Loading Events

« All Events

  • This event has passed.

{Seminar} @ CDS: 05th August 2021: “Neural Closure Models for Dynamical Systems.”

Thu, 05 Aug 21 @ 6:00 PM -- 7:00 PM

Department of Computational and Data Sciences
Department Seminar

Speaker     :  Dr. Abhinav Gupta, MIT

Title            :  “Neural Closure Models for Dynamical Systems”
Date & Time  :   August 05, 2021, 06:00 PM
Venue              : Online
Complex dynamical systems are used for predictions in many domains. Because of computational costs, models are truncated, coarsened, or aggregated. As the neglected and unresolved terms become important, the utility of model predictions diminishes. We develop a novel, versatile, and rigorous methodology to learn non-Markovian closure parameterizations for known-physics/low-fidelity models using data from high-fidelity simulations. The new “neural closure models” augment low-fidelity models with neural delay differential equations (nDDEs), motivated by the Mori-Zwanzig formulation and the inherent delays in complex dynamical systems. We demonstrate that neural closures efficiently account for truncated modes in reduced-order-models, capture the effects of subgrid-scale processes in coarse models, and augment the simplification of complex biological and physical-biogeochemical models. We find that using non-Markovian over Markovian closures improves long-term prediction accuracy and requires smaller networks. We derive adjoint equations and network architectures needed to efficiently implement the new discrete and distributed nDDEs, for any time-integration schemes and allowing nonuniformly-spaced temporal training data. The performance of discrete over distributed delays in closure models is explained using information theory, and we find an optimal amount of past information for a specified architecture. Finally, we analyze computational complexity and explain the limited additional cost due to neural closure models.


Abhinav is a 5th year PhD candidate in Mechanical Engineering and Computation at MIT. He received his Bachelor’s degree and Master’s degree in Mechanical Engineering from the Indian Institute of Technology, Kanpur. At MIT he was a fellow of the MIT-Tata Center for Technology & Design from 2018-20, and recipient of the 2020-21 MathWorks Mechanical Engineering Fellowship.

Abhinav is currently developing state-of-the-art scientific machine learning algorithms, with applications to predictive ocean modeling. Apart from his present work, he has specifically worked on uncertainty quantification, data assimilation, Bayesian model learning, and optimal sampling for high-dimensional systems. The algorithms he develops are problem agnostic and can be widely applied. He believes that his unique background in mechanical engineering, applied mathematics, machine learning, and computing position him to identify and implement cross-disciplinary solutions to problems.


Host Faculty: Prof. Deepak Subramani


Thu, 05 Aug 21
6:00 PM -- 7:00 PM