

1 (1 mark). “All of the signed integer values
between -16 and 16 inclusive can be
represented as 4 bit 2’s complement integers”

False
Explanation: There are 33 signed integer
values between -16 and 16, but only 16 distinct
values can be represented using 4 bits

2 (1 mark). “Loop interchange can improve cache
performance of the C code
float X[1024][1024], Scale;
int a, b, c;
for (c = 0 ; c <10; c++)

for (b = 0; b < 1024; b++);
for (a = 0; a < 1024; a++)

X[b][a] = X[b][a] * Scale;

Interchanging a-loop and b-loop doesn’t help as they
generate accesses in storage order exploiting spatial
locality of reference

However, temporal locality of reference can be
improved by interchange c-loop/b-loop followed by
interchange c-loop/a-loop

4 a (0.5 mark). Explain: Maximum Vector Length

Maximum vector size that can be operated on by a
vector instruction of a given processor

4 b (0.5 mark). Explain: Stripmining

Technique to handle a vectorizable loop whose iteration
count is higher than the maximum vector length of the
target processor

3. Given the 2-dimensional C array float Y [512] [511];
with base address 0xA0000000
(a) (0.5 mark) What is the address of Y [8] [0]?

Array element size = sizeof(float) = 4 Bytes
Address(Y[8][0]) = Address(Y[0][0]) + 8 * Row size

 = 0xA0000000 + 8 * 511 * 4

(b) (0.5 mark) If the program is run on a computer with
data cache block size of 64 Bytes, which array
elements are in the same block as Y [0] [511]?

There is no array element Y [0] [511] as the column
dimension of Y is 511 and indices are therefore from 0
to 510

5 (1 mark). Would you expect the code below to be auto-
vectorized? If not, transform it to facilitate auto-
vectorization.
float Z[1024][1024], Sum = 0.0; int a,b;
for (a=0; a<1024; a++)

for (b=0; b<1024; b++)
Sum = Sum + Z[a][b];

No, the inner b-loop will not be vectorized due to the
dependence introduced by the scalar variable Sum

float rowSum[1024]; /*initialize to 0 */
for (a=0; a<1024; a++)

for (b=0; b<1024; b++)
rowSum[b] = rowSum[b] + Z[a][b];

int i; /* i-loop below is not vectorizable */
for (i=0; i<1024; i++) Sum = Sum + rowSum[i];

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

