly no Expose enough concurrency but not too much

Assignment Mostly no Balance workload

Reduce communication volume

Orchestration Yes Reduce noninherent communication via data

locality

Reduce communication and synchronization cost

as seen by the processor

Reduce serialization at shared resources

Schedule tasks to satisfy dependences early

Mapping Yes Put related processes on the same processor if

necessary

Exploit locality in network topology

28

Example
Given a 2-d array of float values, repeatedly

average each elements with immediate
neighbours until the difference between two
iterations is less than some tolerance value

do {
 diff = 0.0

 for (i=0; i < n; i++)

 for (j=0; j < n, j++){

 temp = A[i] [j];

 A[i][j] = average (neighbours);

 diff += abs (A[i][j] – temp);

 }

while (diff > tolerance) ;

A[i][j-1] A[i][j] A[i][j+1]

A[i+1][j]

A[i-1][j]

29

Assignment Options

1. A concurrent task for each element update

❑ Max concurrency: n**2

❑ Synch: wait for left & top values

❑ High synchronization cost

2. Concurrent tasks for elements in anti-

diagonal

❑ No dependence among elements in a diagonal

❑ Max concurrency: ~ n

❑ Synch: must wait for previous anti-diagonal

values; less cost than for previous scheme

30

Option 2 - Anti-diagonals

31

Assignment Options

1. A concurrent task for each element update

❑ Max concurrency: n**2

❑ Synch: wait for left & top values

❑ High synchronization cost

2. A concurrent task for each anti-diagonal

❑ No dependence among elements in task

❑ Max concurrency: ~ n

❑ Synch: must wait for previous anti-diagonal

values; less cost than for previous scheme

3. A concurrent task for each block of rows

32

Assignment -- Option 3

P0

P1

P2

P4

33

Orchestration

◼ Different for different programming

models/architectures

❑ Shared address space

◼ Naming: global addr. Space

◼ Synch. through barriers and locks

❑ Distributed Memory /Message passing

◼ Non-shared address space

◼ Send-receive messages + barrier for synch.

34

SAS Version – Generating Processes

1. int n, nprocs; /* matrix: (n + 2-by-n + 2) elts.*/

2. float **A, diff = 0;

2a. LockDec (lock_diff);

2b. BarrierDec (barrier1);

3. main()

4. begin

5. read(n) ; /*read input parameter: matrix size*/

5a. Read (nprocs);

6. A g_malloc (a 2-d array of (n+2) x (n+2) doubles);

6a. Create (nprocs -1, Solve, A);

7. initialize(A); /*initialize the matrix A somehow*/

8. Solve (A); /*call the routine to solve equation*/

8a. Wait_for_End (nprocs-1);

9. end main

35

SAS Version -- Solve
10. procedure Solve (A) /*solve the equation system*/
11. float **A; /*A is an (n + 2)-by-(n + 2) array*/
12. begin
13. int i, j, pid, done = 0;
14. float temp;
14a. mybegin = 1 + (n/nprocs)*pid;
14b. myend = mybegin + (n/nprocs);
15. while (!done) do /*outermost loop over sweeps*/
16. diff = 0; /*initialize difference to 0*/
16a. Barriers (barrier1, nprocs);
17. for i mybeg to myend do/*sweep for all points of grid*/
18. for j 1 to n do
19. temp = A[i,j]; /*save old value of element*/
20. A[i,j] 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]); /*compute average*/
22. diff += abs(A[i,j] - temp);
23. end for
24. end for
25. if (diff/(n*n) < TOL) then done = 1;
26. end while
27. end procedure

36

SAS Version -- Issues

◼ SPMD program

◼ Wait_for_end – all to one communication

◼ How is diff accessed among processes?
❑ Mutex to ensure diff is updated correctly.

❑ Single lock too much synchronization!

❑ Need not synchronize for every grid point. Can do only
once.

◼ What about access to A[i][j], especially the boundary
rows between processes?

◼ Can loop termination be determined without any
synch. among processes?
❑ Do we need any statement for the termination condition

statement

37

SAS Version -- Solve
10. procedure Solve (A) /*solve the equation system*/
11. float **A; /*A is an (n + 2)-by-(n + 2) array*/
12. begin
13. int i, j, pid, done = 0;
14. float mydiff, temp;
14a. mybegin = 1 + (n/nprocs)*pid;
14b. myend = mybegin + (n/nprocs);
15. while (!done) do /*outermost loop over sweeps*/
16. mydiff = diff = 0; /*initialize local difference to 0*/
16a. Barriers (barrier1, nprocs);
17. for i mybeg to myend do/*sweep for all points of grid*/
18. for j 1 to n do
19. temp = A[i,j]; /*save old value of element*/
20. A[i,j] 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]); /*compute average*/
22. mydiff += abs(A[i,j] - temp);
23. end for
24. end for
24a lock (diff-lock);
24b. diff += mydiff;
24c unlock (diff-lock)
24d. barrier (barrier1, nprocs);
25. if (diff/(n*n) < TOL) then done = 1;
25a. Barrier (barrier1, nprocs);
26. end while
27. end procedure

38

SAS Program

◼ done condition evaluated redundantly by all

◼ Code that does the update identical to
sequential program

❑each process has private mydiff variable

◼ Most interesting special operations are for
synchronization

❑accumulations into shared diff have to be mutually
exclusive

❑why the need for all the barriers?

◼ Good global reduction?

❑Utility of this parallel accumulate??

39

Message Passing Version

◼ Cannot declare A to be global shared array

❑ compose it from per-process private arrays

❑ usually allocated in accordance with the assignment of

work -- owner-compute rule

◼ process assigned a set of rows allocates them locally

◼ Structurally similar to SPMD SAS

◼ Orchestration different

❑ data structures and data access/naming

❑ communication

❑ synchronization

◼ Ghost rows

40

Data Layout and Orchestration

P0

P1

P2

P4

P0

P2

P4

P1

Data partition allocated per processor

Add ghost rows to hold boundary data

Send edges to neighbors

Receive into ghost rows

Compute as in sequential program

41

Message Passing Version – Generating

Processes

1. int n, nprocs; /* matrix: (n + 2-by-n + 2) elts.*/

2. float **myA;

3. main()

4. begin

5. read(n) ; /*read input parameter: matrix size*/

5a. read (nprocs);

/* 6. A g_malloc (a 2-d array of (n+2) x (n+2) doubles); */

6a. Create (nprocs -1, Solve, A);

/* 7. initialize(A); */ /*initialize the matrix A somehow*/

8. Solve (A); /*call the routine to solve equation*/

8a. Wait_for_End (nprocs-1);

9. end main

42

Message Passing Version – Array allocation

and Ghost-row Copying

10. procedure Solve (A) /*solve the equation system*/

11. float **A; /*A is an (n + 2)-by-(n + 2) array*/

12. begin

13. int i, j, pid, done = 0;

14. float mydiff, temp;

14a. myend = (n/nprocs) ;

6. myA = malloc (array of (n/nprocs) x n floats);

7. initialize (myA); /* initialize myA LOCALLY */

15. while (!done) do /*outermost loop over sweeps*/

16. mydiff = 0; /*initialize local difference to 0*/

16a. if (pid != 0) then

 SEND (&myA[1,0] , n*sizeof(float), (pid-1), row);

16b. if (pid != nprocs-1) then

 SEND (&myA[myend,0], n*sizeof(float), (pid+1), row);

16c. if (pid != 0) then

 RECEIVE (&myA[0,0], n*sizeof(float), (pid -1), row);

16d. if (pid != nprocs-1) then

 RECEIVE (&myA[myend+1,0], n*sizeof(float), (pid -1),
 row);

43

Message Passing Version – Solver
12. begin
 … … …
15. while (!done) do /*outermost loop over sweeps*/
 … … …
17. for i 1 to myend do/*sweep for all points of grid*/
18. for j 1 to n do
19. temp = myA[i,j]; /*save old value of element*/
20. myA[i,j] 0.2 * (myA[i,j] + myA[i,j-1] +myA[i-1,j] +
21. myA[i,j+1] + myA[i+1,j]); /*compute average*/
22. mydiff += abs(myA[i,j] - temp);
23. end for
24. end for
24a if (pid != 0) then
24b. SEND (mydiff, sizeof (float), 0, DIFF);
24c. RECEIVE (done, sizeof(int), 0, DONE);
24d. else
24e. for k 1 to nprocs-1 do
24f. RECEIVE (tempdiff, sizeof(float), k , DIFF);
24g. mydiff += tempdiff;
24h. endfor
24i. If(mydiff/(n*n) < TOL) then done = 1;
24j. for k 1 to nprocs-1 do
24k. SEND (done, sizeof(float), k , DONE);
24l. endfor
25. end while
26. end procedure

44

Notes on Message Passing Version

◼ Receive does not transfer data, send does
❑ unlike SAS which is usually receiver-initiated (load

fetches data)

◼ Can there be deadlock situation due to sends?

◼ Communication done at once in whole rows at
beginning of iteration, not grid-point by grid-point

◼ Core similar, but indices/bounds in local rather
than global space

◼ Synchronization through sends and receives
❑ Update of global diff and event synch for done

condition – mutual exclusion occurs naturally

◼ Can use REDUCE and BROADCAST library calls
to simplify code

45

Notes on Message Passing Version

/*communicate local diff values and determine if done, using reduction

and broadcast*/

25b. REDUCE(0,mydiff,sizeof(float),ADD);

25c. if (pid == 0) then

25i. if (mydiff/(n*n) < TOL) then

25j. done = 1;

25k. endif

25m. BROADCAST(0,done,sizeof(int),DONE

46

Send and Receive Alternatives

❑ Semantic flavors: based on when

control is returned

❑ Affect when data structures or buffers

can be reused at either end

❑ Synchronous messages provide built-

in synch. through match

❑ Separate event synchronization

needed with asynch. Messages

❑ Now, deadlock can be avoided in our

code.

Send/Receive

Synchronous Asynchronous

Blocking

asynch.

Nonblocking

asynch.

47

Orchestration: Summary

◼ Shared address space

❑ Shared and private data explicitly separate

❑ Communication implicit in access patterns

❑ Synchronization via atomic operations on shared data

❑ Synchronization explicit and distinct from data

communication

48

Orchestration: Summary

◼ Message passing
❑ Data distribution among local address spaces needed

❑ No explicit shared structures (implicit in comm. patterns)

❑ Communication is explicit

❑ Synchronization implicit in communication (at least in

synch. case)

49

Grid Solver Program: Summary

◼ Decomposition and Assignment similar in SAS and

message-passing

◼ Orchestration is different

❑ Data structures, data access/naming, communication,

synchronization

❑ Performance?

50

Grid Solver Program: Summary

SAS Msg-Passing

Explicit global data structure? Yes No

Communication Implicit Explicit

Synchronization Explicit Implicit

Explicit replication of border rows? No Yes

	Slide 1
	Slide 2: Parallel Programming and Challenges
	Slide 3: Challenges
	Slide 4: How do we evaluate a parallel program?
	Slide 5: Speedups and efficiency
	Slide 6: Limitations on speedup – Amdahl’s law
	Slide 7: Gustafson’s Law
	Slide 8: Scalability and Isoefficiency
	Slide 9: Example: ScaLAPACK PDGESV
	Slide 10: Isoefficiency
	Slide 11: Parallel programming classification and steps
	Slide 12: Parallel Program Models
	Slide 13: Programming Paradigms
	Slide 14: Parallelizing a Program
	Slide 15: Steps in Creating a Parallel Program
	Slide 16: Decomposition and Assignment
	Slide 17: Data Parallelism and Domain Decomposition
	Slide 18: Domain decomposition and Process Grids
	Slide 19: Illustrations
	Slide 20: Data Distributions
	Slide 21: Task parallelism
	Slide 22: Based on Task Partitioning
	Slide 23: Orchestration
	Slide 24: Orchestration
	Slide 25: Mapping
	Slide 26: Mapping
	Slide 27: High-level Goals
	Slide 28: Example
	Slide 29: Assignment Options
	Slide 30
	Slide 31: Assignment Options
	Slide 32: Assignment -- Option 3
	Slide 33: Orchestration
	Slide 34: SAS Version – Generating Processes
	Slide 35: SAS Version -- Solve
	Slide 36: SAS Version -- Issues
	Slide 37: SAS Version -- Solve
	Slide 38: SAS Program
	Slide 39: Message Passing Version
	Slide 40: Data Layout and Orchestration
	Slide 41: Message Passing Version – Generating Processes
	Slide 42: Message Passing Version – Array allocation and Ghost-row Copying
	Slide 43: Message Passing Version – Solver
	Slide 44: Notes on Message Passing Version
	Slide 45: Notes on Message Passing Version
	Slide 46: Send and Receive Alternatives
	Slide 47: Orchestration: Summary
	Slide 48: Orchestration: Summary
	Slide 49: Grid Solver Program: Summary
	Slide 50: Grid Solver Program: Summary

