
1

Abstract—Advances in deep neural networks (DNN) and computer vision (CV) algorithms have made it feasible to extract meaningful
insights from large-scale deployments of urban cameras. Tracking an object of interest across the camera network in near real-time is a
canonical problem. However, current tracking platforms have two key limitations: 1) They are monolithic, proprietary and lack the ability
to rapidly incorporate sophisticated tracking models; and 2) They are less responsive to dynamism across wide-area computing
resources that include edge, fog and cloud abstractions. We address these gaps using Anveshak, a runtime platform for composing
and coordinating distributed tracking applications. It provides a domain-specific dataflow programming model to intuitively compose a
tracking application, supporting contemporary CV advances like query fusion and re-identification, and enabling dynamic scoping of
the camera network’s search space to avoid wasted computation. We also offer tunable batching and data-dropping strategies for
dataflow blocks deployed on distributed resources to respond to network and compute variability. These balance the tracking accuracy,
its real-time performance and the active camera-set size. We illustrate the concise expressiveness of the programming model for 4
tracking applications. Our detailed experiments for a network of 1000 camera-feeds on modest resources exhibit the tunable scalability,
performance and quality trade-offs enabled by our dynamic tracking, batching and dropping strategies.

Index Terms—Big Data Platform, Edge and Fog computing, Video analytics, Distributed stream processing, Internet of Things

F

1 INTRODUCTION

The push for smarter and safer cities has led to the prolifera-
tion of video cameras in public spaces. Regions like London,
New York, Singapore and China [1] have deployed camera
networks with 1000’s of feeds to help with urban safety, e.g.,
to detect abandoned objects, to track missing people and
for behavioral analysis [2]. They are also used for citizen
services, e.g., to identify open parking spots and count the
traffic flow. Such “many-camera networks”, when coupled
with sophisticated Computer Vision (CV) algorithms and
Deep Learning (DL) models can also serve as meta-sensors
to replace other physical sensors for IoT applications and to
complement on-board cameras for self-driving cars [3].

One canonical application domain that operates over
such ubiquitous video feeds is called tracking [4]. Here, the
goal is to identify an “object” or “entity” (e.g., a stolen vehicle
or a missing child), based on a given sample image, in video
streams arriving from cameras distributed across the city,
and to track that entity’s movements across the many-camera
network in near real-time [5]. Fig. 1 illustrates a missing
person being tracked across a network of 5 video cameras,
CA–CE , on a road network using a smart spotlight tracking
algorithm. A blue circle indicates the Field of View (FOV) of
a camera. The path taken by the person between time t1 and
t5 is indicated by the green dashed arrow. Given an image
of the person, the goal is to trace their path across the city

• A. Khochare and Y. Simmhan are with the Department of Computational
and Data Sciences, Indian Institute of Science, Bangalore, 560012, India
E-mail: aakhochare@IISc.ac.in, simmhan@IISc.ac.in

• A. Krishnan was an intern at Department of Computational and Data
Sciences, Indian Institute of Science, Bangalore, 560012, India
E-mail: aravindhank11@gmail.com

with high accuracy, while reducing the application design
and computing overheads. These pose several challenges.

Challenge 1 (Composability). The application requires
online video analytics across space and time, and this com-
monly has three stages: object detection, object tracking, and
re-identification [4]. The first filters out objects that do not
belong to the same class as the entity while the second
tracks objects in a single camera’s frame. Re-identification
(or re-id) matches the objects in a camera with the given
target entity [6]. Recently, a fourth stage, fusion, enhances the
original entity query with features from the matched images
that is then used for tracking, giving better accuracy [7].

Each of these individual problems is well-researched.
But these stages have to be composed as part of an overall
platform, and coupled with a distributed tracking logic that
operates across the camera network and over time. Stages
like object tracking may require specialized DNNs to deal
with crowded scenes or occlusion. However, contemporary
many-camera analysis platforms are monolithic, proprietary
and bespoke [8], [9] [10]. They offer limited composability
and reusability of models, and minimal support for custom
tracking strategies. This increases the time and effort to incor-
porate domain intelligence and adopt the rapid advances
being made in CV/DL.

Challenge 2 (Distributed Tracking). It is impractical to
execute the full video analytics pipeline on all the cameras
due to the punitive computing and network costs. E.g., just
doing object detection on a 1000-camera network using a
contemporary fast neural network requires 5–128 Titan XP
GPUs; besides, the bandwidth to move the video streams to
the compute resource is high [11]. Instead, these platforms
should incorporate smart tracking strategies that limit the
video processing to the cameras where the object is likely
to be present and adapt to blindspots [12]. They can use

Pre-print of article that appears in IEEE Transactions on Parallel and Distributed Systems, June 2021, pp.
1479-1493, vol. 32, DOI 10.1109/TPDS.2021.3049450

A Scalable Platform for Distributed Object
Tracking across a Many-camera Network

Aakash Khochare, Aravindhan Krishnan, and Yogesh Simmhan, Senior Member, IEEE

(c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2

CA

CB

CC

CD

CE

t1 t2 t3 t4
S2

S3 S5

t5

t2
t5

E

F

CA at t1

CC at t4

CB at t2

CE at t5

F

F

F

E

E

Fig. 1: Spotlight strategy for camera activation while track-
ing. Blue circles are the FOV of cameras CA–CE . The person
icon shows people on the road at times t1–t5. A red person
means the entity of interest is in a blindspot while a green
person means they are in the FOV of a camera. A purple
person indicates someone not being queried for. Sample
images used in our experiments are shown to the right [13].
The yellow circles Si are the calculated spotlight regions
that indicate which cameras should be active at time ti. The
purple diamonds with an E indicate edge devices co-located
with the cameras while the orange squares with an F indicate
fog devices present across the city.

domain knowledge like the road and transit network, speed
of the object, camera location and field of view to make
smart choices on the video streams to be actively processed.

Example. In Fig. 1, the cameras need not generate and
process video feeds unless activated. Initially, at time t1, the
target person (green icon) is within the FOV of CA, and
only this camera is made active. By time t2, they (red icon)
have moved out of the FOV of CA, and also of all other
cameras, i.e., in a blindspot. Now, we calculate a spotlight
region around the camera where they were last seen, and
activate cameras that fall in this region, as shown by the
yellow circle S2, which contains CA and CB . This spotlight
grows to S3 at time t3 as the person is still in a blindspot,
and it activates camera CC as well. The person reappears
in the FOV of CC at time t4 and the spotlight shrinks to
S4 with just this single camera being active and the rest are
deactivated. The spotlight again grows at time t5 when the
person is lost, and S5 activates cameras CC , CD and CE . �

Using such a smart tracking logic can reduce the number
of active video streams we process, e.g., to 1–3 cameras
rather than all 5, in Fig. 1. This reduces the resource usage
substantially with limited impact on the tracking accuracy.
However, contemporary many-camera analysis platforms
do not offer such sophisticated tracking logic.

Challenge 3 (Scaling across Edge and Fog re-
sources). Smart cities are seeing edge and fog computing
resources being deployed on Metropolitan Area Networks
(MAN), to complement cloud resources [14]. Such edge and
fog computing resources can be used to achieve a judi-
cious use of the Internet bandwidth. [15]. This also brings
processing closer to the data source [16]. Fog resources
distributed across the city, with higher compute capability
and even low-end GPU accelerators, can complement edge
resources in efficiently processing video streams [15]. This
is important for video tracking, given its low latency, high
bandwidth and high compute needs [1], [17]. So tracking

platforms must effectively use such heterogeneous, wide-
area compute resources that are part of the computing
continuum rather than rely exclusively on cloud resources.

For scalability, the platform must balance the latency for
tracking against the throughput supported for the active
camera feeds on the available resources – a high latency
can cause the object to be detected late, and lead to the
spotlight region growing larger when the person is missing,
while a low throughput can limit the number of cameras
that can be active at a time, and increase the chances of
losing the person. Also, given the dynamism of Wide Area
Networks (WANs), compute performance and stream rates,
the platform must trade-off the accuracy of tracking with
the application’s performance at runtime. Current platforms
do not offer such tunable adaptivity and scaling [5], [18].

We make the following specific contributions in this
article to address these challenges:

1) We propose a novel domain-specific dataflow model for
current and emerging tracking applications, with func-
tional operators to plug-in different analytics. Uniquely,
it has first-class support for distributed tracking strategies
to dynamically decide the active cameras (§ 2). These
address Challenges 1 and 2.

2) We implement the dataflow model and heuristics in our
Anveshak platform to execute across distributed edge,
fog and cloud resources (§ 3). Further, it incorporates
domain-sensitive heuristics for dropping and batching
frames, which allow users to tune the accuracy, the
latency and the scalability under dynamism (§ 4). These
address Challenge 3.

3) We illustrate the flexibility of the dataflow model using
4 tracking applications, and offer detailed empirical
results across latency, accuracy, camera-set sizes and
tracking logic to validate the scalability and tunability of
our platform (§ 5).

We complement these with a review of related work in § 6
and offer our conclusions in § 7.

2 A DOMAIN-SPECIFIC DATAFLOW FOR TRACKING

2.1 System Model

A many-camera infrastructure consists of a set of cameras
that are statically placed at specific locations in a city, and
each can generate a stream of video observations within its
FOV [5]. The cameras are connected to a MAN, directly or
through an edge device [17]. Fog devices may also be co-
located with the cameras or within a few network hops of
them, while cloud resources are accessible at data centers
over the WAN [14]. While the edge and fog are typically
captive city resources, cloud resources are available on-
demand for a price. These resources have diverse capacities,
and their performance may vary over time due to multi-
tenancy. The bandwidth and latency between devices on
the MAN and the WAN can be dynamic, depending on the
traffic. These can affect the QoS of distributed applications.

Cameras allow remote access to their video streams over
the network and expose endpoints to control parameters
such as the frame rate, resolution and FOV [19]. Rather than
move these video feeds to a data center for processing, we
instead propose to move the analytics to the data by using

3

edge and fog devices close to the cameras, complemented
by the cloud for control.

2.2 Domain-specific Programming Model
We propose a domain-specific model for tracking applica-
tions as a pre-defined streaming dataflow with modules that
correspond to the logical stages of a tracking application
(Fig. 2). We specify the input and output interfaces for each
module, and statically compose them. Multiple instances of
a module can data-parallely execute different input events.
The user defines an application by providing the compute
logic for each module stage, which consumes and produces
streams of events (e.g., video frames, detections), and speci-
fies the routing between module instances.

General purpose dataflow models like ORCC [20],
Apache NiFi [21] and Apache Spark [22] allow program-
mers to connect modules in a flexible manner to help
compose diverse applications. In contrast, we give a high-
level dataflow composition to meet the specific needs of
tracking applications, and focus on specific implementations
of these modules based on advances in DL/CV models,
and uniquely, control the distributed tracking logic through
a custom module. This is like Hadoop MapReduce [23]
where the user specifies the Map and Reduce logic, but the
dataflow and execution pattern is pre-defined. Like Hadoop,
our runtime platform also offers the benefits of automatic
parallelization and performance management.

Next we describe the interfaces of these modules, the
dataflow pattern, and the execution model (Fig. 2).

2.2.1 Filter Controls (FC)
This module is the entry point for video frames from a
camera into the dataflow. It is usually co-located with the
camera or on an edge device connected to it. Each camera has
a single FC instance along with its local state. Users provide
a logic to decide if a video frame on the input stream of an
FC should be forwarded on its output stream to the Video
Analytics (VA) module, or ignored. FC can use its local state
(e.g., isActive) or even the frame content to decide this. If a
frame is forwarded, a key-value event is sent on the output
stream, with camera ID as key and frame content as value.

Importantly, the FC state for a camera (e.g., isActive) can
be updated by control events from the Tracking Logic (TL),
as described in § 2.2.4. This allows tunable activation of video
streams that will enter the dataflow, on a per-camera basis.
E.g., TL can have FC deactivate a camera feed if the target
will not be present in its FOV, or reduce/increase the frame-
rate based on the target’s speed. The FC logic should be
simple as it typically runs on edge devices.

2.2.2 Video Analytics (VA)
This module receives input event streams from one or more
upstream FC modules, and performs video analytics on a
single camera’s stream at a time. Users can define complex
compute logic for object detection and tracking, and even
invoke external TensorFlow, PyTorch or OpenCV models [24].
The input API for the logic is an iterator of events, grouped
by the camera ID, and it can also access the target query (e.g.,
an image of a person), and maintain local state across execu-
tions. This is similar to the shuffle and reduce in MapReduce.

TL1

QF1

FC1
P
A
R
T

VA1
C1

S

P
A
R
T

G
R
O
U
P

CR1
P
A
R
T

G
R
O
U
P

QF1

P A R TG
R
O
U
P

DNN

DNN

TL1

P A R T

G
R
O
U
P

City
Data
base

UVFC2
P
A
R
TC2

S

FC3

P
A
R
T

VA2
C3

S

P
A
R
T

G
R
O
U
P

FCn

P
A
R
TCn

S

CR2
P
A
R
T

G
R
O
U
P

CloudEdge Edge/Fog/Cloud

Fusion Param Update

FC Activation Update

Cid,Img[]

Kv,Vv[]

Broadcast
Entity Query

Kc,Vc[]

Kc,Vc[]

Kc,Vc[]

DNN

DNN

RNN

Tuning
Triangle

LATENCY ACCURACY

ACTIVE
CAMERAS

Tracking Logic

Fig. 2: Domain-specific dataflow and modules for tracking.
(Inset) Tunable performance and scalability choices.

Grouping by camera ID gives the user logic access to a batch
of frames from the same camera for temporal analytics. It also
allows batching of inputs for model execution to amortize
loading costs, using strategies proposed in § 4.4.

The output of the logic is a batch of key-value pairs,
which may be, e.g., the camera ID (key), and bounding
boxes for potential target objects in a frame with confidence
scores (value). There can be a many-to-many relationship
between the input and output events for this module. We
allow users to link an output event with an input event to let
us trace its latency and help with drop strategies we propose
in § 4.3. Depending on the compute needs, it may run on
edge, fog or cloud resources.

The local state of this module can be updated by the
Query Fusion (QF) task. This allows dynamic updates to the
entity query by fusion algorithms [7] to enhance a query’s
feature vector from successful detections of the entity. The
VA can also update its model based on such signals.

2.2.3 Contention Resolution (CR)
This module receives a stream of key-value events from
one or more VA instances, grouped by key. The keys are
typically the camera ID and the values contain detections
or annotated frames, but these can be overridden by the VA
user logic. It has access to the entity query as well. The user
can provide logic to analyze results from multiple cameras,
say, to resolve conflicting detections from different cameras,
or use more advanced DL models for a higher accuracy match.
CR may be triggered only on a conflict or a low confidence
detection by a VA, and hence execute less often than VA, but
be compute intensive. CR may even degenerate to a human-
in-the-loop. This makes it better suited for running on fog
or cloud resources. The output stream from CR primarily
contains metadata – much smaller than the video input –
and this is forked three ways, to TL, QF and UV modules.
Like VA, this module can receive updates from QF as well.

2.2.4 Tracking Logic (TL)
This is a novel module that we propose to help users capture
the core logic of distributed tracking across the multi-camera
network [25]. The detections that TL receives from CR for
each frame may be a positive or negative match with the
target query. On a negative detection, users can define a
TL logic to expand the search space by activating additional
cameras, while if the entity is found in a frame (positive),

4

they can contract the search space. The module can use
sophisticated tracking algorithms with prior knowledge of
the environment and the entity, and devise strategies to
(de)activate the cameras to optimize the quality and per-
formance of tracking. It can be hosted on cloud resources.

E.g., in Fig. 1, TL uses knowledge of the road network
and camera locations to dynamically decide the camera
search space (spotlight), depending on when and in which
camera the entity was last detected, and (de)activates those
cameras. It can also be more sophisticated and have the cam-
eras focus on an approaching or receding entity, or change
the frame-rate based on the entity’s speed. This separates the
core video analytics logic, from distributed entity tracking
across the camera network and camera controls.

2.2.5 Query Fusion (QF)
This module uses information on the detections to enhance
the entity query’s features. High-confidence entity detec-
tions in the input video can be fused with the existing entity
query to generate a new query that offers better matches,
or even use negative matches to enhance the query [7], [25].
The output of this module updates the entity query at the
VA and CR modules for their future input streams.

2.2.6 User Visualization (UV)
This is a user-facing module that can be used to submit the
entity query and display the current state of the tracking
and detections. This can be a central portal running on the
cloud where authorized personnel can view the progress.

2.3 Composing Tracking Applications
When composing a tracking application, users provide a
YAML file pointing to a Python implementation of each of
these modules, along with configuration details, which is
then executed by our Anveshak platform. Each module has
init, compute and partitioner functions with a fixed input and
output signature. Algorithm 1 gives the user logic for the
compute function of the FC, VA, CR, TL and QF modules
for a sample OpenReID (ORID) Application [26] to track a
person entity across a road network. The App takes the
image of a person as the input query, and returns detections
of the entity in the camera network to the UV module.
Fig. 2 shows how these modules are embedded into the pre-
defined dataflow pattern and the data flow between them.

FC uses the active state to decide if the camera’s output
should be passed to the downstream VA module as a series
of key-value events, 〈Cid, img〉, having the camera ID and
image. At the start, all FCs have active=true to let their
camera’s output be passed through to initially locate the
entity. All images from one camera ID are routed to a single
VA instance, determined by a partitioner function provided
by the user, and multiple FCs can send their feeds to one
VA, e.g., FC1 and FC2 to V A1, in Fig. 2.

VA executes over a batch of images from one camera at a
time, 〈Cid, imgs[]〉. For ORID, it uses a feature-based HoG
pedestrian detector [27] (line 2) to put bounding boxes (bbs)
around persons in each image. The user’s Python compute
logic invokes OpenCV’s HoG external library, which exe-
cutes on the entire batch of images. For each input image,
it emits a key-value event, 〈Cid, 〈img, outbbs[]〉〉, which has

Algorithm 1 Modules’ compute pseudocode for ORID App

1: procedure FC(img, state)
2: return state.get(′isActive′)
3: end procedure

1: procedure VA(Cid, imgs[], state)
2: bbs[][] = OPENCV.HOG(imgs[]))
3: for img in imgs[] and outbbs[] in bbs[][] do
4: EMIT(Cid, 〈img, outbbs[]〉))
5: end for
6: end procedure

1: procedure CR(〈Cid, 〈img, outbbs[]〉〉[], state)
2: query = state.get(′entity_query_img′)
3: cropped = []
4: for tuple in 〈img, outbbs[]〉[] do
5: cropped_img = CROP(img, outbbs[])
6: cropped.append(cropped_img)
7: end for
8: detections = PYTORCH.DNN_CR(cropped, query)
9: for was_detected in detections[] do

10: EMIT(Cid, 〈img,was_detected〉)
11: end for
12: end procedure

1: procedure TL_WBFS(〈Cid, 〈img, detections[]〉〉[], state)
2: el = GETENTITYLOCATION(〈Cid, detections[]〉[])
3: if el == ∅ then I Entity lost. Expand spotlight...
4: graph = state.get(′road_network′)
5: lsl = state.get(′lastSeenLocation′)
6: lst = state.get(′lastSeenT ime′)
7: cameras[] = WEIGHTEDBFS(graph, lsl, lst)
8: EXPANDSEARCHSPACE(cameras)
9: else

10: SHRINKSEARCHSPACE(el)
11: end if
12: end procedure

1: procedure QF(〈Cid, 〈img, detections[]〉[]〉, state)
2: oldFeature← state.get(′state′)
3: for image in img[] do
4: if detection == true then
5: newFeature← RNN(image, oldFeature)
6: end if
7: end for
8: emit(Call, image[], out[])
9: end procedure

the camera ID, the image and its bounding boxes. It is sent
to one of the CR instances determined by the partitioner.

CR receives a batch of tagged images from each camera,
crops and extracts the image regions in the bounding boxes,
and passes this batch to a high-quality PyTorch DNN for
pedestrian detection [26] (line 8). It matches the query entity
against the images and emits them with a true or false flag,
〈Cid, 〈img,was_detected〉〉, which is sent to UV, TL and QF.

UV (not shown) just displays the camera frames having
a true flag to the user. TL, however, combines the presence or
absence of the entity in a camera, with the road and camera
network, and the last known location of the entity stored in
the state variable, to decide the cameras to (de)activate. If
the entity is missing from all cameras, we start a Weighted
Breadth First Search (WBFS) on the road network from the
last known position of the entity (line 7), considering the
road lengths, the entity’s peak speed and the time since its
last detection. This identifies the spotlight region where the

5

TABLE 1: Module mappings for illustrative tracking apps

App FC VA CR TL QF

ORID Active? HoG [27] Open
Re-id [26] WBFS –

PRID Active? HoG [27] Person
Re-id [28] BFS RNN

[7]

VRID Frame
Rate

YOLO for
Cars [11]

BoxCar
Re-id [29]

WBFS w/
speed –

PbRID Active? Person Re-id
(Small) [31]

Person Re-id
(Large) [32]

Probabi-
listic –

entity should be present, and TL signals the FC of cameras
in this region to activate them (line 8). Else, if the entity is
detected in some camera’s frame, the spotlight contracts to
that camera and deactivates all others (line 10). Lastly, QF
uses an RNN [7] to enhance the entity query using high-
quality hits and routes them to all VA and CR instances.

Table 1 lists the module logic used by ORID and three
other exemplar tracking applications we can compose. We
use the TensorFlow-based PersonReID DNN [28] in CR for
the PRID App, with an unweighted BFS logic for TL. The
query may also match a vehicle’s image, in VRID, which
uses DNNs for vehicle detection in both VA [11] and CR [29].
Here, TL is also more complex, with awareness of the road
lengths and speed limits. In PbRID, we use a Naïve Bayes
model to give the likelihood of paths that will be taken
by the entity to decide the cameras to activate.Applications
may also use DNNs trained for crowded traffic [30] as their
CR module. More details on the dataflow composition and
PRID App are in Appendix A.

3 ANVESHAK PLATFORM IMPLEMENTATION

We implement this domain-specific dataflow model as Anve-
shak (Explorer, in Sanskrit), a Python-based distributed run-
time engine that allows users to easily define their tracking
application. Its architecture is illustrated in Fig. 3. Anveshak
is more light-weight than Big Data streaming platforms like
Apache Spark Streaming or Flink [22], [33], and designed to
operate on a WAN than a Local Area Network (LAN). This
allows it to be deployed on edge, fog or cloud resources.

Application developers implement their user logic in
Python for the different modules of the dataflow, such as in
Table 1. External models like OpenCV and TensorFlow are
invoked by a user’s Python compute logic for a module as
a library call, by a command-line execution, or by invoking
a local gRPC service that wraps the model. Using a gRPC
service helps amortize the model loading and execution
overheads across many events. A Master process runs in
the cloud at a well-known endpoint and manages the ap-
plication deployment. The application composed in YAML
is submitted to the Master with the module definition, in-
stance count and configurations, e.g., path to a DNN model
for VA and CR, or the expected entity speed used by TL.

The Master calls a Scheduler logic that decides the map-
ping of module instances to the resources. The scheduling
logic is modular. By default, we use a simple round-robin
scheduler with a fixed number of instances per module type,
and map specific module types to specific edge, fog or cloud
resource abstractions. More advanced scheduling strategies
are beyond the scope of this paper.

Master

Scheduler

Edges

Cloud VMs

Anveshak Worker

Entry
Batching
Router

Executor

Executor

Tensor-
flow

Fogs

Query Image

SysV Q
(Common)

ZeroMQ

Control Flow

Data Flow

SysV Q
(Executor)

Cloud VM

Anveshak Worker

Drop 1

Drop 3

Drop 2
Partitioner

VA3 Logic

ZeroMQ

Anveshak Worker

gRPC

groupBy

Partitioner

CR1 Logic

groupBy

ZeroMQ

Exit

Fig. 3: System Architecture of Anveshak

Each distributed resource available for deploying the
dataflow runs a Worker process (Fig. 3), which manages
module instances on that resource and transfers data be-
tween instances on different devices using ZeroMQ [34].
The Master initializes module instances on a resource by
contacting its Worker. We assume that the required libraries
are pre-deployed in the Workers, and in future, this can be
replaced by light-weight containers.

A Worker can host multiple FC, VA, CR, etc. module
instances with the user logic, and each is encapsulated
in a separate Executor process (Fig. 3). An Entry process
copies incoming events arriving over ZeroMQ for a Worker
to a common Sys V Inter-Process Communication (IPC)
queue [35], after dropping delayed events as discussed in
§ 4.3. From this, a Router process retrieves events for a specific
Executor, forms a batch using the strategy discussed in § 4.4,
and puts it on the Executor’s SysV singleton queue. The
batching triggers when the Executor’s previous execution
of the module compute completes. For each batch placed in
its singleton input queue, the Executor invokes the module’s
compute logic on it and generates output events.

The output events are assigned to downstream mod-
ule instance(s) by calling the module’s partitioner function
defined by the user. This has to be one of the successor
module(s) in the static dataflow. Each Worker maintains a
lookup table from every deployed module instance to the
Worker it is present on, and uses this to route events to those
Workers over ZeroMQ. An Exit process ensures that delayed
events are dropped and not placed in ZeroMQ (§ 4.3). We
do not guarantee any ordering across input events arriv-
ing at a module instance from different upstream module
instances. A Worker can also fetch events from an external
endpoint rather than ZeroMQ, such as from the camera for
FC instances. Further platform details are in Appendix A.3.

4 RUNTIME TUNING STRATEGIES

The Anveshak platform operates in a dynamic environment,
and needs to be tuned at runtime to adapt to these con-
ditions. We offer a novel Tuning Triangle (Fig. 2, bottom
right), where users can control the properties (corners of
the triangle) – end-to-end latency, accuracy and camera count
scalability when performing tracking, by modifying knobs
(shown at the side opposite to a property’s corner). The
batching knob controls the latency property, the dropping
knob controls the accuracy, and the sophistication of the

6

tracking logic knob, already discussed, determines the active
camera set size (or scalability). Next, we discuss the two
other knobs to control data drops and batching. Additional
discussions on these strategies are provided in Appendix B.

4.1 Approach

We have a captive set of edge, fog and cloud resources hav-
ing variable compute load due to a changing active set size
being processed, and are connected over a MAN/WAN that
exhibits dynamism in the latency and bandwidth between
resources present on it. So the transient load on resources
hosting the active module instances can exceed the available
compute or network capacity, which leads to higher event
latencies that can cascade up the input event stream.

In such cases, we can gracefully degrade by dropping
events that cannot be processed within a maximum tolerable
latency (γ) specified by the user. If we drop potentially stale
events early in the dataflow pipeline, we can make make
more resources available to the events that are retained and
increase their chances of completing within the threshold.
This knob helps meet the latency goals and supports a
larger active-set size, but it affects the accuracy of tracking if
frames containing the entity are dropped. Besides allowing
the users to disable dropping, we propose a smart dropping
strategy in § 4.3 to dynamically vary the accuracy, given a
tolerable latency and a peak active camera set size.

For timely processing of the video feeds, it is sufficient
for the latency between a frame generated at a camera and
its processed response reaching the UV to fall within γ.
This can be exploited to enhance the processing through-
put by batching events passed to the VA/CR modules to
amortize the static overheads of invoking the external DL
models, while ensuring that the processing latency per
event is within permissible limits. However, the time budget
available for batching can vary across time, and is non-
trivial to estimate without a shared global clock. Besides
allowing users to set a fixed batch size, we propose an
adaptive batching strategy in § 4.4 that maximizes the batch
size without violating the latency constraint, for a given
accuracy requirement and a peak active camera set size.

Data drops and dynamic batching are featured in stream
processing systems. Techniques for load shedding (drops)
and batching [36], [37] have been proposed to help de-
termine the the fraction of data to be dropped and the
batch size. They use greedy empirical approaches or model
it as an optimization problem that is solved using nu-
merical solvers. But they make centralized decisions, are
computationally costly and/or expect synchronized device
clocks. These are challenging on constrained and wide-area
distributed resources. Instead, we design strategies that are
lightweight, distributed and resilient to clock-skews.

4.2 Preliminaries

For modeling latency, we decompose the dataflow graph
of module instances (tasks) shown in Fig. 2 to a set of
sequential task pipelines, with a task selectivity of 1:1 – the
ratio of input to output events. Each sequential pipeline has
FC, VA, CR and UV instances, though we assume these are
generic tasks, [τ1, τ2, ..., τn], where τ1 is the source task and

Internal FIFO Queue

ZeroMQ
NW Input

Dynamic
batch size (𝑏)1

Drop Before Queueing

2
Drop Before Execution

Partiti
oner

ZeroMQ
NW Output

3
Drop Before Transmit

Compute
Logic for

Module 𝜏𝑖

Processing Duration (𝜋𝑘
𝑖)

Execution Time (𝜉𝑖(𝑏))Arrival Time (𝑎𝑘
𝑖)

for event 𝑒𝑖
Queuing Duration (𝑞𝑘

𝑖)

Executor

E
n

tr
y

E
x
it

Batching Router

Fig. 4: Event processing at a Worker, with batching & drops

τn is the sink. We propose strategies for a single pipeline,
which is then generalized to the entire dataflow.

Each event ek arriving at the source task τ1 of each
pipeline is assigned a unique ID k. This ID propagates
to all its causal downstream events. Since we have a 1:1
selectivity, an event eik in the pipeline can be uniquely
identified by a combination of its source event ID k and
the task τi it is an input to.

When an event eik arrives at a task τi from an upstream
task τi−1, it is placed in a FIFO queue (Fig. 4). Events at
the front of the queue are identified by the Executor to form
a batch, whose size is dynamically decided, as discussed
in § 4.4. The user-logic is triggered on the batch of input
events and it returns a batch of output events that is passed
to a partitioner, which routes each event based on its key to
a downstream task.

Let aik indicate the arrival time of an event eik at a task τi
from its upstream task (Fig. 4). This timestamp is measured
at the resource hosting the task τi. The time spent by the
event in the queue before execution is given by the queuing
duration qik. Once events from the queue are formed into a
batch of size, say b, let the function ξi(b) give the estimated
execution duration for the batch by the user-logic for the
task τi. We assume that the execution duration monotonically
increases with the batch size, i.e., ξ(b) < ξ(b + 1). When
b = 1, this is a streaming execution with no batching delay.
We also define the processing duration πik = qik + ξ(b), as the
time between an event arriving at a task and the resulting
output event being placed on its output stream.

We define the upstream time for an event eik arriving at
task τi as uik = aik − a1k. This is a relative time defined using
the timestamps of the source event e1k at the source task
and the causal event eik observed at the current task, which
in turn depend on their local device clocks κ1 and κi. The
arrival time a1k for the source event e1k is propagated to all
its causal downstream events in their headers.

While we initially assume all device clocks are synchro-
nized, in Appendix B.3, we discuss how our techniques are
resilient to clock-skews between all devices (as is common
in MAN/WAN), except those hosting the source and sink
tasks of the pipeline, κ1 and κn.

4.3 Strategies to Drop Events
The platform should drop any event eyx that cannot reach the
last task τn before a time a1x + γ as it exceeds it maximum
tolerable latency γ and is hence stale. So a task τi may drop
an arriving event eix if aix > a1x + γ. While simple, this waits
till the allowed latency is exceeded and does not prevent
resource wastage due to execution of tasks prior to the one
where the event is dropped. E.g., if at tasks τn−2 and τn−1,

7

we have an−2x < a1x + γ and an−1x > a1x + γ, then every
event will be processed through the first (n − 2) tasks and
yet dropped at the (n − 1)th task, assuming that the task
processing times and network performance stay constant.
Ideally, the first task τ1 should reject a newly arriving event
if it will be rejected downstream to avoid resource wastage.

We capture the potential staleness of an event at a task
τj using a completion budget βj . This is the duration allowed
for an arriving event to complete processing at this task,
including the upstream time spent since its source task, i.e.,
if uik+πik > βi for an event eik, it is stale and can be dropped.
Since πik is not known when the event arrives but only after
it is queued and executed, this drop decision is taken thrice
within a task, as shown in Fig. 4 and described below.

This completion budget for a task can change often
during the lifetime of an application as the system reacts
to variability. Later, in § 4.5, we discuss how βi is actively
updated to encapsulate this variability. It guarantees that
for a given budget, if the downstream tasks do not exhibit
further variability, then any event that meets the budget will
be processed within γ, and vice versa.

4.3.1 Drop Point 1

The first drop decision is when an event arrives at a task
but before it is placed in its input queue (Fig. 4). This checks
if the observed upstream time already expended plus the
fastest possible execution duration for the event on this task,
i.e., using a batch size of b = 1, will cause the event to exceed
it completion budget, even in the absence of any queuing.
Since we do not know the actual queuing delay and batch
size for this event at this time, we are conservative in this
decision. So events that pass this test may still be dropped
at subsequent drop points based on how long they spent in
the queue and the actual execution duration.

1: procedure DROPBEFOREQUEUING(a1k, a
i
k)

2: ui
k = aik − a1k

3: if
(
ui
k + ξi(1)

)
≤ βi then return false I Retain

4: else return true I Drop this event
5: end if
6: end procedure

4.3.2 Drop Point 2

The second drop point is after the event is queued and put
in a batch, but before the batch is executed. At this time,
we have a batch of events B of size b, which gives us the
expected execution time ξi(b), and the queuing duration qik
for each of its events. If the predicted time to complete
executing this event exceeds the completion budget, i.e.,
uik + qik + ξi(b) > βi, we drop this event. The function is
passed the entire batch and it returns an updated batch B′

without events that should be dropped.

1: procedure DROPBEFOREEXEC(B[], b)
2: for 〈a1k, aik, qik, eik〉 in B do
3: ui

k = aik − a1k
4: if

(
ui
k+q

i
k+ξi(b)

)
≤ βi then B′ ← eik I Retain

5: end if
6: end for
7: return B′ I Events that should be executed
8: end procedure

4.3.3 Drop Point 3
It is possible that the actual execution time was longer than
estimated. So we trigger the third drop point after the batch
execution, where the processing time πik has been spent
on an event, but before its output events are sent on the
output stream. Here, we check if the generated event ei+1

k at
time uik + πik has exceeded its completion budget βi. This
drop point is also important if the dataflow has branches, as
discussed next.

1: procedure DROPBEFORETRANSMIT(a1k, a
i
k, π

i
k)

2: ui
k = aik − a1k

3: if (ui
k + πi

k) ≤ βi then return false I Retain
4: else return true I Drop this event
5: end if
6: end procedure

By providing these three light-weight drop points, we
achieve fine-grained control in avoiding wasted network
or compute resources, and yet perform event drops just-
in-time when they are guaranteed to exceed the budget.
This balances application accuracy and performance. As
a further optimization, we allow the user-logic to flag an
event as avoid drop, e.g., if it has a positive match, and the
platform avoids dropping such events even if they exceed
the tolerable latency. This can improve the accuracy and
manage the active set size.

Each of the three drop points performs a constant-time
comparison operation per event (Line 2 in Drop Point 1,
Line 4 in Drop Point 2, Line Line 3 in Drop Point 3), for
a time complexity of O(1) per drop point. In practice, this
translates to an overhead of ≈ 2–13 ms per event for the
ORID App’s VA module evaluated in § 5, which is ≈ 0.3–
4% of the total module execution time for an event.

As shown in Figs. 3 and 4, the drop points are im-
plemented at various point within an Anveshak Worker’s
execution for a module instance. Drop point 1 is checked by
the Entry process of a Worker, when it reads an event from
the ZeroMQ input, before placing it in the SysV common
input queue for the Worker. Drop point 2 is checked by the
Router when events for a module instance are added to a
batch, before the Executor invokes compute on it. Lastly, drop
point 3 is verified by the Exit process before the output event
is placed in the ZeroMQ output queue to the next Worker.

4.3.4 Non-linear Pipelines
While the drop logic has been defined for a linear pipeline,
a module instance (task) in our dataflow can send an event
to one of several downstream module instances, based on
the partitioning function. However, the destination task for
an output event is known only after the partitioner operates
on that event, at drop point 3. The completion budget for a
task depends on the network and compute performance of
the downstream tasks that the event flows through, which
can vary for the different task-paths taken. So for each task,
we maintain one budget per downstream task.

4.4 Strategies for Dynamic Batching of Events

Batching and executing events in a stream improves the
throughput and reduces the average event latency [38].
When events arrive early at a task τi and/or the application
has a relaxed γ, there may adequate completion budget βi

8

to accumulate events from the input queue into a batch and
execute them together, while not violating the budget and
causing a drop. Since βi and the input event rates can vary
over time, this batch size has to be dynamically decided.

We define the event deadline δik = βi + a1k for an event
eik as the time at the task τi by which it must complete
processing to avoid being dropped. Similarly, we define
the batch deadline ∆i

p = min(δi1, ..., δ
i
m) as the latest time

by which the batch Bp having m events must complete
execution, and it is defined as the earliest event deadline
among all events in the batch. Since temporal event ordering
is not assumed, this may not be the first event in the batch.

The batching logic considers the event eix at the head of
the queue at the present time ti for adding to the “current
batch” Bp having size m by checking if ti + ξi(m + 1) >
min(∆i

p, δ
i
x), i.e., will adding this event to the batch cause

the new execution time of the batch (ti+ξi(m+1)) to exceed
the deadline of the batch ∆i

p or the new event δix. If not, we
add the event to the current batch and update the batch
deadline. We incrementally check and add events from the
queue into the current batch. If the event at the head of the
queue cannot be added to the batch, we submit the current
batch for execution and add the head event to a new empty
batch that becomes the current batch. Even if the queue
is empty, the current batch is automatically submitted for
execution when the local clock reaches the time, ∆i

p−ξi(m).
This dynamic batching logic is implemented in the

Batching Router process of a Worker (Figs. 3 and 4), as it
accumulates a batch from the common SysV event queue
into a module’s SysV input queue.

4.5 Updating the Completion Budget
The completion budget β for a task is central to determining
the events to be dropped as well as the batch size. To deal
with the dynamism in the system, the budget for all tasks
must change over time. To enable this, each task τi stores
a 3-tuple 〈dik, qik,mi

k〉 for every event eik it has processed:
the departure time dik = uik + πik, which sums the upstream
time and the processing duration; the queuing duration qik;
and the batch size mi

k that the event was part of. Further,
each downstream event sent by task τi in the pipeline is
augmented with two header fields: the sum of execution times
ξ
i

k =
∑
j=1..i ξj(m

j
k) and the sum of the queuing delay qik =∑

j=1..i q
j
k, spent at the preceding tasks.

As an event executes through the pipeline, we either
increase or decrease the budgets for the upstream tasks
based on whether the event arrives at the destination task
early or is dropped by a task in-between, respectively. The
logic used for these budget changes are described next.

4.5.1 Reducing the budget
If an event is processed within its completion budget at a
task, it should also complete processing that pipeline within
the maximum tolerable latency, if there is no downstream
variability. However, if an event ek gets dropped at task
τj , it means that the downstream latency has deteriorated
and hence, the completion budget of all the upstream tasks
{τi|i = 1..j− 1}must be reduced. If the event has exceeded
the completion budget by ε = dik − βi, then the sum of
the upstream completion budgets must be reduced by ε.

Intuitively, we reduce the budget at each upstream task
τi proportional to the time spent in the queue and batch
before execution. This causes batches with fewer events to
be formed for execution. Using just the queuing time ratio
for reducing the budget also avoids penalizing tasks with
longer execution times.

Let
←−
λ ik be the duration by which the budget βi at an

upstream task τi has to be reduced due to an event ejk, being
dropped at τj , where i < j.

←−
λ ik = min(ε× qik

qjk
, ξi(m

i
k)− ξi(1)) (1)

The first term in the min operator reflects the excess time ε
scaled by the ratio of the queuing delay for the task relative
to the sum of the delays at all the tasks upstream of the
dropping task. The second term ensures that the budget
reduction does not fall below the minimum possible budget
required when streaming the event through with b = 1.

Whenever an event is dropped at τi, it sends a reject
signal to its upstream tasks with the event ID k, the excess
duration over the budget ε and the sum of the queuing
delays qjk. The receiving task τi combines these with the 3-
tuple it maintains for the event to calculate

←−
λ ik, and updates

its budget as:

βnewi = min(dik −
←−
λ ik, βoldi)

The first term determines the updated budget as the earlier
departure time for that event, less the reduction in budget.
Here, the min operator selects the lower of the previous and
the new budget to make the model be resilient to out of
order accept or reject signals.

4.5.2 Increasing the Budget
Events that arrive at the final task much earlier than the
maximum tolerable latency indicate lost opportunity costs
in improving the throughput and scalability of the pipeline
by forming larger batches. Therefore, when an event arrives
at the final task at ε = βn − uik duration earlier than its
completion budget βn = γ, and this value is greater than
some set threshold, εmax, the completion budget of the
upstream tasks must be increased. Intuitively, we increase
the budget of a task proportional to its execution time,
relative to the total execution times for all upstream tasks.
This gives more weight to tasks with longer execution times,
allowing them to increase their throughput which is likely
to be the least in the pipeline.

If
−→
λ ik is the duration by which the budget βi at an

upstream task τi has to be reduced due to an event enk
completing ahead of time at the final task τn, then:
−→
λ ik = min(ε×ξj(m

i
k)

ξ
n−1
k

, (mmax−mi
k)× qik

mi
k

+ξi(m
max)−ξi(mi

k))

(2)
The first term in the min operator scales the ε by the relative
time spent in the execution duration for the task τi, relative
to the execution time at all tasks until (but not including) the
final task. The second term ensures that the budget does not
exceed the time to create and execute the largest batch size
mmax allowed by the user. This assumes that the queuing
time scales linearly with the number of events. As the prior
budget already considers the queuing and execution time
for a batch size mi

k, we subtract it from mmax.

9

FC VA CR UV
𝛽𝑈𝑉 = 10000

𝜖 = 9000

Send Accept
Signal for e1

b=1

50 ms

ξ(b) = 50×b
𝛽𝐹𝐶 = 50

ξ(b) = 100×b+200
𝛽𝑉𝐴 = 400

ξ(b) = 200×b+300
𝛽𝐶𝑅 = 950

𝜆𝐹𝐶 = 529
𝛽𝐹𝐶 = 1529

e1

e4 e3

𝜆𝑉𝐴 = 3176
𝛽𝑉𝐴 = 3526

𝜆𝐶𝑅 = 5294
𝛽𝐶𝑅 = 6144b=2

50 ms 50 ms

e1 arrives
on time

1 fps

(a) Increasing budget on early event

FC VA CR UV
𝛽𝑈𝑉 = 2800

𝜖 = 600

Send Reject
Signal for e1

400 ms

ξ(b) = 50×b
𝛽𝐹𝐶 = 1100

ξ(b) = 100×b+200
𝛽𝑉𝐴 = 1700

ξ(b) = 200×b+300
𝛽𝐶𝑅 = 2600

𝜆𝐹𝐶 = 300
𝛽𝐹𝐶 = 800

e1 e2

𝜆𝑉𝐴 = 100
𝛽𝑉𝐴 = 1600

𝜆𝐶𝑅 = 200
𝛽𝐶𝑅 = 2400

b=2

b=1

e5

400 ms 400 ms

e1 is
dropped

1 fps

(b) Decreasing budget on delayed event

Fig. 5: Dynamically changing the completion budget in response to early or delayed events. All times are in ms.

A batch will have events with different queuing duration
but the same batch execution duration. So some events in
the batch will always arrive at the final task before γ elapses.
However, we should not increase the budget based on these
early events in a batch. Rather, the decision to increase the
budget is made only if event with the highest latency in a
batch is below γ + εmax. If so, the task τn sends an accept
signal to all the upstream tasks with the slowest event’s ID
k, the duration of early arrival ε and the sum of upstream
execution time, ξ

n−1
k . These are used to calculate the value

of
−→
λ ik at tasks τi and update their budgets using the 3-

tuples for that event: The completion budget for an task τj
is increases as follows:

βi = max(dik +
−→
λ ik, βoldi)

As before, selecting the max against the previous budget is
to make the model resilient to out of order signals.

The task budgets are increased when an event success-
fully reaches the final task ahead of time. But transient
conditions may cause the system to reduce the budgets to
such a low value that no subsequent events flow through
to the final task without being dropped. In such cases,
even if the conditions improve, the budget may never get
updated. To address this, the system periodically sends probe
signals for every kth event that is dropped at a task τj . This
probe is forwarded downstream without being dropped. If
this signal reaches the final task within γ, then the system
calculates and sends the accept signal so that the budget for
the upstream tasks can be increased and regular events may
start flowing through.

Fig. 5a and Fig. 5b illustrate how we use this strategy to
increase or decrease the completion budget, for the 4 modules
of the Anveshak dataflow executing a video feed arriving at
1 fps. For simplicity, the network time for moving events
between tasks is static, irrespective of the batch size b, e.g.,
50 ms in Fig. 5a. In Fig. 5a, the first event e1 has completion
budgets of βFC = 50 ms, βV A = 400 ms, βCR = 950 ms
and βCR = 10000 ms, and it streams through with b = 1 to
reach UV 9000 ms earlier than the 10 secs allowed. Hence
an accept signal is propagated to the upstream tasks from
UV, with ε = 9000 ms. Using this and the prior states
maintained at the tasks, we calculate

−→
λ using Eqn. 2 and

increase their completion budgets. As a result, future events
[e3, e4] are placed in batches of a larger size b = 2, increasing
the throughput of the pipeline while still avoiding event
delays. Similarly in Fig. 5b, we see that the event e1 is
dropped at UV, and this triggers a cancel signal upstream
with ε = 600 ms, which is used to calculate

←−
λ using Eqn. 1

and reduce the completion budget at the prior tasks. This
in turn reduces the batch sizes of future events, e.g., from

b = 2 to b = 1 at VA, to ensure the deadline is met.
When bootstrapping the application initially, the batch

size for all tasks is fixed at b = 1 and no budgets are assigned
except βn = γ + a1k. Subsequently, when accept or reject
signals are triggered, these values are updated (without
considering βold) and they stabilize to the new budget.

5 EXPERIMENTS

We perform targeted and detailed experiments to evaluate
the benefits of the domain-sensitive Tuning Triangle knobs
(Fig. 2, inset) we offer: (1) a smarter tracking logic, (2)
dynamic batching capability, and (3) multi-stage dropping
strategies. We empirically demonstrate our proposition that
these knobs can influence their respective performance
properties, and help users achieve a trade-off between them.

5.1 Setup

System Setup. We mimic the resource conditions of 96
Raspberry Pi 3B edge devices on a local cluster, which has
1 head node and 10 compute nodes. The compute nodes each
have an 8-core/16-hyperthread Intel Xeon CPU E5-2620 v4
CPU @2.10 GHz and 64 GB DDR4 RAM, while the head
node has the same CPU in a dual socket configuration and
512GB RAM. Each Xeon CPU core performs comparable to
a 4-core Pi 3B, as measured using the CoreMark benchmark.
All the nodes have a 1 Gbps Ethernet interface. The nodes
run Centos v7.5 with Linux 3.10.0 kernel release, Java 1.8
and Python v3. The head node hosts a Kafka v2.11.0 pub-sub
broker for routing input video streams while the compute
nodes have PyTorch v1.0.1 and Tensorflow 1.2 [24] installed.
Anveshak Setup1. We have two Anveshak Workers on
each compute node and the head node. The number of
FC instances equals the number of cameras used in that
experiment, which ranges from 100 – 1000. In addition,
we have 10 VA, 10 CR, 1 TL and 1 UV instances. The FC
instances are scheduled across the 10 compute nodes in a
round-robin manner for load balancing, and run on one of
the two Workers on the node. The VA and CR instances are
also placed in a round-robin manner on these nodes, on the
other Worker. This co-locates a subset of the FC, VA and CR
on the same server and minimizes their network transfer
overheads. Since each instance runs on a separate Executor
process within the Worker, each in-effect runs on a Pi 3B-
class CPU core. The TL and UV instances run on a Worker
each on the head node.

1. Anveshak source code can be downloaded from http://cds.iisc.ac.
in/faculty/simmhan/share/anveshak-1.0.zip

http://cds.iisc.ac.in/faculty/simmhan/share/anveshak-1.0.zip
http://cds.iisc.ac.in/faculty/simmhan/share/anveshak-1.0.zip

10

Applications. We implement two tracking applications,
ORID and PRID, described in Table. 1 and evaluate them
in our experiments. These omit the QF module given its
nascency. Further, we use three TL algorithms for the appli-
cations. TL-All is a naïve baseline that keeps all the cameras
in the network active all the time. TL-BFS has access to
the underlying road network, but assumes a fixed road-
length for all edges when performing the spotlight BFS
strategy. TL-WBFS is similar, but aware of the exact lengths
of each road segment (Alg. 1). Both TL-BFS and TL-WBFS
are configured with the expected peak walking speed (es) of the
entity being tracked, which varies across experiments. The
maximum tolerable latency is set as γ = 15 secs. We provide
a detailed analysis for ORID below, and report additional
empirical discussions and PRID results in Appendix C.
Workload. For the road network, we extracted a circular
region of 7 km2, centered at the Indian Institute of Science,
Bangalore campus, from Open Street Maps [39]. This has
1, 000 vertices and 2, 817 edges, with an average road length
of 84.5 m. We use this as the fixed road length for TL-
BFS. We use the CUHK03 Person Re-identification image
dataset [13] with 1, 360 unique persons who can be queried
for, and 10, 531 images, which provide true positives or
negatives for the models used. Each JPG image is 64×128 px
in size with RGB colors, and a median file size of 2.9 kB.
Sample images are shown in Fig. 2.

We use these images to simulate video feeds that mimic
the movement of the query entity through a road network.
The simulator takes as input the road network with the road
lengths, the speed of the entity being tracked, their starting
vertex in the network, and the labeled images for the entity.
Cameras are “placed” on all of the road vertices, but may
be fewer for some experiments, as reported. We simulate
the movement of the entity from the source vertex as a
random walk at a speed of 1m/sec (3.6 km/hr). Each camera
generates a timestamped feed of images at 1 fps using the
true negative images (i.e., images not containing the entity),
but uses the true positive person’s images for the time
intervals when the tracked entity is within the camera’s FOV
during the walk. For each camera, the simulator publishes
its image feed in real-time to a unique topic using the Kafka
broker. The FC module for the camera subscribes to its
relevant topic to acquire the input stream.
Baseline. We also design a Lookup-based batching (LB) base-
line to evaluate the effectiveness of our dynamic batch-
ing. This uses prior benchmarking on the stable system to
determine the smallest batch size that can meet specific
input rates without any drops or delays, for rates of 1–
1000 events/sec, in steps of 10. This forms a lookup table.
During the application execution, the platform dynamically
picks the batch size for the rate closest to the current input
rate from this table. Under static system conditions, this
strategy will find the best-fit batch size, maximizing the
throughput while minimizing the latency, but requires the
construction of the lookup table a priori.

5.2 Effectiveness of Tuning Triangle

We first show the overall efficacy of the tuning triangle,
before offering additional analysis in later sections and in
Appendix C. Here, we show how the batching, dropping and

SB-1 SB-
5

SB-
10

SB-
15

SB-
20

LB-
25

DB-
25

5
10
15
20
25
30
35
40
45
50
55

Nu
m

be
r o

f f
ra

m
es

 (i
n

10
00

x)

25041

95 215 395 1671 368

Not delayed
Delayed
Dropped
Unstable

(a) Batching vs. latency,
es=6 m/sec

Drops
Disabled

Drops
Enabled

10

20

30

40

50

60

70

Nu
m

be
r o

f f
ra

m
es

 (i
n

10
00

x)

38929 7796

(b) Drops vs. Accu-
racy, es=7 m/sec

4m/s 6m/s

50
0

10
00

15
00

20
00

Ca
m

er
a

Co
un

t S
up

po
rte

d

BFS
WBFS

(c) Tracking Logic
vs. Camera Count

Fig. 6: Distribution of the average end-to-end event latencies
for the different batching, dropping and TL strategies

tracking logic knobs have a direct impact on the latency, accu-
racy and camera count scaling properties, respectively (Fig. 2,
inset), and can help improve the application performance.

5.2.1 Batching

In the tuning triangle, the end-to-end latency to process
a frame through the dataflow pipeline is affected by the
batching strategy, which groups the input events (frames)
for a module before executing them using the compute logic.
A simple strategy is to use a static batch size (SB-b) with b
events per batch. But this does not account for variability
in input frame rates due to different numbers of cameras
being active over time. Another baseline is the Lookup-based
Batching (LB), which uses an offline lookup table to select
the ideal batch size for a module’s input rate. But it does
not respond to changes in network performance. Lastly,
Anveshak provides a dynamic batching (DB) strategy that
automatically tunes this knob to help meet the user’s latency
needs under variable conditions.

To evaluate these, we execute the ORID application with
1000 cameras in the road network, a peak entity speed of
es = 6 m/s, using BFS tracking logic and with dropping
disabled, for a duration of 10 mins and ≈ 600k total input
frames at 1 fps. We evaluate SB with sizes b = 1–20, and LB
and DB with a maximum batch size set to bmax = 25, i.e.,
SB-b, LB-25 and DB-25. Fig. 6a reports a count of the frames
whose end-to-end latency was within the user-specified
γ = 15 secs, i.e., not delayed (green), and those with latency
exceeding γ, i.e., delayed (yellow, labeled).

SB-1 with one event per batch streams the executing of
each event, and delays over 25k events since it is unstable
(marked ?). This configuration is not sustainable for the
input rate, and causes the input queue to grow exponen-
tially and the latencies of all future events to be delayed.
SB-5 is one of the better strategies with only 95 events
delayed. While this translates to just 0.3% of delayed events,
there are only 21 frames in total containing the entity being
queried and they may fall within this. Also, the choice of
b = 5 performing well is not known a priori. Increasing b
further for SB causes more events to be delayed, between
215 – 1671 events for SB-10 – SB-20, since more event per
batch increases the queuing latency per event but potentially
offers a higher throughput.

Unlike SB, LB adapts to variability in the input rates
by automatically changing b at runtime. But it still causes

11

368 events to be delayed (Fig. 6a, LB-25) as it assumes the
network latency is constant. Lastly, Anveshak’s DB strategy
does not delay any events (Fig. 6a, DB-25). It uses feedback
from prior events in the pipeline to automatically set a per-
event time budget that picks a near-ideal batch size for
each module, which ensures that the frames are not delayed
despite network variation. We provide a more detailed
analysis of batching in § 5.3.

The total processed frames by different batching strategies
varies, and is well below the 600k input frames. Batching
affects the timely detection of a positive or a negative match
by the tracking logic and hence the camera activation, which
determines if the input frames from a feed flows through the
pipeline or not.

5.2.2 Dropping
The data drops knob affects the accuracy of the application,
since dropped events can cause frames having the entity
of interest to be missed. But dropping some events may be
necessary to ensure that a lot more events are not delayed.
To validate this, we run ORID with BFS tracking logic and
DB-25, but at a faster entity speed of es = 7m/sec, and
compare the performance with drops disabled and enabled. In
Fig. 6b, when drops are disabled, over 38k events are delayed
and only 15% of events are on-time. This is also an unstable
configuration (?). When we enable drops, 83% of the events
are processed on-time. However, 7.8k events are dropped in
the process, reducing the accuracy. This is the trade-off that
the drops knob provides the users, where much more video
frames can be processed within the user’s latency γ and at a
sustainable rate, but with some of the frames missed in the
process. This is discussed in more detail in § 5.5.

5.2.3 Tracking Logic
Lastly, the TL knob allows users to define or select a suit-
able camera activation logic that can reduce the number of
cameras active for locating and tracking the entity – more
cameras that are activated, lower the system scalability over
the fixed set of compute resources. We run ORID with DB-
25 and drops disabled at two entity speeds, es = 4 m/s and
es = 6 m/s. For each, we evaluate BFS and WBFS tracking
logic, and measure the peak number of cameras from among
the 1000 that they activate. For BFS, a maximum of 111
cameras are active at es = 4 m/s and 255 are active at
es = 6 m/s, while for WBFS, the corresponding camera
counts are fewer at 67 and 153. In other words, for the
given computing resources, using BFS TL can support a
1000 camera network while using WBFS, we can support
a larger 111

67 × 1000 ≈ 1657 and 255
153 × 1000 ≈ 1667 camera

network. This scaled comparison is plotted in Fig. 6c. So an
intelligent TL can help scale to a larger camera network.

5.3 Analysis of Batching Strategy
The varying number of active cameras and its consequence
on the latency motivates the use of variable batch sizes at
runtime. Here, we further analyze the benefits of Anve-
shak’s Dynamic Batching (DB-25) against the Lookup-based
batching (LB-25). The setup is identical to § 5.2.1, for the
ORID App, with TL-BFS, drops disabled, γ = 15 secs and
run for 10 mins – except, we use a slower es = 4 m/s.

(a) Lookup-based Batching (LB-25) (b) Dynamic Batching (DB-25)

Fig. 7: # of active cameras (left Y axis, blue line) and Avg. end-
to-end event latency (right Y axis, yellow dots) over Applica-
tion execution timeline (X axis) for ORID App using TL-BFS,
es = 4 m/sec. Red horizontal line shows γ = 15 secs.

(a) Lookup-based Batching (LB-25) (b) Dynamic Batching (DB-25)

Fig. 8: Adapting to network variation. The system band-
width drops from 1 Gbps to 30 Mbps after the 300th sec.

Figs. 7a and 7b show the application timeline for LB and
DB, with the application’s wall-clock execution timeline (X
axis), the number of active cameras picked by TL (left Y axis,
blue line), and the end-to-end event latency, from the source to
the sink task averaged for every 1 sec (right Y axis, yellow
dots). A red line shows the tolerable latency, γ = 15 secs.

We see that there are no delayed events in Anveshak’s
DB-25 while 90 events are delayed for LB-25, at time points
350 secs and 520 secs (delays not visible due to 1 sec aver-
aging). This is despite LB selecting a best-fit batch size from
its lookup table as the system executes. But it assumes that
the input rate is uniform for all instances of a module, which
does not hold in practice and causes instances receiving a
higher rate to use a smaller batch size and hence violate γ.
But Anveshak’s batching prevents delays in all cases as it
modulates its batch size per-instance.

LB does offer a low latency distribution, at a median of
0.4 secs due to its selection of batch size of b = 2 and b =
5, approaching a streaming scenario. The median latency
for DB is 7.66 secs, with a wide variety of batch sizes and
latency values (Fig. 7b). But reducing the latency is not a
goal; we ensure that all events reach within γ.
Adapting to network variation. The complexity of An-
veshak’s batching logic is partly attributed to its ability to
respond to network and computation variability. The former
is more common in WAN and MAN. We evaluate Anve-
shak’s ability to adapt to even sharp changes in the network
performance. Using the same setup for LB-25 and DB-25
as above, we drop the bandwidth between compute nodes
from 1 Gbps to 30 Mbps midway through the application
execution at 300 secs. The timeline plots for LB and DB are

12

shown in Figs. 8a and 8b.
The first 300 secs is identical to the earlier plots, and nei-

ther configuration has event delays. But once the bandwidth
drops, DB keeps the system stable with no event delays
as it reacts to event latencies increasing. As the network
degrades, the budget available to each task reduces, and
DB forms smaller batches. E.g., the median CR batch size
rapidly drops from b = 8 to 5, and the number of batches
with 1 and 2 events rise from only ≈ 18% before 300 secs to
≈ 30% after the network slowdown. LB, however, becomes
unstable beyond 500 secs. This is due to its lookup table
being created for a certain system and network performance
and that not holding at runtime.

5.4 Analysis of Tracking Logic

We further analyze and compare the TL-BFS and TL-WBFS
tracking logic for the es = 4 m/s setup of ORID App
with static batching, drops disabled and γ = 15 secs,
against TL-All, a baseline logic that keeps all cameras active,
similar to contemporary systems. Since the resources are
inadequate to support all 1000 cameras being active for TL-
All, we do two runs, with 100 and 200 cameras placed on
a proportionally smaller road network, and all active. For
TL-All, we use a static batch size of b = 20, which offers
the best configuration, while for TL-BFS, we try two setups,
SB-1 and SB-20, and use SB-1 for TL-WBFS.

Fig. 9a plots the application timeline (X axis) and the
event latency averaged over 1 sec (right Y axis) for the 100
and 200 cameras of TL-All. While the event latency is stable
without any delays for 100 cameras with a median latency of
2.80 secs), it is unstable and grows rapidly with 200 active
cameras, indicating inadequate resources. The total frames
processed is ≈ 60k in the former, and ≈ 120k in the latter
with over 55% delayed. Obviously, this tracking logic does
not scale to 1000 cameras.

For TL-BFS operating on 1000 cameras, we show a
similar timeline in Figs. 9b and 9c, and also plot the active
camera count (left Y axis). The SB-1 setup has a low median
latency at 218 ms� γ. But the latency occasionally exceeds
γ (for 25 events), when the active camera count is> 100. The
camera count (Fig. 9b, blue line) has a saw-tooth behavior –
the spotlight logic increases the active set of cameras when
the entity is in a blindspot, and drops this to 1 when it is
reacquired by an active camera. At ≈ 550 secs, the entity
is in a blindspot long enough that the count spikes to 111
cameras, stressing the available resources and causing the
latency to grow to 16.8 secs. This is due to CR, whose DNN
is the slowest task and supports only 8.33 events/sec per
Executor instance. When feeds from 111 active cameras at
1 fps are mapped to 10 CR instances, 8 of these receive more
than 8.33 events/sec, and cause the latency spike.

For TL-BFS with SB-20, the median latency has increased
to 3.65 secs (Fig. 9c). But even with static batching, this
improved tracking logic does not have any delayed events.
Interestingly, in periods where the active camera count
increases, like between 140–240 secs, the mean latency
decreases – more cameras means a higher input rate, which
fills up a batch and triggers it faster.

Similarly, the more advanced TL strategy TL-WBFS sup-
ports 1000 total cameras on the same set of resources, and

has a stable latency even with SB-1 where events stream
through. Its median latency of 291 ms is lower than BFS SB-
20 and comparable to BFS SB-1, but with no events delayed.
The active camera count grows in more granular steps using
WBFS since it is aware of the road lengths and leads to a
more measured growth of active cameras. Further, its peak
active camera count is 67, relative to 111 when using TL-
BFS. So WBFS can help scale to a larger set of total cameras
or for a longer period of the entity being in a blindspot.

While a better TL helps, it is not a substitute for dynamic
batching since we can have scenarios where a static batch
is not adequate. E.g., for a faster es = 6 m/sec , TL-BFS
with SB-20 causes 603 events to be delayed, compared to no
delays using dynamic batching (not shown).

5.5 Analysis of Dropping Strategy

Even TL and dynamic batching may not suffice when the
spotlight grows large. This can cause the resources to be
overwhelmed, latencies to grow unabated, and cascade to
all future events. Anveshak’s smart dropping strategy is
beneficial here, causing events to drop early in order to
avoid resource wastage, and reduce overall event delays.

We examine the results from § 5.2.2 in more detail, where
we run ORID with TL-BFS and DB-25 at es = 7 m/s. In
Fig. 10a, we report a timeline plot of the active camera count
(left Y axis) and the average event latency (right Y axis) for
the experiment, with drops enabled and disabled. The red
line indicates γ = 15 secs allowed latency.

When the entity moves faster, the spotlight also grows
faster when it is in a blindspot. Under such conditions, when
drops are disabled, we see that the latency grows sharply� γ
as the active cameras grow from 100–500. This causes each
CR instance to receive a peak of ≈ 49 events/sec, while its
processing capacity is only 19 events/sec. This causes 85%
of events to be delayed (Fig. 6b), and the App is unstable.

When drops are enabled, the application’s latency is stable
and within γ = 15 secs even when the active camera count
grows as high as 389 (Fig. 10b). The drops start (far right Y
axis, red dots) when the camera count exceeds 200, which
matches ≈ 20 events/sec for each CR task. While 17% of
all events are dropped, the rest of the events are processed
without any delays (Fig. 6b). Dropping frames containing
the entity can delay locating the entity and cause the active
set to grow. However, none of the 21 frames carrying the
detected entity is dropped. This is merely incidental, but
enabling the do not drop flag will ensure this. The batch sizes
for VA and CR are smaller here (not shown) than for es =
4 m/sec with dynamic batching but no drops. When the
input event rate is high, the system first reduces the queuing
time by forming smaller batches and then resorts to drops.

6 RELATED WORK

6.1 Video Surveillance Systems

Intelligent Video surveillance systems have been designed
for machine learning, pattern analysis and data manage-
ment of video footage [9]. These span various generations.
The first generation systems only capture and store ana-
log data; the second generation introduce CV algorithms

13

(a) TL-All (SB-20) (b) TL-BFS (SB-1) (c) TL-BFS (SB-20) (d) TL-WBFS (SB-1)

Fig. 9: Effect of tracking logic on performance of ORID, with es = 4 m/sec, static batching and drops disabled

(a) Drops Disabled (b) Drops Enabled

Fig. 10: Perf. with drops dis/enabled, TL-BFS and es=7 m/sec

applied centrally; and the third generation supports auto-
mated wide area surveillance, with distributed intelligence
and data fusion from multiple cameras and other sensors.

ADVISOR [8] supports tracking, crowd counting and
behavioral analysis over camera feeds from train stations
to assist human operators. But these are pre-defined ap-
plications, run centrally on a private data center and pro-
cess all camera feeds all the time. IBM’s Smart Surveillance
System (S3) [18] is a proprietary platform for video data
management, analysis and real-time alerts. While it offers
limited composition of modules, it too performs central-
ized analysis and does not consider performance optimiza-
tions. Early works examine edge computing for basic pre-
processing [40]. But the edge logic is static, and the rest of
the analytics done centrally using dedicated networks.

Several frameworks have been developed specifically for
distributed video analytics across the edge, fog and cloud re-
sources. The Ella Middleware uses a publish-subscribe model
with hierarchical brokers to route video and event streams
between analytics deployed on edge devices. However,
their platform design resembles a general-purpose event-
driven middleware, without any specific analytics support
or runtime optimizations for video processing, unlike us.
EdgeEye [41] efficiently deploys DNN models on the edge,
using a JavaScript API for users to specify their parameters.
It offers performance optimizations for DNNs, but does
not consider distributed systems issues, such as batching,
dropping and network variability.

Video Storm [42] is a video analytics system with the goals
of approximation and delay tolerance. It schedules video
analytics query workloads on a cluster of machines, where
each query has a deadline and a priority. VideoEdge [19]
extends this to support scheduling on a hierarchy of edge,

fog and cloud resources. Both these provide tuning knobs
which are conceptually similar to our ours. But the key
distinction is that these degrees of freedom requires the
specification of objective functions to define the impact of
the knobs on metrics. This makes it challenging to use out
of the box. Our domain-sensitive Tuning Triangle intuitively
captures the impact of the 3 well-defined knobs on the 3
metrics that impact tracking applications the most.

More recently, RES [43] tackles the problem of run-
ning video analytics using edge and cloud resources while
meeting Quality of Service (QoS) constraints. They identify
filtration and identification phases to split the tasks across
edge and cloud, with three types of operations: basic, filter
and machine learning. In contrast, our modules are better-
tuned for entity tracking across a many-camera network,
with distinctive modules such as tracking logic and query
fusion. Our runtime also offers mechanisms to deal with
network variability. Hu et al. [44] develop specialized image
recognition algorithms for video surveillance using mobile
edges to achieve high accuracy and low recognition time.
These can be incorporated within Anveshak to facilitate
deployment and scalable execution across city-scale camera
networks. VU [45] identifies camera feeds in a many-camera
network which are not useful due to occlusion or blurring,
and drops such feeds from being processed. Such techniques
can complement our tracking and dropping strategies. Pri-
vacy preserving video analytics platforms is an active area
of research [46]. While not a primary goal, we provide
privacy benefits by processing most video feeds on local
edge and fog devices.

6.2 Big Data platforms and DSL

General purpose dataflow models such as ORCC [20] and
Apache NiFi [21] give programmers the flexibility to com-
pose complex applications using logic blocks, often pro-
viding pre-defined blocks and a graphical UI. These are
then compiled and executed within a runtime environment.
Similarly, Big Data stream processing platforms like Apache
Storm, Flink and Spark Streaming [22], [33], [47] offer flex-
ible dataflow composition. Instead, we define a domain-
specific dataflow pattern for tracking applications, with a
fixed dataflow composition from the 7 modules. But users
provide the logic for each module that matches the given
module signatures. This curtails flexibility but allows users
to rapidly design, upgrade and deploy a variety of tracking
scenarios, incorporating contemporary advances in DNNs.

14

Google’s TensorFlow is a DSL for defining DNNs and CV
algorithms, and to deploy trained models for inference [24].
However, TensorFlow is not meant for composing arbitrary
modules together. The tasks take a Tensor as an input and
give a Tensor as the output, and there are no native patterns
such as Map and Reduce to ease composability. Yahoo’s
TensorFlow on Spark [48] adds flexibility by allowing Spark’s
Executors to feed RDD data into TensorFlow. Thus, users
can couple Spark’s operations with TensorFlow’s neural
networks. But Anveshak is at a level of abstraction higher,
allowing for rapid development of tracking applications
with fewer lines of code or sometimes just a configuration
change. Also, Spark is not designed for distributed comput-
ing on WANs or edge/fog devices, which we address in the
Anveshak runtime.

6.3 Streaming Performance Management

There are several performance optimizations adopted by
stream processing systems, which we extend. Apache
Flink [33] and Storm [47] support back-pressure, where a slow
task sends signals to its upstream task to reduce its input
rate. This may eventually lead to data drops, but the data
being dropped are the new ones generated upstream rather
than the stale ones that are already in-flight. This sacrifices
freshness in favor of fairness. Our drops prioritize recent
events over stale events, and importantly, adjust the budget
more precisely.

Google’s Millwheel [49] uses the concept of low watermarks
to determine the progress of the system, defined as the
timestamp of the oldest unprocessed event in the system.
It guarantees that no event older than the watermark may
enter the system. Watermarks can thus be used to trigger
computations, such as window operations, safely. While our
batching and drop strategies are similar, watermarks cannot
budget the time left for a message in the pipeline and has
no notion of user-defined latency.

Aurora [36] adopts load shedding, which is similar to our
data drops. They define QoS as a multidimensional function,
including attributes such as response time, similar to our
maximum latency. Given this function, the objective is to
maximize the QoS. Borealis [37] extends this to a distributed
setup. Anveshak uses multiple drop points even within
a task, which offers fine-grained control and robustness.
Features like “do not drop” and resilience to clock skews
are other domain and system-specific optimizations.

7 CONCLUSIONS

In this paper, we have proposed an intuitive domain-specific
dataflow model for composing distributed object tracking
applications over a many-camera network. Besides offering
an expressive and concise pattern, we surface the Tracking
Logic module as a powerful abstraction that can perform
intelligent tracking and manage the active cameras. This
enhances the scalability of the application and makes ef-
ficient use of resources. Further, we offer tunable runtime
strategies for dropping and batching that help users easily
balance between the goals of performance, accuracy and
scalability. Our design is sensitive to the unique needs of
a many-camera tracking domain and for distributed edge,

fog and cloud resources on wide-area networks. Our ex-
periments validate these for a real-tracking application on
deployments of up to 1000 cameras.

As future work, we plan to explore intelligent scheduling
of the module instances on edge, fog and cloud resources; al-
low modules to be dynamically replaced for better accuracy
or performance; and handle mobile camera platforms such
as drones. In a real setting, multiple objects of interest would
be tracked across the camera network. This should lead to
interesting scheduling problems as well as an opportunity to
share compute across multiple queries. A practical deploy-
ment of Anveshak would use containers for dependency
management. However, co-locating containers can lead to
interference and QoS violations [15]. It would be worth
exploring models to estimate such performance interference,
which can influence the execution time estimates used in
the batching and dropping strategies. It will also be useful
to support camera-specific DNNs to handle, say, crowded
scenes that may be visible to specific cameras.

ACKNOWLEDGMENTS

This work was supported by grant number 4(16)/2019-ITEA
from the Ministry of Electronic and Information Technology
(MeitY), Government of India. The first author was sup-
ported by a fellowship from the Robert Bosch Center for
Cyber-Physical Systems, Indian Institute of Science, Banga-
lore.

REFERENCES

[1] G. Ananthanarayanan, P. Bahl, P. Bodik, K. Chintalapudi, M. Phili-
pose, L. Ravindranath, and S. Sinha, “Real-time video analytics:
The killer app for edge computing,” IEEE Computer, vol. 50, 2017.

[2] L. Wang and D. Sng, “Deep learning algorithms with applications
to video analytics for a smart city: A survey,” arXiv preprint
arXiv:1512.03131, 2015.

[3] A. Khochare, P. Ravindra, S. P. Reddy, and Y. Simmhan, “Dis-
tributed video analytics across edge and cloud using echo,” in In-
ternational Conference on Service Oriented Computing (ICSOC) Demo,
2017.

[4] A. Bedagkar-Gala and S. K. Shah, “A survey of approaches and
trends in person re-identification,” Image and Vision Computing,
vol. 32, no. 4, 2014.

[5] P. Natarajan, P. K. Atrey, and M. Kankanhalli, “Multi-camera
coordination and control in surveillance systems: A survey,” ACM
Transactions on Multimedia Computing, Communications, and Appli-
cations, vol. 11, no. 4, 2015.

[6] X. Liu, W. Liu, H. Ma, and H. Fu, “Large-scale vehicle re-
identification in urban surveillance videos,” in IEEE International
Conference on Multimedia and Expo, 2016.

[7] N. Murthy, R. K. Sarvadevabhatla, R. V. Babu, and A. Chakraborty,
“Deep sequential multi-camera feature fusion for person re-
identification,” arXiv preprint arXiv:1807.07295, 2018.

[8] N. T. Siebel and S. Maybank, “The advisor visual surveillance
system,” in Workshop applications of computer vision, 2004.

[9] M. Valera and S. A. Velastin, “Intelligent distributed surveillance
systems: a review,” IEE Proceedings-Vision, Image and Signal Process-
ing, vol. 152, no. 2, 2005.

[10] M. K. Lim, S. Tang, and C. S. Chan, “isurveillance: Intelligent
framework for multiple events detection in surveillance videos,”
Expert Systems with Applications, vol. 41, no. 10, 2014.

[11] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,”
arXiv preprint, 2017.

[12] L. Esterle, P. R. Lewis, M. Bogdanski, B. Rinner, and X. Yao,
“A socio-economic approach to online vision graph generation
and handover in distributed smart camera networks,” in IEEE
International Conference on Distributed Computing Systems (ICDCS),
2011.

15

[13] W. Li, R. Zhao, T. Xiao, and X. Wang, “Deepreid: Deep filter pairing
neural network for person re-identification,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2014.

[14] P. Varshney and Y. Simmhan, “Characterizing application schedul-
ing on edge, fog, and cloud computing resources,” Software: Prac-
tice and Experience, vol. 50, no. 5, 2019.

[15] E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar, and
J. H. Abawajy, “Fog of everything: Energy-efficient networked
computing architectures, research challenges, and a case study,”
IEEE Access, vol. 5, 2017.

[16] P. G. Lopez et al., “Edge-centric computing: Vision and chal-
lenges,” ACM SIGCOMM Computer Communication Reviews,
vol. 45, no. 5, 2015.

[17] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha,
W. Hu, and B. Amos, “Edge analytics in the internet of things,”
IEEE Pervasive Computing, vol. 14, no. 2, 2015.

[18] C.-F. Shu, A. Hampapur, M. Lu, L. Brown, J. Connell, A. Senior,
and Y. Tian, “Ibm smart surveillance system (s3),” in IEEE Confer-
ence on Advanced Video and Signal Based Surveillance, 2005.

[19] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,
P. Bahl, and M. Philipose, “Videoedge: Processing camera streams
using hierarchical clusters,” in IEEE Symposium on Edge Computing,
2018.

[20] H. Yviquel, A. Lorence, K. Jerbi, G. Cocherel, A. Sanchez, and
M. Raulet, “Orcc: Multimedia development made easy,” in ACM
International Conference on Multimedia, 2013.

[21] “Apache nifi,” https://nifi.apache.org/.
[22] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and

I. Stoica, “Spark: Cluster computing with working sets.” USENIX
Workshop on Hot Topics in Cloud Computing, vol. 10, no. 10-10, 2010.

[23] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, 2008.

[24] M. Abadi et al., “Tensorflow: A system for large-scale machine
learning,” in USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2016.

[25] K. Shiva Kumar, K. Ramakrishnan, and G. Rathna, “Distributed
person of interest tracking in camera networks,” in ACM Interna-
tional Conference on Distributed Smart Cameras (ICDSC), 2017.

[26] Tong Xiao, “Open-ReID,” https://cysu.github.io/open-reid/.
[27] N. Dalal and B. Triggs, “Histograms of oriented gradients for

human detection,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2005.

[28] E. Ahmed, M. Jones, and T. K. Marks, “An improved deep learning
architecture for person re-identification,” in IEEE Conference on
Computer Vision and Pattern Recognitione (CVPR), 2015.

[29] J. Sochor, J. Špaňhel, and A. Herout, “Boxcars: Improving fine-
grained recognition of vehicles using 3-d bounding boxes in
traffic surveillance,” IEEE Transactions on Intelligent Transportation
Systems, vol. 20, no. 1, 2018.

[30] L. Ren, J. Lu, Z. Wang, Q. Tian, and J. Zhou, “Collaborative
deep reinforcement learning for multi-object tracking,” in European
Conference on Computer Vision (ECCV), 2018.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[32] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-
v4, inception-resnet and the impact of residual connections on
learning.” in AAAI Conference on Artificial Intelligence, 2017.

[33] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a
single engine,” IEEE Bulletin of the Technical Committee on Data
Engineering, vol. 36, no. 4, 2015.

[34] F. Akgul, ZeroMQ. Packt Publishing, 2013.
[35] D. P. Bovet and M. Cesati, Understanding the Linux Kernel: from I/O

ports to process management. " O’Reilly Media, Inc.", 2005.
[36] D. J. Abadi et al., “Aurora: a new model and architecture for data

stream management,” International Journal on Very Large Data Bases
(VLDB), vol. 12, no. 2, 2003.

[37] D.J. Abadi et. al., “The design of the borealis stream processing
engine.” in Conference on Innovative Data Systems Research (CIDR),
2005.

[38] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep
neural network models for practical applications,” CoRR, vol.
abs/1605.07678, 2016.

[39] OpenStreetMap contributors, “Planet dump retrieved from
https://planet.osm.org ,” https://www.openstreetmap.org, 2017.

[40] A. Kornecki, “Middleware for distributed video surveillance,”
IEEE Distributed Systems Online, vol. 9, no. 2, 2008.

[41] P. Liu, B. Qi, and S. Banerjee, “Edgeeye: An edge service frame-
work for real-time intelligent video analytics,” in International
Workshop on Edge Systems, Analytics and Networking, 2018.

[42] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl,
and M. J. Freedman, “Live video analytics at scale with approxi-
mation and delay-tolerance.” in USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2017.

[43] M. Ali, A. Anjum, O. Rana, A. R. Zamani, D. Balouek-Thomert,
and M. Parashar, “Res: Real-time video stream analytics using
edge enhanced clouds,” IEEE Transactions on Cloud Computing
(TCC), 2020.

[44] H. Hu, H. Shan, C. Wang, T. Sun, X. Zhen, K. Yang, L. Yu, Z. Zhang,
and T. Q. Quek, “Video surveillance on mobile edge networks–a
reinforcement learning based approach,” IEEE Internet of Things
Journal (IoTJ), vol. 7, no. 6, 2020.

[45] H. Sun, W. Shi, X. Liang, and Y. Yu, “Vu: Edge computing-enabled
video usefulness detection and its application in large-scale video
surveillance systems,” IEEE Internet of Things Journal (IoTJ), vol. 7,
no. 2, 2019.

[46] R. Poddar, G. Ananthanarayanan, S. Setty, S. Volos, and R. A. Popa,
“Visor: Privacy-preserving video analytics as a cloud service,” in
USENIX Security Symposium, 2020.

[47] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel,
S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham et al., “Storm@
twitter,” in ACM International Conference on Management of Data
(SIGMOD), 2014.

[48] Yahoo, “Tensorflow on Spark,” https://github.com/yahoo/
TensorFlowOnSpark/wiki, accessed: 2018/06/16.

[49] T. Akidau et al., “Millwheel: fault-tolerant stream processing at
internet scale,” Proceedings of the VLDB Endowment (PVLDB), vol. 6,
no. 11, 2013.

[50] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in IEEE conference on computer vision and pattern
recognition (CVPR), 2015.

Aakash Khochare Aakash is a Ph.D. candidate
at the Indian Institute of Science, Bangalore.
His research involves designing systems, ab-
stractions and heuristics that enable analytics on
edge, fog and drone platforms. He is a recipient
of the IEEE TCSC SCALE Challenge Award in
2019.

Yogesh Simmhan Yogesh Simmhan is an As-
sociate Professor and a Swarna Jayanti Fellow
at the Indian Institute of Science, Bangalore.
His research explores abstractions, algorithms
and applications on distributed systems, includ-
ing Cloud and Edge Computing, Scalable Graph
Processing, and Distributed storage and analyt-
ics to support Big Data and Internet of Things
(IoT) applications. He is an Associate Editor-in-
Chief of the Journal of Parallel and Distributed
Systems (JPDC), and earlier served as an As-

sociate Editor of IEEE Transactions on Cloud Computing. Yogesh has a
Ph.D. in Computer Science from Indiana University, and was previously
a research faculty at the University of Southern California (USC), and a
Postdoc at Microsoft Research. He is a Senior Member of the IEEE and
the ACM.

https://nifi.apache.org/
https://cysu.github.io/open-reid/
 https://www.openstreetmap.org
https://github.com/yahoo/TensorFlowOnSpark/wiki
https://github.com/yahoo/TensorFlowOnSpark/wiki

1

APPENDIX A
ADDITIONAL DETAILS ON DATAFLOW AND RUNTIME

A.1 Dataflow Composition Details
In § 2.3 of the main article, we concisely described how the
Anveshak domain specific dataflow is used to compose the
OpenReID (ORID) application, and described the compute
method of it modules. Here, in the Appendix, we provide
additional details about the Anveshak dataflow composi-
tion, and the specification of tracking applications by the
user. We use the PersonReID (PRID) to illustrate this.

As seen in Fig. 2 of the article, the Anveshak dataflow
consists of 6 types of modules, FC, VA, CR, TL, QF, and
UV. Each module exposes three methods init, compute, and
partition for the programmer to implement. Additionally, the
FC, VA, and CR modules also expose an update method. The
signatures of the functions are listed as part of the pseudo-
code for each module provided for the PRID App, in Algs. 2
– 5.

A.1.1 Functions within a Module
Init. Each module maintains a local state object that the
programmer can use as a local data store for variables
and counters across several invocations of the compute
method, for different event batches it receives. The init
should contain logic to initialize the local state object. We also
recommend loading the DNN model into memory (neural
network architecture and weights) as part of the init method,
in the local process or as part of a local gRPC service, and
storing a reference to the network in the local state object.
This avoids the overhead of loading the DNN into memory
for every compute invocation.
Update. In a single tracking lifecyle, the init method is
invoked once, while the compute and partition methods are
invoked once per input and output event batch, respec-
tively. The update method is invoked if a module receives
a feedback signal from a downstream module, e.g., it would
be invoked on the FC module if it is sent a signal by the
TL module to activate/de-activate/otherwise control the
camera.
Partition. Each module can have several instances running
during execution time to allow data parallelism and the use
of distributed edge and fog resources, e.g., in Fig. 2 of the
article, we show two instances each of the VA and CR mod-
ules, connected to four instances of FC and 2 instances of
VA, respectively. The partition method of a module instance
selects the instance of the subsequent downstream module
to which an output event is sent. Here, the event is in the
form of a key-value pair, and partition function provided by
the user operates on the key and returns a module instance
ID. This allows any upstream module instance to send an
output event to any successor module instance, based on the
key. Multiple keys can be mapped to the same instance. For
modules connected to multiple downstream modules, such
as CR to TL, UV and QF, multiple partitioners are defined
and a copy of the output event forked to each module by the
Executor. This is similar to the Stream groupings concept in
Apache Storm 2, and like Storm, Anveshak users can use it

2. A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S.
Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham et al., “Storm@ twitter,”
in ACM SIGMOD, 2014

to route event with specific keys or types to specific module
instances so that it operates on all events of that key or type.
This is useful when the module maintains local state for
that key across multiple invocations, and/or is performing
an aggregation of events of that type or key.
Compute. The compute function’s signature depends on the
module, and is invoked for each batch of input events
that the module’s instance receives from upstream module
instances. The output events from the compute function of
every module is defined as a key,value pair. The FC module’s
compute function gets images as input from the camera
endpoint and operates on a single image value at a time.
Typically, the state of the camera (active/inactive) is stored in
the local state, and the logic implemented simply accesses
this boolean state and determines if the frame must be
emitted as an output value or not. The update method of
the FC module can alter the local state of the camera, such
as changing isActive from true to false, or vice-versa.

The VA module’s compute function operates on a single
key and a list of values. Here, the key for an input event
is typically set to be the camera ID by FC in its output
event. Hence, VA’s compute operates on a batch of images
belonging to a single camera in one invocation. The output
of VA is a list of events with key-value pairs that the
programmer is free to determine in their compute logic. This
is similar to the map or flatMap functions offered by Hadoop
MapReduce and Spark. The compute function of CR, TL and
QF modules also operate on a list of key-value pairs as their
inputs. The output of these modules is also a list of key-
value pairs.

A.1.2 Dataflow routing

The output of FC is routed to the VA module, while the
output of VA goes to the CR module. The downstream
module instance to route to is determined by the partition
method of the upstream module instance. The programmer
can implement logic that uses the key field of each output
event to determine the downstream module instance. How-
ever, at times, this decision may be independent of the key
being used as well, e.g., for a round-robin routing across
instances or if just a single downstream instance is present.

The output signal of the TL module is routed to the
FC module, and the specific FC instances depend on the
cameras being activated or deactivated. The output signal
of the QF module is forked and routed to all instances of
the VA and CR modules. It is worth noting that the output
signals of the TL and QF modules are processed using the
update method in the FC, VA and CR modules, unlike output
events which are operated by the compute method.

Recall that in § 4.2 of the main article, we mention that
events have to be causally related for data drops and dynamic
batching to work. However, once the input key-value pairs
are passed to the user logic in compute, the user is free
to manipulate them as they wish. To retain the causality,
when emitting the output key-value pairs, the user must
also specify which input key(s) where used to derive the
output. This provides for provenance of data and allows the
platform to maintain the causal linkage between events.

2

A.1.3 Application Specification
The tracking application developer first implements the
aforementioned functions in Python. They then explicitly
specify the Python files containing the module implemen-
tations as part of a YAML specification file, that is illustrated
in Fig. 11. The also provide additional configuration pa-
rameters for each module and for the overall application.
When the application is being deployed, Anveshak parses
the YAML file, loads the appropriate functions for each
module instance, and connects the instances to ensure that
the data can flow between the modules.

For each module, the count, filename and class fields
are mandatory. The count is an integer that specifies the
number of module instances Anveshak must create for a
given module type. Since each instance runs on a separate
Executor process, the number of instances for a module is
indicative of the compute load expected on that module.
The filename and class uniquely identify the user’s imple-
mentation of the module, based on the above interfaces. Op-
tionally, each module type can also specify constructor_args
and state fields. As the name suggests, constructor_args is a
key-value dictionary passed as an initialization argument to
the constructor of the user’s module implementation class.
In the example YAML in Fig. 11, we see that the path to
the pre-trained model is passed as checkpoint_dir key in the
constructor_args. The state field is used to initialize the local
state stored in each module.

For simplicity, we provide the entity query being tracked
as part of the YAML, though in a practical deployment, this
would be passed at runtime to the VA, CR and QF modules
for each input query. The query field has characteristics of
the tracked entity and the query tuning knob, such as their
sample image, the maximum batch size bmax for dynamic
batching, the maximum tolerable latency γ, etc.

Once defined and composed, updating the tracking ap-
plication is simple. The user can simply modify the filename
and class fields of this YAML file to select alternative im-
plementations of the VA, CR, TL modules, which may offer
different trade-offs between compute requirement against
accuracy.

A.2 Composition of the PRID Application

The Person ReID (PRID) Application is similar to the ORID
Application described in § 2.3 of the main article. The key
difference between these two Apps is that the CR and the
TL modules are different, while the FC and VA modules
are identical. In fact, the TL logic can also be swapped
between the two, as it is generic across applications. Here,
we describe all the major functions for each PRID module,
not just the compute logic.

Alg. 2 outlines the implementation of init, compute, par-
tition and update methods for the FC module. Line 2 in
the init method sets a key in the state variable to indicate
if the camera connected to the FC is active. The compute
method simply returns this state. If the compute method of
FC returns true, the module forwards the Camera ID as the
key and the image as the value to the partitioner. The state
variable is updated by TL using the update method. Finally,
we demonstrate a round-robin partitioner in the partition
method. Here, the key sent to the partitioner is ignored.

filter:
count: 1000
filename: filter.py
class: UserFilter

video_analytics:
count: 10
filename: analytics.py
class: UserAnalytics

contention_resolution:
count: 10
filename: resolution.py
class: ContentionResolution
constructor_args:

checkpoint_dir: <--path to the
trained DNN model-->

port: 8080
tracking_logic:

count: 1
filename: domain_update_default.py
class: UserDomainUpdate
constructor_args:

graphpath: <--path to the city
graph-->

domaindata:
spotlight_size: 1
speed_of_walk: 4

state:
activeSet:

- <--node-id-->
visualization_unit:

count: 1
filename: visualization_unit.py
class: UserVisualizationUnit

query:
query_id: 1
query_image_path: <--URI for the entity

image-->
upper_limit_batch_size: 25
max_tolerable_latency: 15

Fig. 11: Sample YAML file for defining a tracking application
using Anveshak

Data is sent to the downstream CR instances in a round
robin manner to spread the load across them.

Alg. 3 specifies the logic of init, compute and partition
methods for the VA module. Line 2 in compute directly
invokes the Histogram of Gradients function in the OpenCV
Python library 3, which serves as a pedestrian detector. The
output of the detector is a list of bounding boxes around
pedestrians per image. The compute emits the Camera ID as
the key and the image along with the list of bounding boxes
as the value. Here, the partitioner uses the key passed to the
partitioner to decide the downstream module instance of CR.
This ensures that data of the same key (camera) is passed to
the same downstream CR instance.

3. N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in IEEE CVPR, 2005

3

Algorithm 2 Pseudocode for FC of PRID

1: procedure INIT(constructor_args)
2: state.put(′isActive′) ←
constructor_args.get(′isActive′)

3: return state
4: end procedure

1: procedure COMPUTE(img, state)
2: return state.get(′isActive′)
3: end procedure

1: procedure PARTITION(key, state, list_downstream_mods)
2: next← state.get(’dmodule’)
3: next = (next + 1)% len(list_downstream_mods)
4: state.put(’dmodule’) = next
5: return list_downstream_mods[next]
6: end procedure

1: procedure UPDATE(key, value)
2: state.put(′isActive′)← value
3: return state
4: end procedure

Alg. 4 provides the pseudo-code of init, compute and
partition methods for the CR module. In the init method, the
query image is loaded into memory and the a local gRPC
server on the port specified in the constructor_args is created
for Person ReID Tensorflow DNN 4. A gRPC channel is created
to the server launched on this port. The compute method
receives a batch of camera ids, images and bounding boxes
as the input. First, the image is cropped into smaller images
based on the bounding boxes (Line 6). Then Line 9 invokes
the PROCESS method in the local gRPC server that was
spawned in init and which wraps the PersonReID DNN.
The PROCESS method of the gRPC server simply invokes
the Tensorflow DNN for detections. This DNN returns de-
tections of the image matches in the cropped frames, if any.
The output key is still the camera ID and output values are
the input image and a boolean flag that reflects if the image
matches the query or not. The partitioner used is round-
robin.

Alg. 5 describes the implementation of init, compute and
partition methods for the TL module. In the init method, we
load the road-network graph into memory and save it in the
state dictionary. The compute method then fetches this graph
along with other characteristics, such as the last known
location of the entity and timestamp, to help expand the
search space as part of the spotlight camera activation logic.
For PRID, the graph only has the road network structure
and does not have the length of the roads (edges). Hence,
in Alg. 5 compute, Line 7, invokes an (unweighted) breadth
first search (BFS) on the graph starting from the last known
location of the person. Recall that in ORID, we performed a
weighted breadth first search (WBFS). Finally, we use a hash-
based partitioner for the TL module that maps from camera
ID to the FC module to signal the relevant FCs about their
de/activation.

4. E. Ahmed, M. Jones, and T. K. Marks, “An improved deep learning
architecture for person re-identification,” in IEEE CVPR, 2015

Algorithm 3 Pseudocode for VA of PRID

1: procedure INIT(constructor_args)
2: return state
3: end procedure

1: procedure COMPUTE(Cid, imgs[], state)
2: bbs[][] = OPENCV.HOG(imgs[]))
3: for img in imgs[] and outbbs[] in bbs[][] do
4: EMIT(Cid, 〈img, outbbs[]〉))
5: end for
6: end procedure

1: procedure PARTITION(key, state, list_downstream_mods)
2: return list_downstream_mods[hash(key) %

len(list_downstream_mods)]
3: end procedure

Algorithm 4 Pseudocode for CR of PRID

1: procedure INIT(constructor_args)
2: path← constructor_args.get(′checkpoint_dir′)
3: query ← load(constructor_args.get(′query_image_path′)
4: port← constructor_args.get(′port′)
5: grpc_channel← grpc.new_channel(port)
6: state.put(′grpc′)← grpc_channel
7: state.put(′entity_query_img′)← query
8: TFLOW.DNN_CR.LOAD(path)
9: grpc.start_server(port, TF low.DNN_CR)

10: return state
11: end procedure

1: procedure COMPUTE(〈Cid, img, outbbs[]〉[], state)
2: query = state.get(′entity_query_img′)
3: channel← state.get(′grpc′)
4: cropped = []
5: for tuple in 〈img, outbbs[]〉[] do
6: cropped_img = CROP(img, outbbs[])
7: cropped.append(cropped_img)
8: end for
9: detections = CHANNEL.PROCESS(cropped, query)

10: for was_detected in detections[] do
11: EMIT(Cid, 〈img,was_detected〉)
12: end for
13: end procedure

1: procedure PARTITION(key, state, list_downstream_mods)
2: next← state.get(’dmodule’)
3: next = (next + 1)% len(list_downstream_mods)
4: state.put(’dmodule’) = next
5: return list_downstream_mods[next]
6: end procedure

1: procedure PROCESS(cropped, query)
2: detections = TFLOW.DNN_CR(cropped, query)
3: return detections
4: end procedure

A.3 Platform Runtime Details for Anveshak

Here, we complement § 3 of the main article that introduced
the Anveshak runtime platform with more internal details
of its architecture and execution model.

The Anveshak platform comprises of two logical com-
ponents – Anveshak Master and Anveshak Worker (Fig. 3
in main article). Both the components are implemented in
Python 3.7. Anveshak Master runs in the cloud and exposes
an endpoint for users to submit and deploy an application
on the platform. The Master accepts the application in the

4

Algorithm 5 Pseudocode for TL-BFS of PRID

1: procedure INIT(constructor_args)
2: road_network ← load(constructor_args(′graphPath′)
3: state.put(′road_network′)← road_network
4: return state
5: end procedure

1: procedure COMPUTE(〈Cid, 〈img, detections[]〉〉[], state)
2: el = GETENTITYLOCATION(〈Cid, detections[]〉[])
3: if el == ∅ then I Entity lost. Expand spotlight...
4: graph = state.get(′road_network′)
5: lsl = state.get(′lastSeenLocation′)
6: lst = state.get(′lastSeenT ime′)
7: cameras[] = BFS(graph, lsl, lst)
8: EXPANDSEARCHSPACE(cameras)
9: else

10: SHRINKSEARCHSPACE(el)
11: end if
12: end procedure

1: procedure PARTITION(key, state, list_downstream_mods)
2: return list_downstream_mods[hash(key) %

len(list_downstream_mods)]
3: end procedure

YAML format described above. The Master process parses
the YAML to determine the number of instances defined
for each module. It then invokes the Scheduler logic, which
determines the placement of these module instances onto
Anveshak Workers. Each Worker runs on a edge, fog or cloud
resource, and forms the unit of resource scheduling.

The Worker is a multi-process component that executes
and routes the key-value streams among the module in-
stances. We choose a multi-processed approach over a multi-
threaded approach to circumvent Python’s multi-threading
shortcomings due to the Global Interpreter Lock (GIL). The
Worker spawns one Entry/Exit process for managing the in-
put and output of events between instances, over the network.
This process exposes a ZeroMQ connection for other Workers
to transfer events as key-value pairs.

The “Entry” part of the Entry/Exit process implements
the logic for Drop Point 1, and the “Exit” part of the process
enacts Drop Point 3 (Fig. 3 in main article). Events from
upstream module instances flow through the ZeroMQ end-
point and are first tested for staleness using Drop Point 1.
Events that are not dropped at Drop Point 1 get transferred
to the Batch and Routing process in the Worker using a
SysV IPC queue. The Routing process implements logic for
dynamic batching as well as for Drop Point 2 (Fig. 4 in
main article). The Router uses singleton SysV IPC input and
output queues (i.e., queues with capacity for just a single
entry) as a means to interface with an Executor process
that is responsible for executing a batch and returning a
response. When a Executor Process is free, it signals the
Router using the output queue and the Router dynamically
creates a batch and transfers it to the Executor Process using
the singleton input SysV queue.

One Worker may spawn and manage multiple Executor
processes. However, each Executor corresponds to exactly
one module instance. This architecture allows us to po-
tentially spawn several Executors on a single device, if
the device has many cores or if the user logic has light-

weight resource needs on a device. The Executor process first
performs a “group by key” if this is a VA module instance,
and then invokes compute or update user logic, appropriately.
Finally, the Executor invokes the partioner on the output key-
value pair events, based on which the output events get
assigned to one of the next module instances to which the
event must be transferred to.

The Executor then places this batch of output events into
another singleton output queue between the Executor and
the Router. This also signals the Router that the Executor is
free and a new batch can be transferred to it. The Router
process uses another SysV output queue to send data back
to the Entry/Exit process. Finally, the logic for Drop Point
3 is verified by the Entry/Exit Process before performing a
network transfer over ZeroMQ to a remote module instance.
The SysV input/output queues between the Entry/Exit Pro-
cess and the Batch and Routing Process are common for all
the Executor Processes spawned in the Worker. Meanwhile,
between the Batch and Routing Process and the Executor
Process, one singleton queue is maintained per Executor.

A.4 Application Implementation Details
For both the ORID and PRID applications, the VA module
uses HoG pedestrian Descriptor that is available as part of
the OpenCV library. The features are classified into pedes-
trians and non-pedestrians using an SVM detector. For the
ORID App, the CR module uses the Inception model [50]
from the OpenReId library, whose DNN architecture is
shown Fig. 12. The network is trained on CUHK-03 dataset
and has 23M parameters. For the PRID App, the CR module
uses a Person ReID module with 2.3M parameters, trained
on the same CUHK03 dataset. For both the applications we
use pre-trained models available in the public domain for
evaluation.

5

SoftMaxActivation

Conv
5x5+1(S)

F
C

Average
Pool

7x7+1(V)

DeepCon
cat

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
3x3+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DeepCon
cat

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
3x3+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

MaxPool
3x3+2(S)

DeepCon
cat

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
3x3+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DeepCon
cat

Average
Pool

5x5+3(V)

Conv
1x1+1(S)

F
C

SoftMaxActivation

F
C

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
3x3+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DeepCon
cat

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
3x3+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DeepCon
cat

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
3x3+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DeepCon
cat

Average
Pool

5x5+3(V)

Conv
1x1+1(S)

F
C

SoftMaxActivation

F
C

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
3x3+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DeepCon
cat

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
3x3+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DeepCon
cat

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
3x3+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

LocalRespN
orm

MaxPool
3x3+2(S)

Conv
3x3+1(S)

Conv
1x1+1(V)

LocalRespN
orm

MaxPool
3x3+2(S)

Conv
7x7+2(S)

Outpu
t2

Input

Outpu
t1

Outpu
t0

Fig. 12: Inception DNN Architecture using as CR module in ORID App [50]

6

APPENDIX B
ADDITIONAL DETAILS ON RUNTIME STRATEGIES

In this Appendix, we offer more details on various aspects
of the runtime tuning strategies that were proposed in § 4
of the main article.

B.1 Formal Bounds for Batch Size and Drop Rate

While our batching is not based on a fixed batch size but
rather adapts to the events that arrive, we can formally
bound the batch size and drop rate under certain assump-
tions. Later, we relax some of these assumptions.

We derive bounds on the batch size and drop rate
working under the assumption that a dataflow has con-
stant known input rate ω, 1:1 selectivity, no pipelining, the
execution time matches the expectation, and the network
and compute conditions are static. For simplicity during
analysis, we also assume temporal ordering of events and
no pipelining of the FIFO queue with the execution.
Batch Size. Here, the goal is to estimate the bounds for the
batch size mi at a task τi when it has access to the budget
and other variables at runtime, under a stable state. The
inter-arrival rate between successive events can be written
as aik − aik+1 = 1

ω ∀k ∈ N, i ∈ n. Also, due to the temporal
ordering of events, the batch deadline is bound by its first
event. Then, mi is the largest Integer value such that:

(mi−1)× 1
ω +ξi(m) ≤ βi−ui1 and ξi(mi) ≤ βi−ui

1

2

In the first equation, we capture the intuition that the time
to queue up the batch and to execute it 5 must not exceed
the batch processing deadline. The second equation ensures
the stability of the system such that the time to execute
a batch does not exceed the deadline for the next batch
being accumulated, i.e., execution time for the current batch
should be less than the queuing time for next batch. Here, ω
and ξi(m) are unconstrained natural numbers while βi and
ui are available at runtime. A solution for mi may not exist
within these constraints, which means that the input rate ω
is unsustainable. In such cases, events should be dropped.
Drop Rate. If no solution for mi exists above, then we
find the drop rate of events, (ω − ωmax), relative to the
largest stable input rate, ωmax, that can be support, and the
associated batch size. The goal is to maximize mi and ωmax

such that:

(mi − 1)× 1
ωmax + ξi(mi) ≤ βi − ui1 and

ξi(mi) ≤ βi−ui
1

2

Compared to streaming execution with m = 1, batching
adds latency to the overall event processing time while
increasing the throughput. We quantify the increase in the
average latency per event caused by batching, relative to
streaming, for a task τi as:

mi−1
2×ω + ξi(mi)− ξi(1)

Here, the first term is the average queuing time for the mi

events in the batch and the latter indicate the execution time
for the batch.

5. There is no queuing delay for the first event, hence (m − 1) × 1
ω

.
For simplicity, we assume that the estimated execution time ξi equals
the actual execution time.

B.2 Discussion on Event Ordering

The asynchronous nature of distributed stream processing
and network variability makes it hard to enforce temporal
order on events arriving from multiple upstream tasks on
different devices at a downstream task 6. Our programming
model and runtime do not enforce temporal ordering across
events arriving from different upstream module instances at
a downstream instance. While temporal ordering may be re-
quired for some vision algorithms such as estimating optical
flow 7, the user logic can reorder events in a batch using the
timestamps passed in the key, value pairs. The runtime can
enforce ordering in the group stage of every module using a
temporal window and watermarks 8. However, we currently
do not include such mechanisms.

B.3 Resilience to Unsynchronized Clocks

Devices in a WAN may have unmanaged devices that do
not have tightly-synchronized clocks 9. While our drop
and batch decisions are based on the timestamps at the
different devices, these have been designed to withstand
skews across the device clocks. The drop logic as well as the
completion budget are based on the upstream time, with the
other time variables within a task being defined relative to
it. So making the upstream time resilient to unsynchronized
clocks with consequently address all other time calculations.

Let κ1..κn be the clocks for the n devices hosting the
tasks in a pipeline. As stated before, we require that κ1 =
κn. Let the signed-values σ2..σn−1 be the skew between the
clocks κ2..κn−1 relative to κ1 and κn, i.e., σi = κi − κ1. The
upstream time uik = aik−a1k for an event eik arriving at a task
τi. When corrected for the skew, we have ũik = (aik−σi)−a1k

Similarly the update rule for the completion budget β̃i
for task τi, when corrected for skew, can be written by
correcting the departure time as (d̃ik −

←−
λ ik) or (d̃ik +

−→
λ ik), as

is the case when updating using a reject or an accept signal.
Here, d̃ik = ũik + πik = uik − σi + πik, since π is a duration
calculated locally within a single device. Also, λ, the budget
change factor, depends on ε and other local durations, with
ε̃ = d̃ik − β̃i = ε. Hence β̃i = βi − σi, and it can be shown
that β̃oldi = βoldi − σi with an inductive argument.

As a result, in all three of our drop points, when replac-
ing uik and βi with their skew-correct forms (in lines 3, 4 and
3, respectively), we have a−σi term added symmetrically to
both the left and the right sides of the comparisons, which
cancel each other out. This shows that our drop logic is
resilient to clock-skews.

For batching, we use the test
(
ti + ξi(m + 1) >

min(∆i
p, δ

i
x)
)

to decide if we should add an event eix ar-
riving at task τi to a batch Bp. Here too we can correct the
skew for the time points t̃i = ti − σi and δ̃ix = (β̃i + a1k) =

6. J. R. Perez Cruz and S. E. Pomares Hernandez, “Temporal
alignment model for data streams in wireless sensor networks based
on causal dependencies,” International Journal of Distributed Sensor
Networks, vol. 10, no. 3, p. 938698, 2014

7. D. Fleet and Y. Weiss, “Optical flow estimation,” in Handbook of
mathematical models in computer vision. Springer, 2006

8. T. Akidau et al., “Millwheel: fault-tolerant stream processing at
internet scale,” The VLDB Journal, vol. 6, no. 11, 2013

9. F. Buchholz and B. Tjaden, “A brief study of time,” Digital
Investigation, vol. 4, 2007

7

(βi−σi+a1k) = (δix−σi); similarly, ∆̃i
p = ∆i

p−σi as it derives
from δ̃. As we see, the −σi term is added to both the sides
of the comparison and cancel each other out, indicating that
the batch size is resilient to unsynchronized clocks as well.

B.4 Pseudo-code for Updating the Completion Budget
Updating the completion budget is a key runtime capability
that allows Anveshak to handle network and compute vari-
ations. If the event reaches the UV module too early, the
completion budget at each module traversed by the event can
be increased, thereby allowing the future events to spend
more time in queuing and execution, leading to a larger
batch size and better throughput. On the contrary, if the
event reaches late, beyond γ, the completion budget must
be downgraded to ensure smaller batch sizes and lower
upstream latency.

In Alg. 6, we provide at the pseudo-code for updating
the completion budget, to complement the description and
illustration in § 4.5 of the main article.

Algorithm 6 Algorithm to update the completion budget

1: procedure UPDATEBUDGET(dik, q
i
k,m

i
k, ε)

2: if reject signal then
3: calculate

←−
λ i

k using Eqn. 3
4: return min(dik −

←−
λ i

k, βold
i)

5: else
6: calculate

−→
λ i

k using Eqn. 4
7: return max(dik +

−→
λ i

k, βold
i)

8: end if
9: end procedure

←−
λ ik = min(ε× qik

qjk
, ξi(m

i
k)− ξi(1)) (3)

−→
λ ik = min(ε×ξj(m

i
k)

ξ
n−1
k

, (mmax−mi
k)× qik

mi
k

+ξi(m
max)−ξi(mi

k))

(4)

8

APPENDIX C
ADDITIONAL EXPERIMENTS

In this Appendix, we offer additional experiments and
analysis of the ORID Application discussed in § 5 of the
main article, and also provide an evaluation of Anveshak
using the PRID application.

C.1 Analysis of Anveshak’s Batching
We first examine the benefits of dynamic batching for the
ORID application, while keeping the tracking logic fixed at
TL-BFS and disabling drops. Further, the entity’s peak speed is
configured as es = 4 m/sec with TL-BFS. This is set based
on an estimated peak speed since underestimating can cause
the entity to be lost due to a slow Rate of Expansion (RoE) of
the spotlight when the entity is in a blindspot; too high a
value can cause a fast spotlight RoE and large active camera
count that overwhelms resources or causes drops

C.1.1 Need for Batching
The Anveshak dataflow can be executed in a streaming
manner without batching, i.e., a batch size of b = 1. But
this sacrifices the input throughput, and hence scalability of
the number of active cameras that can be supported..

Fig. 15a shows the application timeline plot for the
streaming configuration, using a static batch of size b = 1
(SB-1). Here, the X axis is the wall-clock time (secs) of the
tracking application’s execution, the blue line on the left Y
axis is the number of active cameras as decided by TL, and
the yellow dots on the right Y axis are the end-to-end latency
of events (frames) from the source to the sink averaged
over every second of the application’s execution time. A
red horizontal line shows the maximum tolerable latency,
γ = 15 secs. Further, Fig. 13a shows a violin distribution
of these 1 sec average event latencies for the streaming and
other batching configurations. Similarly, Fig. 14a shows the
number of events (1000×) processed within the deadline of
γ against those that were delayed (orange, labeled).

In Fig. 13a, streaming (SB-1) exhibits the lowest median
latency, at ≈ 200ms, much below γ = 15 secs that is accept-
able. However, this is at the cost of the latency occasionally
exceeding the threshold, as seen from the violin outliers, and
the 25 delayed events in Fig. 14a. In fact, if we configure TL
with an entity peak speed of es = 6 m/s, 57% of the input
events exceed γ when streaming (Fig. 14b).

As Fig. 15a shows, these delayed frames occur when
the active camera count exceeds 100. Here, the blue lines
exhibit a saw-tooth behavior – the spotlight logic increases
the active set of cameras when the entity is in a blindspot,
and this drops to 1 when the entity is reacquired within the
FOV of an active camera. At ≈ 550 secs, the entity is in a
blindspot long enough that the count spikes to 111 cameras,
stressing the available resources and causing the latency to
grow to 16.8 secs.

Specifically, this latency is caused by CR, whose DNN
is the slowest task the dataflow at 120 ms/event and can
service µ = 1000

120 = 8.33 events/sec per CR instance. For
an event arrival rate λ > µ, the queue in unstable and
the queuing delays will grow exponentially. At the 550th

second, the feeds from 111 active cameras at 1 fps are
mapped to 10 CR instances, and 8 of these CR instances

SB
-1

SB
-20

SB-
25

LB
-25

DB
-25

SB-1 SB-20
100C

SB-20
200C

0
2
4
6
8

10
12
14
16

Av
g.

 E
ve

nt
 L

at
en

cy
 (s

ec
)

0.2

0.9

1.9

5.06

0.49 0.29

2.8

BFS WBFS Base

(a) es=4 m/sec

SB-1 SB-20 DB-25 SB-200

5

10

15

20

25

30

23.1

3.46

6.85

2.99

BFS WBFS

(b) es=6 m/sec

DB-25 DB-25
drops

0

5

10

15

20

25

30

24.33

6.29

BFS

(c) es=7 m/sec

Fig. 13: Distribution of the average end-to-end event laten-
cies for the different batching and TL strategies

SB-1 SB-
20

SB-
25

LB-
25

DB-
25

SB-1 SB-
20

100C

SB-
20

200C

20
40
60
80

100
120
140

Nu
m

be
r o

f f
ra

m
es

(in
 th

ou
sa

nd
s)

25 703247190

62665

BFS WBFS Base

Not delayed
Delayed
Dropped

(a) es=4 m/sec

SB-1 SB-20 DB-25 SB-20

20

40

60

80

100

120

140

25041
1671 603

BFS WBFS

(b) es=6 m/sec

DB-25 DB-25
drops

20

40

60

80

100

120

140

38929 7796

BFS

(c) es=7 m/sec

Fig. 14: Events with latency ≤ γ vs. Delayed vs. Dropped
events, for different peak speeds, batching and TL strategies

receive events faster than µ causing a spike in the event
latency. However, in this case, the system is able to recover
at ≈ 570 secs when the active set size drops to 1.

In summary, it is vital to process all the frames in a timely
manner rather than many in a fast manner, i.e., taking up to
but below γ is better. Batching offers such efficiencies and
helps scale to a larger number of active cameras.

C.1.2 Limitations of Static Batching
While batching improves the system throughput, using a
fixed or static batch size has two limitations. There can
be a missed detection of the entity or certain frames can
experience a very high end-to-end latency. Next, we provide
empirical evidence for this.

We first set the static batch size b = 20 for all tasks, and
report its latency, active camera count and events processed
without delay in Figs. 15b, 13a and 14a, as before. We
see that the median latency has increased to 3.65 secs in
Fig. 13a, and there are no sharp growths in the latency in
Fig. 15b which would indicate an unstable queue. Interest-
ingly, in periods where the active camera count increases,
like between 140–240 secs, the mean latency decreases –
more cameras means a higher input rate, which fills up a
batch and triggers it faster, thus reducing batching delays.

But better stability does not always result is fewer la-
tency violations. In Fig. 14a, we see 6% or 703 events exceed
γ, more than the streaming case. Since the batch size is fixed,
there is no bound on the time spent by an event waiting for the
batch to be completed before execution. This causes events
to be delayed. However, if using es = 6 m/s, none of the
input events exceed γ (Fig. 14b). This too indicates that a
fixed value of the batch size will not suffice for all situations.

9

(a) Streaming (b = 1) (b) Static Batching (b=20) (c) LB Batching (bmax=25) (d) Anveshak Batching (bmax=25)

Fig. 15: # of active cameras (left Y axis, blue line) and Avg. end-to-end event latency (right Y axis, yellow dots) over Application
execution timeline (X axis) for different batching strategies, TL-BFS, es = 4 m/sec. Red horizontal line shows γ = 15 secs.

Selecting an appropriate peak latency γ and peak speed es
by the domain user is also important.

Another consequence of event delays due to a large fixed
batch size is that TL grows the spotlight larger than neces-
sary as it receives negative detections of the entity late, and
also delays shrinking the spotlight as positive detections
arrive late. These put further stress on the resources. E.g., at
the 220th second, the active set size is 62, 86 and 139 using a
batch sizes of b = 1, 20 and 25 (latter is not plotted), due to
the increase in median latency from 0.2 sec to 3.65 secs and
7.6 sec (Fig. 13a). When b = 25, there is a delay of 22 secs in
detecting a missing entity, due to which the active camera
count sharply jumps to 139, and also causes a detection of
the entity in the neighboring cameras to be missed. In fact,
22% of events are delayed for b = 25 (Fig. 14a).

C.1.3 Benefits of Dynamic Batching
The varying number of active cameras and its consequence
on the latency is a strong motivation for using a dynamic
batch size. Here, we compare Anveshak’s dynamic batching
(DB) strategy with Lookup-based Batching (LB), also called
Near-optimal Baseline (NOB), which also changes the batch-
ing strategy at runtime based on a lookup table created from
micro-benchmarks. The maximum batch size is limited to
bmax = 25 for both.

The timeline plot for LB-25 (NOB-25) and our DB-25 are
shown in Figs. 15c and 15d, with their latency distribution
and delay frames listed in Figs. 13a and 14a. They key ob-
servation is that there are no delayed events in Anveshak’s
DB while 90 events are delayed for LB, at time periods
350 secs and 520 secs. This is despite LB selecting a best-fit
batch size from its lookup table as the system executes. But
it assumes that the input rate is uniform for all instances
of a module, which does not hold in practice and causes
instances receiving a higher rate to use a smaller batch
size and hence violate γ. But Anveshak’s batching prevents
delays in all cases.

LB does offer a lower latency distribution, at a median of
0.4 secs (Fig. 13a, LB-25). The batch size it chooses is often
between 2 and 5, thus approaching a streaming scenario.
The median latency for Anveshak’s batching is 7.66 secs,
with a wide variety of batch sizes. But as discussed before,
reducing the latency is not a goal; we just need to ensure
that all events reach within γ.

C.1.4 Analysis of Anveshak’s Dynamic Batching
We further analyze the behavior of Anveshak’s dynamic
batching by examining the two key tasks that dominate the

0 200 400 600
App. Timeline (sec)

0

20

40

60

80

100

Ac
tiv

e
Ca

m
er

as
 C

ou
nt

0

5

10

15

20

25

Av
g.

 V
A

ba
tc

h
siz

e

(a) VA Camera count & Batch size

0 200 400 600
App. Timeline (sec)

0

20

40

60

80

100

Ac
tiv

e
Ca

m
er

as
 C

ou
nt

0

5

10

15

20

25

Av
g.

 C
R

ba
tc

h
siz

e

(b) CR Camera count & Batch size

0 5 10
Event Latency for VA (sec)

0

5

10

15

20

25

VA
 B

at
ch

 S
ize

(c) VA Batch size vs. Event latency

0 5 10
Event Latency for CR (sec)

0

5

10

15

20

25

CR
 B

at
ch

 S
ize

(d) CR Batch size vs. Event latency

Fig. 16: Performance of Anveshak batching, TL-BFS, es=4 m/s

execution latency, VA and CR. The dynamic batch sizing
operates independently for these two tasks types.

Figs. 16a and 16b show the active cameras count (left Y
axis) and the batch size averaged every 1 sec (right Y axis),
for all 10 VA and CR tasks for the application execution
time-time (X Axis), while Figs. 16c and 16d show a bubble
(scatter) plot of the task latency per event against the batch
size the event was part of, for all VA and CR instances.

For the VA task, we see from Fig. 16a that the batch
size increases as the active camera count grows, helping
it support a higher input event rate. VA uses almost every
batch size between 1 and 25 (Fig. 16c), and the latency varies
within a single batch size – events in a batch that arrive later
will have a lower latency, and vice versa. For the larger batch
sizes, the task latency often ranges from 2–6 secs, indicating
that the VA module can benefit from a more relaxed bmax.

The CR task shows a similar trend between the camera
count and batch size in Fig. 16b. CR has a lower mean batch
size than VA, which is expected since the CR module is a
compute intensive DNN which has a larger execution time
than the VA module. Fig. 16b which is a timeline plot for
mean number of CR shows a similar trend. Also, despite

10

(a) LB Batching (bmax=25) (b) Anveshak Batching (bmax=25)

Fig. 17: Adapting to network variation. The system band-
width drops from 1 Gbps to 30 Mbps after the 300th sec.

bmax = 25, its peak batch size never exceeds 19.
On further analysis, the maximum budget allocated to

a CR task is β = 3.65 secs. At the peak active camera
count of 111, this task receives events from 13 cameras. For
forming a batch of size b = 25, we have its queuing time as
1.92 secs, assuming a uniform input rate of 13 events/sec,
and execution time of ξ(25) = 1.74 secs, which together at
3.66 secs exceed the budget. Instead, the dynamic batch size
selected of b = 19 results in a processing time of 2.91 secs,
which is within the budget.This indicates that Anveshak’s
dynamic batch sizing is sensitive to the needs of individual
tasks. In fact, even with a peak entity speed of es = 6m/sec,
it avoids any event delays (Fig. 14b, DB-25).

C.1.5 Adapting to network variation
The complexity of Anveshak’s batching logic is partly at-
tributed to its ability to respond to handling network and
computation variability. The former is more common in
WAN and MAN. We evaluate its ability to adapt to even
sharp changes in the network performance. Using the dy-
namic setup for DB and LB from Figs. 15c and 15d, we
drop the bandwidth between compute nodes from 1 Gbps
to 30 Mbps midway through the application execution at
300 secs into the timeline. These are shown in Figs. 17a
and 17b for Anveshak and LB.

The first 300 secs is identical to the earlier plots, and nei-
ther configuration has event delays. But once the bandwidth
drops, Anveshak manages to keep the system stable with
no event delay as it reacts to event latencies increasing. As
the network degrades, the budget available to tasks reduce,
causing smaller batch sizes to be formed. The median CR
batch size rapidly drops from b = 8 to 5, and the batches
with 1 and 2 events rise from only ≈ 18% before 300 secs
to ≈ 30% after the network slowdown. However, LB be-
comes unstable and its event latency grows beyond γ after
500 secs. This is due to its lookup table being created for a
certain system performance and that not holding at runtime.

C.2 Analysis of PRID App

In this section, we perform a subset of the ORID experiments
for the PRID App to reconfirm the tuning triangle trends.
They key difference between the ORID and PRID applica-
tions is CR, with the logic for PRID using a more accurate
and compute-intensive DNN that takes ≈ 63% longer to
process each frame than for ORID. We use the same road
network, entity query, 1000-camera setup, γ = 15 secs,

SB
-20

DB
-25

SB
-20

DB
-25

0

10

20

30

40

50

Av
g.

 E
ve

nt
 L

at
en

cy
 (s

ec
)

4.3 5.3

41.9

5.3

4m/s 6m/s

(a) Latency, 4m/sec

SB-
20

DB-
25

SB-20DB-25

20

40

60

Nu
m

be
r o

f f
ra

m
es

 (i
n

th
ou

sa
nd

s)

640

207663786

4m/s 6m/s

Not delayed
Delayed
Dropped

(b) Delays, 4m/sec

0 200 400 600
App. Timeline (sec)

0

25

50

75

100

125

Ac
tiv

e
Ca

m
er

as
 C

ou
nt

App1-BFS
App2-BFS

App1-WBFS
App2-WBFS

(c) Active camera count for ORID
App (App 1) vs. PRID App (App
2) over time

Fig. 18: Latency distribution, event delays and camera count
for different configurations of PRID App, using TL-BFS

BFS tracking logic, drops disabled and peak entity speed
of es = 4 m/s by default, unless mentioned otherwise.
Figs. 18 show the latency distribution and the number of
delayed events for PRID App, for various runs, while Fig. 18c
shows the active camera count for ORID App (App 1) and
PRID App (App 2) using BFS and WBFS tracking logic along
the application timeline.

Using a static batch size of b = 20, we observe a
median latency of 4.33 secs but with≈ 5% latency violation
(Figs. 18a and 18b, BFS SB-20). But with dynamic batching
enabled with bmax = 25, we see a median latency of
5.39 secs but crucially, no latency delays for events (Figs. 18a
and 18b, BFS DB-25). This confirms the need for and benefits
of dynamic batching in PRID App as well.

The tracking logic in PRID App plays an important
role in managing the growth in the active camera set size,
similar to ORID App. In Fig. 18c, using a static batch size of
b = 20, we see that TL-WBFS, which uses the knowledge of
road lengths for its spotlight expansion, has a more modest
increase in camera count, e.g., at ≈ 500 secs, compared to
TL-BFS. This help it scale to a denser camera deployment
or a longer duration of the entity being in a blindspot.
Both ORID App and PRID App have similar camera count
patterns, partly modulated by the different CRs used.

Finally, for es = 6m/s we see that dynamic batching
is inadequate for TL-BFS as it reports a median latency of
41.95 secs and 63% of events delayed (Figs. 18a and 18b,
BFS DB-25). But by enabling drops, this reduces the drops
to ≈ 12% with other events being processed within time,
with a median latency of 5.36 secs (BFS DB-25 Drops).
Here again, PRID App exhibits the value of pro-active and
intelligent drops by Anveshak rather than allow delayed
events to flow through and waste resources.

	Introduction
	A Domain-specific Dataflow for Tracking
	System Model
	Domain-specific Programming Model
	Filter Controls (FC)
	Video Analytics (VA)
	Contention Resolution (CR)
	Tracking Logic (TL)
	Query Fusion (QF)
	User Visualization (UV)

	Composing Tracking Applications

	Anveshak Platform Implementation
	Runtime Tuning Strategies
	Approach
	Preliminaries
	Strategies to Drop Events
	Drop Point 1
	Drop Point 2
	Drop Point 3
	Non-linear Pipelines

	Strategies for Dynamic Batching of Events
	Updating the Completion Budget
	Reducing the budget
	Increasing the Budget

	Experiments
	Setup
	Effectiveness of Tuning Triangle
	Batching
	Dropping
	Tracking Logic

	Analysis of Batching Strategy
	Analysis of Tracking Logic
	Analysis of Dropping Strategy

	Related Work
	Video Surveillance Systems
	Big Data platforms and DSL
	Streaming Performance Management

	Conclusions
	References
	Biographies
	Aakash Khochare
	Yogesh Simmhan

	Appendix A: Additional Details on Dataflow and Runtime
	Dataflow Composition Details
	Functions within a Module
	Dataflow routing
	Application Specification

	Composition of the PRID Application
	Platform Runtime Details for Anveshak
	Application Implementation Details

	Appendix B: Additional Details on Runtime Strategies
	Formal Bounds for Batch Size and Drop Rate
	Discussion on Event Ordering
	Resilience to Unsynchronized Clocks
	Pseudo-code for Updating the Completion Budget

	Appendix C: Additional Experiments
	Analysis of Anveshak's Batching
	Need for Batching
	Limitations of Static Batching
	Benefits of Dynamic Batching
	Analysis of Anveshak's Dynamic Batching
	Adapting to network variation

	Analysis of PRID App

