
Scheduling on Parallel
Systems

- Sathish Vadhiyar

Parallel Scheduling Categories

 Job Scheduling [this class]
 A set of jobs arriving at a parallel system

 Choosing an order of jobs for execution to
minimize total turnaround time

 Application Scheduling [next class]
 Mapping a single application’s tasks to resources

to reduce the total response time

 In general, difficult to achieve for
communication-intensive applications

 For applications with independent tasks
(pleasingly parallel applications), some methods
have been proposed

JOB SCHEDULING

Job Scheduling - Introduction

 A parallel job is mapped to a subset of
processors

 The set of processors dedicated to a certain
job is called a partition of the machine

 To increase utilization, parallel machines are
typically partitioned into several non-
overlapping partitions, allocated to different
jobs running concurrently – space slicing or
space partitioning

Introduction

 Users submit their jobs to a machine’s
scheduler

 Jobs are queued
 Jobs in queue considered for allocation

whenever state of a machine changes
(submission of a new job, exit of a
running job)

 Allocation – which job in the queue?,
which machine?

Introduction

 Packing jobs to the processors

 Goal – to increase processor utilization

 Lack of knowledge of future jobs and job
execution times. Hence simple heuristics
to perform packing at each scheduling
event

Variable Partitioning
 Dilemma about future job arrivals and job terminations

 Current scheduling decisions may impact jobs that arrive in the future

 Can lead to poor utilization

 e.g.: currently running: a 64-node job. Queued: 32-node and 128-node jobs

Scheduling Policies

 FCFS

 If the machine’s free capacity cannot
accommodate the first job, it will not
attempt to start any subsequent job

 No starvation; But poor utilization

 Processing power is wasted if the first
job cannot run

Backfilling

 Allows small jobs from the back of the queue to execute
before larger jobs that arrived earlier

 Requires job runtimes to be known in advance – often
specified as runtime upper-bound

Backfilling

 Identifies holes in the 2D chart and
moves smaller jobs to fill those holes

 2 types – conservative and aggressive
(EASY)

EASY Backfilling

 Aggressive version of backfilling

 Any job can be backfilled provided it does not
delay the first job in the queue

 Starvation cannot occur for the first job since
queuing delay for the first job depends only on
the running jobs

 But jobs other than the first may be
repeatedly delayed by newly arriving jobs

Conservative Backfilling

 Makes reservations for all queued jobs

 Backfilling is done subject to checking
that it does not delay any previous job in
the queue

 Starvation cannot occur at all

Backfilling Variants

1. Depending on the order in which the queue is scanned to find
backfilling jobs
1. By estimated runtime or estimated slowdown

1. Slowdown – (wait_time + running time)/running_time

2. Dynamic backfilling/slack-based backfilling – overruling
previous reservation if introducing a slight delay will improve
utilization considerably\
1. Each job in the queue is associated with a slack –

maximum delay after reservation.
2. Important jobs will have little slack
3. Backfilling is allowed only if the backfilled job does not

delay any other job by more than that job’s slack
4. e.g. reservations to only those jobs whose expected

slowdowns > threshold

Backfilling Variants

3. Multiple-queue backfilling
1. Each job is assigned to a queue according to

its expected execution time
2. Each queue is assigned to a disjoint partition

of the parallel system on which only jobs
from this queue can be executed

3. Reduces the likelihood that short jobs get
delayed in the queue behind long jobs

LOS (Lookahead Optimizing
Scheduler)

 Examines all jobs in the queue to maximize
utilization

 Instead of scanning the queue in any order and
starting any job that is small enough not to
violate prior reservations

 LOS tries to find combination of jobs
 Using dynamic programming
 Results in local optimum; not global optimum
 Global optimum may leave processors idle in

anticipation of future arrivals

Notations

 Scheduler is invoked at t
 Machine runs jobs R = {rj1, rj2,…,rjr} each with 2 attributes:

 Size
 Estimated remaining time, rem

 Machine’s free capacity, n = N – sum(rji.size)
 Waiting jobs in the queue, WQ = {wj1, wj2,…,wjq}, each with 2

attributes
 Size requirements
 User’s runtime estimate, time

Objective

 Task is to select a subset, S in WQ,
selected jobset that maximizes machine
utilization; these jobs removed from the
queue and started immediately

 Selected jobset is safe if it does not
impose a risk of starvation

Matrix M

 Size of M = (|WQ+1|) x (n+1)
 mi,j contains an integer value util, boolean flag

selected
 util – (i,j) holds the maximum achievable

utilization at this time, if machine’s free
capacity is j and only waiting jobs [1…i] are
considered for scheduling

 Maximum achievable utilization – maximal
number of processors that can be utilized by
the considered waiting jobs

Matrix M

 selected – if set, indicates that wji was
chosen for execution; when the
algorithm finished calculating M, it will
be used to trace the jobs which
construct S

 i=0 row and j=0 column are filled with
zeros

Filling M

 M is filled from left-right and top-bottom
 If adding another processor (bringing the total to j) allows

the currently considered job wji to be started:
 then check if including wji will increase utilization

 The utilization that would be achieved assuming this job is
included is calculated as util’

 If util’ higher than utilization without this job, the
selected flag is set to true for this job

 If not, or if the job size is larger than j, the utilization is
what it was without this job, that is mi-1,j.util

 The last cell shows the maximal utilization

Constructing M

Example

 A machine of size, N = 10

 At t=25, the machine runs rj1 with
size=5, and rem=3

 The machine’s free capacity, n=5

 Set of waiting jobs and resulting M is
shown

 Selected flag is denoted by if set and
by if cleared

Table M for Example

Example Explanations

 Job 1 requires 7, hence does not fit in any of the 5; hence util is
0 and selected false for the entire row

 For job 2, when 3 or more processors are used, it is selected and
util is 3

 Job 3
 When only 1 or 2 processors are used, it is selected and util 1
 When 3 processors are considered, it is better to select the second

one; not the third
 With 4 or more, job 2 and job 3 can be selected; util is 4

 Job 4 is selected
 When 2 processors are considered (better than utilizing job 3 with

util 1)
 When 5 are considered (together with job 2 with util 5)

 Job 5 does not add anything, never selected
 Thus max util is 5
 Conventional backfilling would have selected jobs 2 and 3 leading

to utilization of 4.

Constructing S

 Starting at the last computed cell, S is
constructed by following the boolean
flags backwards

 Jobs that are marked as selected are
added to S

Algorithm

Scheduling wj2 and wj4

Starvation

 Algorithm 1 has the drawback that it might
starve large jobs

 In our example, the first queued job has size
requirements 7

 Since it cannot start at t, wj2 and wj4 are
started.

 But after 3 time units, rj1 releases it
processors; however, processors are not
available for wj1 since wj2 and wj4 are
occupying processors;

 This can continue….

Freedom from Starvation

 Bound the waiting time of the first queued job
 The algorithm tries to start wj1
 If wj1.size < n, it removes the job from the queue and

starts it
 If not, the algorithm computes the shadow time at which

wj1 can begin execution
 Does this by traversing the running job list until reaching a

job rjs, such that wj1.size < n+sumi=1tos(rji.size)
 shadow = t+rjs.rem
 Reservation is made for wj1 at shadow
 In the example, shadow = 28

Gang Scheduling
 Executing related threads/processes together on a machine
 Time sharing. Time slices are created and within a time slice

processors are allocated to jobs.
 Jobs are context switched between time slices.
 Leads to increased utilization

Gang Scheduling

 Multi Programming Level:
scheduling cycle in gang
scheduling

 Scheduling matrix
recomputed at every
scheduling event – job
arrival or departure

 4 steps – cleanmatrix,
compactmatrix,
schedule, fillmatrix

Gang Scheduling Steps

 CleanMatrix

 CompactMatrix

 Schedule other jobs – FCFS

 FillMatrix

APPLICATION SCHEDULING

Background

 Tasks of a job do not have dependencies
 A machine executes a single task at a

time
 Collection of tasks and machines are

known apriori
 Matching of tasks to machines done

offline
 Estimates of execution time for each

task on each machine is known

Scheduling Problem

 ETC – Expected time to compute matrix

 ETC(i,j) – estimated execution time of task
i on machine j

 Notations:
 mat(j) – machine availability time for machine j,

i.e., earliest time at which j has completed all
tasks that were previously assigned to it

 Completion time, ct(i,j) = mat(j)+ETC(i,j)

 Objective – find a schedule with minimum
makespan

 Makespan – max (ct(i,j))

Scheduling Heuristics

 Opportunistic Load Balancing (OLB)
• Assign next task (arbitrary order) to the next

available machine
• Regardless of task’s ETC on that machine

 User Directed Allocation (UDA)
• Assign next task (arbitrary order) to the

machine with lowest ETC
• Regardless of machine availability

Scheduling Heuristics

 Min-Min
• Start with a list of Unmapped tasks, U.
• Determine the set of minimum completion times

for U.
• Choose the next task that has min of min

completion times and assign to the machine that
provides the min. completion time.

• The new mapped task is removed from U and
the process is repeated.

• Theme - Map as many tasks as possible to their
first choice of machine

• Since short jobs are mapped first, the
percentage of tasks that are allocated to their
first choice is high

Scheduling Heuristics

 Max-Min
• Start with a list of Unmapped tasks, U.
• Determine the set of minimum completion times

for U.
• Choose the next task that has max of min

completion times and assign to the machine that
provides the min. completion time.

• The new mapped task is removed from U and
the process is repeated.

• Avoids starvation of long tasks
• Long tasks executed concurrently with short

tasks
• Better machine-utilization

Scheduling Heuristics

 Genetic Algorithm

 General steps of GA

GA

 Operates 200 chromosomes. A chromosome
represents a mapping of task to machines, a vector
of size t.

 Initial population – 200 chromosomes randomly
generated with 1 Min-Min seed

 Evaluation – initial population evaluated based on
fitness value (makespan)

 Selection –
 Roulette wheel – probabilistically generate new population,

with better mappings, from previous population
 Elitism – guaranteeing that the best solution (fittest) is

carried forward

GA - Roulette wheel scheme

Chromosomes 1 2 3 4

Score 4 10 14 2

Probability of 0.13 0.33 0.47 0.07

selection

Select a random number, r, between 0 and 1.

Progressively add the probabilities until the
sum is greater than r

GA

 Crossover
 Choose pairs of chromosomes.
 For every pair

 Choose a random point
 exchange machine assignments from that point till the end

of the chromosome

 Mutation. For every chromosome:
 Randomly select a task
 Randomly reassign it to new machine

 Evaluation
 Stopping criterion:

 Either 1000 iterations or
 No change in elite chromosome for 150 iterations

Simulated Annealing

 The procedure is similar to metal
annealing/formation process

 Poorer solutions accepted with a probability that
depends on temperature value

 Initial mapping; Initial temperature – initial makespan
 Each iteration:

 Generate new mapping based on mutation of prev. mapping.
Obtain new makespan

 If new makespan better, accept
 If new makespan worse, accept if a random number z in [0,1]

> y where

 Reduce temperature by 10%

Tabu search

 Keeps track of regions of solution space
that have already been searched

 Starts with a random mapping
 Generate all possible pairs of tasks, (i,j), i

in (0, t-1) and j in (i+1, t)
 i and j’s machine assignments are exchanged

(short hop) and makespan evaluated
 If makespan better (successful short hop),

search begins from i=0, else search
continues from previous (i,j)

Tabu search

 Continue until 1200 successful short hops
or all pairs have been evaluated

 Add final mapping to tabu list. The list
keeps track of solution space searched

 A new random mapping generated that
differs from solution space by atleast half
the machine assignments (long hop)

 Search continued until fixed number of
short and long hops

