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Sommerfeld integrals relate a spherical wave from a point source to a convolution set of 
plane and cylindrical waves. This relation does not have analytical solutions but it submits 
to a solution by numerical integration. Among others, it is significant for theoretical studies 
of many optical and radiation phenomena involving surfaces. This approach is preferred 
over discretized computational models of the surface because of the many orders of 
increased computations involved in the latter. One of the most widely used and accurate 
methods to compute these solutions is the numerical integration of the Sommerfeld 
integrand over a complex contour. We have analyzed the numerical advantages offered 
by this method, and have justified the optimality of the preferred contour of integration 
and the choice of two eigenfunctions used. In addition to this, we have also analyzed 
four other approximate methods to compute the Sommerfeld integral and have identified 
their regions of validity, and numerical advantages, if any. These include the high relative 
permittivity approximation, the short distance approximation, the exact image theory and 
Fourier expansion of the reflection coefficient. We also finally compare these five methods 
in terms of their computational cost.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The problem of modelling radiating antennas near a plane boundary such as the earth–air interface is of considerable 
practical importance in the fields of nano optics, oceanography, geophysical exploration, and submarine communication and 
detection. The radiation characteristics of an antenna can be substantially affected by the presence of a lossy ground with 
finite conductivity [4], especially in the near field of the antenna. Applications in nano optics also require the computation 
of interactions between a large number of dipole sources and substrates, thus requiring a repetitive use of this method 
numerous times to obtain a final solution of the problem [10,11,17,24,27,25,6,12,28]. Due to the vastly diminished scales 
involved in nano optics, the interaction between the dipole sources and the substrate is very significant [26,8,23].

The classic formulation of this problem by Sommerfeld [22,20,21] assumes a homogeneous lossy half-space with finite 
conductivity (say, the earth), and an infinitesimal vertical point dipole embedded in the free space (say, air) above it. 
Maxwell’s equations are applied subject to the half-space boundary conditions, and the solutions are obtained in the form 
of an inverse Fourier–Bessel integral. This integral modelling the interaction of the dipole with the surface is known as 
the Sommerfeld integral. Since the problem has cylindrical symmetry, it is convenient to express the solution in cylindrical 
coordinates as an integral of the eigenfunctions of the cylindrical Helmholtz operator. These eigenfunctions are in terms 
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of the zeroth order Bessel function of the first kind for the ρ direction, and in terms of a complex exponential for the z
direction. Because of the azimuthal symmetry in angle φ, the solutions are independent of φ.

The Sommerfeld integral has no closed form analytic solution, but there exist a few numerical methods to compute the 
solution. Since the integrand of the Sommerfeld integrand is oscillatory and has branch points along with other singularities, 
traditional numerical integration schemes converge poorly if the path of integration is not optimally chosen. Approximate 
analytic expressions can also be obtained when certain constraints are applied on the parameters. The objective of this 
work is to study the efficiency of the methods proposed so far, to evaluate the Sommerfeld integral in its amenable or ap-
proximated forms. Note that for more general scattering problems with arbitrarily shaped scatterers, other efficient integral 
equation solvers exist [3]. Similarly, these methods specific to this integral are expected to converge fast even if advanced 
numerical integration schemes designed for various types of singularities are not used. One method – exact image theory 
– is similar to integration schemes proposed for integrating functions with certain types of singularities [2,9,7,1]. The Som-
merfeld integral based approach can in principle be combined with other integral equation solvers for problems involving 
an infinite surface and other scatterers [19].

The three spatial components of the vector potential for a z oriented oscillating electric point dipole in the near field of 
a surface are given in (1a) and (1b). The first two terms on the right hand side of (1a) represent the vector potential due to 
the primary dipole source and the image respectively. The third integral term is known as the Sommerfeld integral.

Az = eikR

R
+ eikR ′

R ′ − 2

∞∫
0

J0(kρρ)e−kz(z+h) kzs

εkz + kzs

kρ

kz
dkρ (1a)

Aρ = Aφ = 0 (1b)

kz =
√

k2
ρ − k2 (1c)

kzs =
√

k2
ρ − εk2 (1d)

R =
√

ρ2 + (z − h)2 (1e)

R ′ =
√

ρ2 + (z + h)2 (1f)

where ε is the relative permittivity of the surface, k is the wave number in free space, kρ and kz are the ρ and z components 
respectively of the wave number in free space, kzs is the z component of the wave number under the surface, ρ and z are 
the coordinates of the observation point, and J0 is the zeroth order Bessel function of the first kind.

Note the branch cuts and singularities of this integrand are shown in Fig. 1. We describe five methods to evaluate this 
integral; their regions of validity in terms of the permittivity of the half-space and the ρ/z ratios. Finally, in Section 7, we 
comment on the approximate computational costs involved in each of these methods.

2. Complex contour integration

For analytical integration, as a consequence of Cauchy’s residue theorem, all different complex contours are equivalent 
provided the closed loop formed by the different contours of integration do not enclose any poles or singularities of the 
integrand and the contours do not intersect any branch cut of the integrand. However, numerical quadrature schemes would 
encounter oscillatory or non-oscillatory integrands depending on the contour chosen, and this can significantly affect the 
rate of convergence and accuracy of the numerical result.

2.1. Contour integration with Bessel functions

We start by ascertaining the location of the poles, branch points and branch cuts of the Sommerfeld integrand. The 
integrand has a pole p, given by (2), corresponding to εkz + kzs = 0.

kρ = p = k

√
ε

1 + ε
(2)

It also has branch points at kρ = ±k and kρ = ±k
√

ε due to 
√

k2
ρ − k2 and 

√
k2
ρ − εk2 respectively. Choosing the conven-

tional principal value of the square root function, the corresponding branch cuts are as given by (3). The detailed derivations 
which result in these branch cuts are shown in Appendix B.

kρ = t, t ∈ [−k,k] (3a)

kρ = it, t ∈R (3b)

kρ = t + i
εyk2

2t
, t ∈ [−k�{√ε},k�{√ε}] (3c)
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Fig. 1. Branch cuts and singularities of the Bessel function form of the Sommerfeld integrand in (1a). p refers to the location of the pole given by (2).

Fig. 2. Domain coloring visualization of the Bessel function form of the Sommerfeld integrand on the complex kρ plane for parameters k = 1, ε = 3 + 2i, 
h = 1, ρ = 0.2λ, z = 0.4λ (See Appendix A for a quantitative description of domain coloring of complex valued functions).

These branch cuts are shown in Fig. 1 and may also be seen in the domain coloring visualization of the Sommer-
feld integrand shown in Fig. 2. The preferred contour of integration due to Lytle and Lager [16], that avoids the branch 
cuts and singularities discussed above is also shown in Fig. 2. Point A in the preferred contour of integration is chosen 
to be

A ∼ 1 − i

ρ
(4)

The Bessel function term in the integrand increases exponentially in the lower half of the complex plane. So, to avoid large 
cancellation errors, the contour is chosen such that the argument of the Bessel function kρρ remains roughly constant 
for different values of ρ . Hence, we have the 1

ρ term in A. The slope of O A given by the 1 − i in the numerator is 
arbitrary.

A comparison of the number of integrand evaluations required for convergence in the case of integration over the real 
line and integration over the complex contour is shown in Fig. 3. Integration over the real line requires several orders 
of magnitude more number of integrand evaluations than the contour integration. Thus, it is clear from these numerical 
results, that contour integration has a significant computational advantage. Note that, to estimate the computational cost of 
real line integration, a contour arbitrarily close to the real line was chosen. This is because a contour over the real line will 
converge very poorly due to the singularities on the real line.



82 A. I, M. Venkatapathi / Applied Numerical Mathematics 106 (2016) 79–97
Fig. 3. Comparison of computational cost of integration over the real line and over the contour (for parameters k = 1, ε = 7 + 3i, ρ = 0.35λ). The computa-
tional cost of real line integration involves a contour arbitrarily close to the real line.

Fig. 4. Branch cuts and singularities of the Hankel function form of the Sommerfeld integrand. p refers to the location of the pole given by (2).

2.2. Contour integration with Hankel functions

The Bessel function form of the Sommerfeld integral has limits from 0 to ∞, whereas the equivalent integral using 
Hankel functions [22] has limits from −∞ to ∞, as follows.

∞∫
0

J0(kρρ)e−kz(z+h) kz

εkz + kzs

kρ

kz
dkρ = 1

2

∞∫
−∞

H1
0(kρρ)e−kz(z+h) kz

εkz + kzs

kρ

kz
dkρ (5)

where H1
0 is the zeroth order Hankel function of the first kind.

In addition to the branch cuts of the Bessel function form of the Sommerfeld integrand, the Hankel function form of the 
Sommerfeld integrand has an additional branch cut along the negative real axis due to the Hankel function. This branch cut 
is given by

kρ = t ∈ (−∞,0] (6)

The branch cuts of the Hankel function form of the Sommerfeld integrand along with the preferred contour of integration 
are shown graphically in Fig. 4. Points A and B in the preferred contour of integration are given by

A ∼ z − iρ

ρ
(7)

B = k�{√ε} + 	{A} (8)

The Hankel function term in the integrand increases exponentially in the lower half of the complex plane. So, to avoid large 
cancellation errors, the contour is chosen such that the argument of the Hankel function kρρ remains roughly constant for 
different values of ρ . Hence, we have the 1 term in A. The slope of O A given by the z − iρ is chosen to approximate a 
ρ
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Fig. 5. Domain coloring visualization of the Hankel function form of the Sommerfeld integrand on the complex kρ plane for parameters k = 1, ε = 3 + 2i, 
h = 1, ρ = 0.2λ, z = 0.4λ (See Appendix A for a quantitative description of domain coloring of complex valued functions).

contour corresponding to constant phase of the integrand. Smaller phase variations along the contour result in the numerical 
quadrature scheme encountering a less oscillatory integrand, and hence this is preferred. Point B is chosen such that when 
the contour returns to the upper half of the complex plane, it does not intersect the branch cut due to kzs =

√
k2
ρ − εk2.

The Bessel function form of the Sommerfeld integrand suffers from rapid oscillations for large ρ and slow decay for small 
z + h. Hence, for observation points along the planar interface and distant from the source, convergence is slow. In these 
cases, the Hankel function form of the integrand, which does not suffer from these issues, can be used. The infinite range 
of integration can be truncated to a relatively short range because of the fact that the Hankel function decays exponentially 
in the upper half of the complex plane. A domain coloring visualization of the Hankel function form of the Sommerfeld 
integrand is shown in Fig. 5.

3. High relative permittivity approximation

In his original work [22], Sommerfeld developed the following approximate image theory for surfaces of high permittivity.

Az =
∞∫

0

J0(kρρ)e−kz(z+h) kzs

εkz + kzs

kρ

kz
dkρ (9)

For infinitely large ε, the Sommerfeld integral vanishes. For large but not infinitely large ε, an useful limit case can be 
derived. This is as follows.

The z component of the wave number under the surface kzs is given by

kzs =
√

k2
ρ − εk2 (10)

kzs = √
εk

√
k2
ρ

εk2
− 1 (11)

For large ε, that is, 
√

εk 
 kρ

kzs = −ik
√

ε (12)

Also, in the denominator,

εkz + kzs ≈ εkz (13)

Applying approximations (12) and (13),

Az = − ik√
ε

∞∫
0

J0(kρρ)e−kz(z+h) kρ

k2
z

dkρ (14)

This approximate integral can be interpreted as an image theory in the following way.
For R ′′ = √

ρ2 + (z + h′)2, the Fourier–Bessel integral of the free-space Green’s function can be expressed as
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Fig. 6. Branch cuts and singularities of the high relative permittivity integrand.

eikR ′′

R ′′ =
∞∫

0

J0(kρρ)e−kz(z+h′) kρ

kz
dkρ (15)

Integrating with respect to h′ from h to ∞,
∞∫

h

eikR ′′

R ′′ dh′ =
∞∫

0

J0(kρρ)e−kz z kρ

kz
dkρ

∞∫
h

e−kzh′
dh′ (16)

∞∫
h

eikR ′′

R ′′ dh′ =
∞∫

0

J0(kρρ)e−kz z kρ

k2
z

dkρ (17)

Thus,

Az = − ik√
ε

∞∫
h

eikR ′′

R ′′ dh′ (18)

Az = − ik√
ε

∞∫
z+h

eikR ′′

R ′′ dz′ (19)

where z′ = z + h′ and R ′′ = √
ρ2 + (z′)2

This can be interpreted as the effect of an imaginary ray of dipoles starting at z = −h and going to z = −∞.
The high permittivity integrand shown in (19) has branch cuts due to the square root function in R ′′ = √

ρ2 + (z′)2. 
Choosing the conventional principal value of the square root function, the branch cut is

z′ = ±it, t ∈ [ρ,∞) (20)

The detailed derivation which results in this branch cut is shown in Appendix C. The branch point corresponding to this 
branch cut is at

z′ = ±iρ (21)

For the high permittivity integrand, contours parallel to the imaginary axis in the z′ plane encounter an exponentially 
decaying integrand. But, contours parallel to the real axis in the z′ plane encounter an oscillatory integrand. Also, as the 
magnitude of z′ tends to infinity, the integrand approaches zero. Hence, for rapid convergence with numerical integration, 
we choose a contour as shown in Fig. 6.

When |B| → ∞, |C | → ∞ and |D| → ∞, the integrand decays to a negligible value at points B , C and D , and therefore 
contour AB approximates contour ABC D . Note that lim

z′→∞
R ′′ = z′ .

∞∫
z+h

eikR ′′

R ′′ dz′ =
∫

ABC D

eikR ′′

R ′′ dz′ ≈
∫

AB

eikR ′′

R ′′ dz′ (22)
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Fig. 7. High permittivity approximation versus complex contour integration – Relative error (for parameters k = 1, ρ = 2λ and z = 2λ).

3.1. Error analysis

The relative error in the integrand caused by approximation (12) is given by

Relative error in integrand = 1 + i
√

ε
k

kzs
= 1 + ik

√
ε

k2
ρ − εk2

(23)

The relative error in the integrand caused by approximation (13) is given by

Relative error in integrand = kzs

εkz
= 1

ε

√
k2
ρ − εk2

k2
ρ − k2

(24)

Putting both approximations (12) and (13) together, the relative error is given by

Relative error in integrand = −ik√
εkz

(
1 + εkz

kzs

)
(25)

Relative error in integrand = k

i
√

ε

(
1

kz
+ ε

kzs

)
(26)

Relative error in integrand = k

i
√

ε

⎛
⎜⎝ 1√

k2
ρ − k2

+ ε√
k2
ρ − εk2

⎞
⎟⎠ (27)

This relative error in the integrand given by (27) shows maxima at kρ = k and kρ = k
√

ε. Therefore, the high permittivity 
approximation will show smaller error for parameters whose corresponding integrands only have a small component at 
these points in the complex kρ plane. Since all contours in the complex plane are equivalent, the error in the final result 
cannot be minimized by choosing a contour of integration that avoids these points. A comparison of the relative error for 
the high permittivity approximation versus complex contour integration for different values of relative permittivity is shown 
in Fig. 7. As can be seen, the approximation becomes more accurate for larger permittivities.

4. Short distance approximation

This approximation due to Panasyuk et al. [18] is applicable when the observation point is close to the reflection of 
the dipole source about the planar interface, that is for small kL where L = √

ρ2 + (z + h)2 is the distance between the 
observation point and the reflection of the dipole source about the planar interface.

Detailed derivation of the results of the short distance approximation are shown in [18]. Here, we will consider only the 
approximations used and the region of validity of these approximations.

One of the forms of the Sommerfeld integral dealt with in this approximation is

I =
∞∫

J0(kρρ)e−kz(z+h) kzs − εkz

kzs + εkz

k3
ρ

kz
dkρ (28)
0
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The integral is first split into three parts

I =
k∫

0

f (kρ) J0(kρρ)e−kz(z+h)dkρ +
∞∫

k

[ f (kρ) − g(kρ)] J0(kρρ)e−kz(z+h)dkρ +
∞∫

k

g(kρ) J0(kρρ)e−kz(z+h)dkρ (29)

where

f (kρ) = k3
ρ

kz

kzs − εkz

kzs + εkz
(30)

g(kρ) = k3
ρ

kz

[
s + s(1 − s)k2

2k2
ρ

]
(31)

s = 1 − ε

1 + ε
(32)

Then, the variable of integration is transformed with ξ =
√

1 −
(

kρ

k

)2
in the first integral, and ξ =

√(
kρ

k

)2 − 1 in the last 
two integrals, resulting in integrals t1, t2 and t3.

I = k3[it1 + t2 + t3] (33)

where

t1 =
1∫

0

(1 − ξ2) J0(kρ
√

1 − ξ2)eiξk(z+h) Q 1(ξ)dξ (34)

t2 =
∞∫

0

(1 + ξ2) J0(kρ
√

1 + ξ2)e−ξk(z+h)

[
Q 2(ξ) − s − s(1 − s)

2(1 + ξ2)

]
dξ (35)

t3 =
∞∫

0

(1 + ξ2) J0(kρ
√

1 + ξ2)e−ξk(z+h)

[
s + s(1 − s)

2(1 + ξ2)

]
dξ (36)

Q 1(ξ) =
√

ξ2 + ε − 1 − εξ√
ξ2 + ε − 1 + εξ

(37)

Q 2(ξ) =
√

ξ2 − ε + 1 − εξ√
ξ2 − ε + 1 + εξ

(38)

Now, suitable short distance approximations are applied on integrals t1, t2 and t3. These approximations make the integrals 
analytically integrable and result in the expressions shown in (42), (43) and (54). The region of validity of these approxima-
tions is discussed here.

In integrals t1 and t2, the Bessel function terms and the exponential terms are approximated by unity, which is the first 
term in their respective Taylor series.

J0(kρ
√

1 − ξ2) ≈ 1 (39a)

J0(kρ
√

1 + ξ2) ≈ 1 (39b)

eiξk(z+h) ≈ 1 (39c)

e−ξk(z+h) ≈ 1 (39d)

The approximations in (39) are valid only for very small arguments of the exponential and Bessel functions. Therefore, 
kρ and k(z + h) are required to be very small quantities. Thus, this approximation is valid only when ρ and z + h are much 
smaller than the free space wavelength λ.
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ρ  λ (40)

z + h  λ (41)

Substituting these approximations into (34) and (35), and evaluating the resulting integrals analytically results in (42) and 
(43) for integrals t1 and t2 respectively.

t1 = − 2
√

ε − 1

(ε − 1)(ε + 1)2

{[
ε(1 + 3ε − ε2) + √

ε − 1

(
ε

5
2 (

√
ε + 2)√

ε + 1
− 2ε − 1

)]}

− 6ε3

(ε − 1)(ε + 1)2.5
ln

[
(ε + √

ε2 − 1)(1 + √
ε + 1)

ε + √
ε(ε + 1)

] (42)

t2 = ε

(1 + ε)1.5

[
π + 2

√
1 − ε2

3
+ π + 2iε2 ln[iε + √

1 − ε2] − 2ε
√

1 − ε2

ε2 − 1

]
(43)

In integral t3, the argument of the Bessel function grows linearly with the integration variable ξ at the upper limit of 
integration. Hence, direct approximation using the Taylor series is not possible. Hence, we make the argument of the Bessel 
function bounded as follows.

J0(kρ
√

1 + ξ2) = J0[kρ(ξ + �ξ)] (44)

where

�ξ =
√

1 + ξ2 − ξ (45)

Then, using the addition theorem for Bessel functions,

J0(kρ
√

1 + ξ2) =
∞∑

n=−∞
J−n(kρξ) Jn(kρ�ξ) (46)

Truncating the series due to the addition theorem at n = 1,

J0(kρ
√

1 + ξ2) = J1(kρξ) J−1(kρ�ξ)

+ J0(kρξ) J0(kρ�ξ)

− J−1(kρξ) J1(kρ�ξ) (47)

For Bessel functions of integer order n,

J−n(z) = (−1)n Jn(z) (48)

Therefore,

J0(kρ
√

1 + ξ2) = J0(kρξ) J0(kρ�ξ) − 2 J1(kρξ) J1(kρ�ξ) (49)

Now, that the argument kρ�ξ is bounded, we can approximate it using the first term of the Taylor series as follows.

J0(kρ�ξ) ≈ 1 (50)

J1(kρ�ξ) ≈ kρ�ξ

2
(51)

Substituting these approximations, we obtain,

J0(kρ
√

1 + ξ2) = J0(kρξ) − kρ�ξ J1(kρξ) (52)

Analogous to the approximations in (39), this approximation using the Taylor series is valid only for very small values of 
kρ , that is, when ρ is much smaller than the free space wavelength λ.

ρ  λ (53)
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Fig. 8. Short distance approximation versus complex contour integration – Relative error for a ρ × z grid (for parameters k = 1, ε = 3 + 2i).

Substituting approximation (52) into (36), and evaluating the resulting integrals analytically results in (54) for integral t3.

t3 = s

(kL)3

[
3

(
z + h

L

)2

− 1

]
− 1

kL

[
s + s(1 − s)

2
− sR2

2kL3

]
(54)

4.1. Error analysis

Absolute error in t1 =
1∫

0

(1 − ξ2) J0(kρ
√

1 − ξ2)eiξk(z+h) Q 1(ξ)dξ −
1∫

0

(1 − ξ2)Q 1(ξ)dξ (55)

Absolute error in t1 =
1∫

0

(1 − ξ2)

[
J0(kρ

√
1 − ξ2)eiξk(z+h) − 1

]
Q 1(ξ)dξ (56)

Absolute error in t2 =
∞∫

0

(1 + ξ2)

[
J0(kρ

√
1 + ξ2)e−ξk(z+h) − 1

][
Q 2(ξ) − s − s(1 − s)

2(1 + ξ2)

]
dξ (57)

Since, in approximation (39), the oscillatory terms – namely the Bessel and exponential functions – where replaced by 
unity, the error introduced is also oscillatory. This is shown in the above expressions.

4.2. Numerical results

Numerical results computing the relative error of the short distance approximation for integrals t1 and t2 are shown in 
Fig. 8. As can be seen from the figures, the error does not monotonically increase with increasing distance from the reflected 
source. Instead, there is an oscillating variation in the error. The source of this oscillating error is due to approximation by 
substitution of oscillatory terms in the integrand with constant terms, as explained in the previous section.

4.3. Observations and conclusions

When the observation point is very close to the reflected source point, numerical integration of the Sommerfeld integral 
converges slowly. In such cases, this short distance approximation is useful. Also, when approximate analytical results are 
required, this short distance approximation provides a more accurate alternative to the well known electrostatic approxima-
tion. However, as an accurate general purpose numerical technique for all observation points, this approximation will not 
suffice.

5. Exact image theory

An exact distributed image current function for the classical Sommerfeld half-space problem was obtained by Lindell and 
Alanen for excitation by a vertical magnetic dipole [13], a vertical electric dipole [14], and for arbitrarily oriented electric or 
magnetic dipoles [15]. We shall only consider excitation by a vertical electric dipole.
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The vector potential A(r) possesses only a z component and satisfies the Helmholtz wave equation, given by

(∇2 + k2)A(r) = −δ(r − hẑ), z > 0 (58)

(∇2 + εk2)A(r) = 0, z < 0 (59)

The Fourier transform of the solution can be written as

Az(kρ) = J0(kρρ)

kz

[
e−kz(z−h) + Ree−kz(z+h)

]
, z > 0 (60)

where Re is the reflection coefficient given by

Re(kz) = εkz − kzs

εkz + kzs
(61)

(60) can be split into two terms A1 and A2 as

Az = A1 + A2 (62)

where

A1(kρ) = J0(kρρ)

kz
e−kz(z+h) (63)

A2(kρ) = J0(kρρ)

kz
Ree−kz(z+h) (64)

A1 corresponds to the field due to a vertical electric dipole at z = h radiating in free space. In the space domain,

A1(r) = G(r − hẑ) (65)

where G(r) is the free space Green’s function given by

G(r) = e−ikr

4πr
(66)

A2 corresponds to the field due to reflection from the surface. A2(kρ) is the reflected field due to an incident wave with 
wave number k = kρρ + kz ẑ

Now, we try to express A2 as some superposition of point sources radiating in homogeneous space. For this, we first 
normalize the propagation factor kz using q = kz

ik
√

ε−1
to get

Re(q) = εq − √
q2 + 1

εq + √
q2 + 1

(67)

If f is the Laplace transform of the reflection coefficient Re(q), then

Re(q) =
∞∫

0

f (p)e−qpdp (68)

Substituting this Laplace representation of Re(q) into (64),

A2(kρ) = − J0(kρρ)

kz
e−kz(z+h)

∞∫
0

f (p)e−pqdp (69)

Inverting the Fourier transform,

A2(kρ) =
∞∫

0

J0(kρρ)e−kz(z+h) kρ

kz

∞∫
0

f (p)e−pqdp dkρ (70)

Swapping the order of the integrals,

A2(kρ) =
∞∫

0

f (p)

∞∫
0

J0(kρρ)e−kz(z+h)e−pq kρ

kz
dkρ dp (71)

Substituting q = kz√ ,

ik ε−1
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A2(kρ) =
∞∫

0

f (p)

∞∫
0

J0(kρρ)e
−kz

[
z+h+ p

ik
√

ε−1

]
kρ

kz
dkρ dp (72)

We find that this corresponds to a continuous line of point sources in complex z space, where f (p) is related to the image 
current function.

A2(r) =
∞∫

0

f (p)G

(
r +

(
h + p

ik
√

ε − 1

)
ẑ
)

dp (73)

Expressing this in more physically explicit quantities,

A2(r) =
−∞eiθ∫
−h

I(z′)G(r − z′ẑ)dz′ (74)

where

θ = −arg(i
√

ε − 1) (75)

z′ = −h − p

ik
√

ε − 1
(76)

I(z′) = −ik
√

ε − 1 f
(
−ik

√
ε − 1(z′ + h)

)
(77)

The line of point sources exist along z′ , and I(z′) is the magnitude of the current along that line.
Now, if we know f (p) we may simply substitute in (74), and find the net vector potential by superposition of the image 

point sources.
f (p) is simply the Laplace transform of Re(q). One of the forms of f (p) is

f (p) = ε − 1

ε + 1
δ(p) − εγ

ε − 1

ε + 1
sinh(γ p) + 2εγ

p∫
0

sinh [γ (p − s)]
J2(s)

s
ds (78)

where

γ = 1√
ε2 − 1

(79)

More numerically suitable forms of f (p) are derived using various approximations in [14]. These approximations result in 
the series forms (80) and (81) for f (p).

For p < 4,

f (p) = ε − 1

ε + 1
δ(p) +

∞∑
n=0

[
−εγ

ε − 1

ε + 1
+ ε

n−1∑
m=0

(−1)m(2m + 1)!
(2γ )2m+1m!(m + 2)!

]
(γ p)2n+1

(2n + 1)! (80)

For p > 4,

f (p) = −2ε2γ 3e−γ p + 2
√

2

ε
√

π p
3
2

sin
(

p + π

4

)
+ 3(8 − 3ε2)

2ε3
√

2π p
5
2

cos
(

p + π

4

)
+ · · · (81)

These expressions can finally be used to compute the net effect of all the image sources using numerical integration of 
(74).

Exact image theory provides an alternative way to understand the reflection as arising from a set of point sources. 
But note that these sources are positioned along a line in the complex plane and this may not have an apparent physical 
interpretation. Our analysis presented in Section 7 shows that the cost of computation using this approach may be higher 
than the contour integration, for ρ and z + h values less than λ. It is clear that as ρ increases, the computational cost 
of contour integration with the Bessel function form of the integrand increases due to the increased oscillation of the 
integrand. Therefore, exact image theory could potentially be exploited for mesoscale problems.
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6. Fourier expansion of the reflection coefficient

This technique approximates the reflection coefficient part of the Sommerfeld integral using a Fourier series. The resulting 
series of integrals is analytically integrable, thus converting the problem to a series summation.

We start with a Sommerfeld integral of the form

Az =
∞∫

0

J0(kρρ)e−kz(z+h)

[
εkz

εkz + kzs

]
kρ

kz
dkρ (82)

The bracketed part is the reflection coefficient and is slowly varying with respect to the variable of integration and will be 
approximated using a Fourier series.

Changing integration variables by substituting kρ = k sinα and therefore kz =
√

k2
ρ − k2 = ik cosα, we get

Az = L + T (83)

where

L = k

π
2∫

0

SL(cosα) J0(kρ sinα)e−k cos α[δ+i(z+h)] sinαdα (84)

T = k

π
2 + j∞∫
π
2

ST (i cosα) J0(kρ sinα)e−ik cos α(z+h) sinαdα (85)

SL(ψ) = εψekψδ

εψ + √
ε − 1 + ψ2

(86)

ST (ψ) = εψ

εψ + i
√

ε − 1 + ψ2
(87)

Making a further substitution, ψ = cosα in (84) and ψ = i cosα in (85), we get

L = −ik

1∫
0

SL(ψ) J0(kρ
√

1 − ψ2)e−kψ[δ+i(z+h)]dψ (88)

T = k

∞∫
0

ST (ψ) J0(kρ
√

1 + ψ2)e−kψ(z+h)dψ (89)

Now, we approximate the slowly varying parts of the integral namely S L(ψ) and ST (ψ) using a Fourier series as follows.
Integral for L in (88) has finite limits 0 ≤ ψ ≤ 1. So, SL can be approximated by extending it as an even function about 

ψ = 1, and then approximating it using an NL point Fourier sine transform.

sL(ν) =
NL−1∑
ψ=1

SL(ψ) sin

(
π

ψ

�ψ

ν

NL

)
(90)

SL(ψ) = 2

NL

NL−1∑
ν=1, ν odd

sL(ν) sin

(
π

ψ

�ψ

ν

NL

)
(91)

where �ψ = 2
NL

.
Integral for T in (89) has infinite limits. Therefore, the integral needs to be truncated at some ψmax , before ST can be 

approximated using a Fourier series. ψmax is chosen to be a point where the exponential function in the integral would 
have decayed to a very small value and therefore the contribution of the integral for ψ > ψmax can be neglected.

ψmax is chosen to be

ψmax = − 1
ln

(
0.5 × 10−(S D+2)

)
(92)
kzmin
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Fig. 9. Comparison of computational costs involved in the various methods (for parameters k = 1, ε = 7 + 3i, ρ = 0.15λ). Integration contours used for the 
data points marked “Bessel”, “Hankel” and “High Permittivity” are shown as dashed lines in Figs. 1, 4 and 6 respectively. Romberg quadrature to a relative 
tolerance of 10−6 was used to numerically evaluate all integrals.

where S D is the number of significant digits accuracy required, and zmin is the minimum z + h for which the Fourier series 
approximation will be used.

Extending ST as an even function about ψ = ψmax , we get

sT (ν) =
NT −1∑
ψ=1

ST (ψ) sin

(
π

ψ

�ψ

ν

NT

)
(93)

ST (ψ) = 2

NT

NT −1∑
ν=1, ν odd

sT (ν) sin

(
π

ψ

�ψ

ν

NT

)
(94)

Substituting the Fourier series approximations developed above back into (88) and (89), makes the integrals analytically 
integrable. Expressions for the results after analytical integration are available in [5].

The slowly varying parts of the integral SL and ST are parameterized only by the permittivity of the surface, and is 
independent of the positions of the source and observation points. Hence, for a given surface, the Fourier series approxima-
tions need to be computed only once and can be used repeatedly for various source and observation points, thus saving on 
computation. However, for observation points close to the surface, the convergence is slow, and a large number of sample 
points need to be used in the Fourier series approximation [5]. This is problematic and any computational advantage gained 
over numerical integration of the Sommerfeld integral may be lost here.

7. Comparison of computational cost

In this section, we compare the computational cost of the various methods used to evaluate the Sommerfeld integral. 
In the case of contour integration, exact image theory and the high permittivity approximation, the number of integrand 
evaluations has been chosen as a measure of the computational cost. For exact image theory, since the series calculations 
for f (p) involve double summations, the number of terms in the series has also been added to the number of integrand 
evaluations performed during numerical integration. For the short distance approximation, only analytical expressions are 
involved, the cost of which is negligibly small compared to numerical integration. Hence we ignore it here. But note that its 
region of validity is limited as described in Section 4.

The various methods of computation have different integrands each with their distinct computational costs. Therefore, 
the cost involved with a single integrand evaluation is not the same for different methods. However, this simplistic scheme 
assuming that all integrand and series evaluations are equivalent was chosen in order to decouple the measurement of 
computational cost from exact implementation details such as choice of numerical integration methods, choice of math 
libraries, compiler optimization, etc.

Figs. 9, 10 and 11 show a comparison of the number of integrand evaluations required for convergence in each method 
for different ρ and z + h. Romberg quadrature to a relative tolerance of 10−6 was used to numerically evaluate all integrals. 
The integrals were truncated to finite limits such that the envelope of the integrand decays to a negligible value (e−kz (z+h) ≈
10−16) close to machine epsilon at the upper limit. For example, in contour integration with Bessel functions, 1−i

ρ + 40
z+h was 

chosen as the upper limit of kρ along the path shown in Fig. 1. With such a limit, the accuracy of the numerical integration 
is dependent primarily on the relative tolerance requirement placed on the quadrature scheme. From the figures, we can 



A. I, M. Venkatapathi / Applied Numerical Mathematics 106 (2016) 79–97 93
Fig. 10. Comparison of computational costs involved in the various methods (for parameters k = 1, ε = 7 + 3i, ρ = 0.35λ). Integration contours used for the 
data points marked “Bessel”, “Hankel” and “High Permittivity” are shown as dashed lines in Figs. 1, 4 and 6 respectively. Romberg quadrature to a relative 
tolerance of 10−6 was used to numerically evaluate all integrals.

Fig. 11. Comparison of computational costs involved in the various methods (for parameters k = 1, ε = 7 + 3i, ρ = 2λ). Integration contours used for the 
data points marked “Bessel”, “Hankel” and “High Permittivity” are shown as dashed lines in Figs. 1, 4 and 6 respectively. Romberg quadrature to a relative 
tolerance of 10−6 was used to numerically evaluate all integrals.

see that the high permittivity approximation shows the lowest cost. But, as we saw earlier, its accuracy is too poor to be 
practically useful. Contour integration has an order of magnitude lower computational cost than exact image theory for z +h
on the order of λ. But, when the observation point tends to the far field, they are observed to be closely matched. Among 
the contour integrations, the Bessel function form of the integrand is slightly inferior to the Hankel function form for very 
low z + h, but at larger z + h, the increased exponential decay due to the large z + h gives the Bessel function form of the 
integrand an advantage.

Appendix A. Domain coloring for visualizing complex functions

Domain coloring is a technique for visualizing complex functions. Representing a complex function with separate mag-
nitude and phase plots makes it difficult to put together and interpret. In domain coloring, the magnitude and phase of the 
complex function are mapped respectively to the value (V) and hue (H) components of that point in the HSV color space. 
The saturation (S) component of the color is set constant to unity. Thus, oscillations (that is, phase change) in the function 
are represented by changes in hue (color), and magnitude is represented by the brightness. Darker shades represent smaller 
magnitude, and brighter shades represent larger magnitude.

For the domain coloring visualizations shown in Figs. 2 and 5, the chosen mapping of the complex number to the color 
was

Hue(reiφ) = φ (A.1)
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Fig. 12. Mapping of magnitude to Value (V) used in the domain coloring visualizations.

Saturation(reiφ) = 1 (A.2)

Value(reiφ) =
(

1 − 1

1 + r2

)0.2

(A.3)

where r and φ are the magnitude and phase of the complex number respectively.
The mapping of magnitude (r) to the Value (V) component of the HSV color is shown in Fig. 12. In the HSV color space, 

the maximum allowed value of the Value (V) component is 1. Hence the mapping is chosen such that it saturates for large 
magnitudes and does not exceed 1.

Appendix B. Branch cuts of the Sommerfeld integrand

B.1. Branch cuts due to 
√

k2
ρ − k2

Letting kρ = x + iy, where x and y are the real and imaginary parts of kρ respectively,

k2
ρ − k2 = (x2 − y2 − k2) + i2xy (B.1)

For the conventional principal value of the square root function, the branch cuts in the kρ plane satisfy

�{k2
ρ − k2} < 0, 	{k2

ρ − k2} = 0 (B.2)

Thus,

x2 − y2 − k2 < 0 (B.3a)

2xy = 0 (B.3b)

From (B.3b), x = 0 or y = 0.
If x = 0, from (B.3a),

y2 > −k2 (B.4)

Since y and k are real numbers, y2 is always positive and −k2 is always negative for all y, k, making the above inequality 
true for all y ∈ R. Thus, there exists an infinitely long branch cut along the imaginary axis in the kρ plane. This can be 
mathematically expressed as

kρ = it, t ∈R (B.5)

If y = 0, from (B.3a),

x2 < k2 =⇒ |x| < |k| (B.6)

Since k is real and positive, |x| < k. Thus, the branch cut is

kρ = t, t ∈ [−k,k] (B.7)
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B.2. Branch cuts due to 
√

k2
ρ − εk2

Letting kρ = x + iy, where x and y are the real and imaginary parts of kρ respectively, and ε = εx + iεy , where εx and 
εy are the real and imaginary parts of ε respectively,

k2
ρ − εk2 = (x2 − y2 − εxk2) + i(2xy − εyk2) (B.8)

For the conventional principal value of the square root function, the branch cuts in the kρ plane satisfy

�{k2
ρ − εk2} < 0, 	{k2

ρ − εk2} = 0 (B.9)

Thus,

x2 − y2 − εxk2 < 0 (B.10a)

2xy − εyk2 = 0 (B.10b)

From (B.10b),

y = εyk2

2x
(B.11)

Substituting in (B.10a),

x4 − εxk2x2 − ε2
yk4

4
< 0 (B.12)

Completing squares,(
x2 − εxk2

2

)2

<
k4

4

(
ε2

x + ε2
y

)
(B.13)

(
x2 − εxk2

2

)2

<
k4|ε|2

4
(B.14)

Thus,

−|ε|k2

2
< x2 − εxk2

2
<

|ε|k2

2
(B.15)

(εx − |ε|)k2

2
< x2 <

(εx + |ε|)k2

2
(B.16)

But,

|ε| =
√

ε2
x + ε2

y (B.17)

Therefore,

|ε| ≥ εx (B.18)

This means that εx −|ε| is negative. But, x is real, and so x2 is always positive. Therefore, x2 > (εx −|ε|) k2

2 is always satisfied. 
This leaves us with the condition,

x2 > (εx + |ε|)k2

2
(B.19)

But,

�{√ε} = √|ε| cos

(
1

2
argε

)
(B.20)

[�{√ε}]2 = |ε| cos2
(

1

2
argε

)
(B.21)

[�{√ε}]2 = |ε|
2

[1 + cos(argε)] (B.22)

[�{√ε}]2 = |ε|
2

[
1 + εx

|ε|
]

(B.23)

[�{√ε}]2 = εx + |ε|
2

(B.24)
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Substituting in (B.19),

x2 > k2[�{√ε}]2 (B.25)

Thus, the branch cut exists for

−k�{√ε} < x < k�{√ε} (B.26)

From (B.11), the branch cut is

kρ = t + i
εyk2

2t
, t ∈ [−k�{√ε},k�{√ε}] (B.27)

Appendix C. Branch cuts of the high permittivity integrand

The high permittivity integrand shown in (19) has branch cuts due to the square root function in

R ′′ =
√

ρ2 + (z + h′)2 (C.1)

Letting z′ = √
x2 + y2 where x and y are the real and imaginary parts of z′ respectively,

ρ2 + z′ 2 = ρ2 + x2 − y2 + i2xy (C.2)

For the conventional principal value of the square root function, the branch cuts in the z′ plane satisfy

�{ρ2 + z′ 2} < 0, 	{ρ2 + z′ 2} = 0 (C.3)

Thus,

ρ2 + x2 − y2 < 0 (C.4)

2xy = 0 (C.5)

From (C.5), x = 0 or y = 0. If x = 0, from (C.4),

y2 > ρ2 =⇒ |y| > ρ (C.6)

If y = 0, from (C.4),

x2 < −ρ2 (C.7)

Since x is a real number, x2 is always positive. Since ρ is a real number, −ρ2 is always negative. Therefore, the above 
condition is not possible for any real x.

Therefore, the branch cut is given by

z′ = ±it, t ∈ [ρ,∞) (C.8)
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