

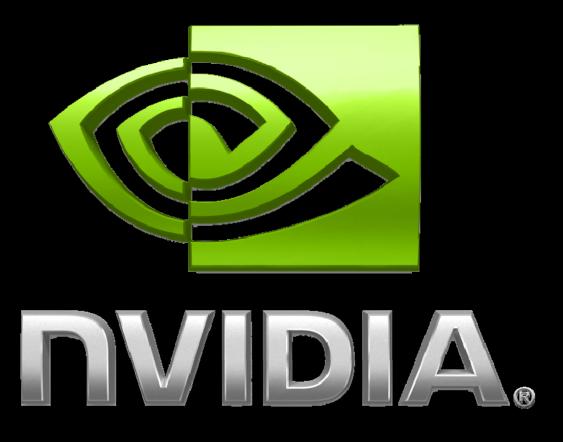
Advanced CUDA Optimizing to Get 20x Performance Brent Oster

Outline

- Motivation for optimizing in CUDA
- Demo performance increases
- Tesla 10-series architecture details
- Optimization case studies
 - Particle Simulation
 - Finite Difference
- Summary

Motivation for Optimization

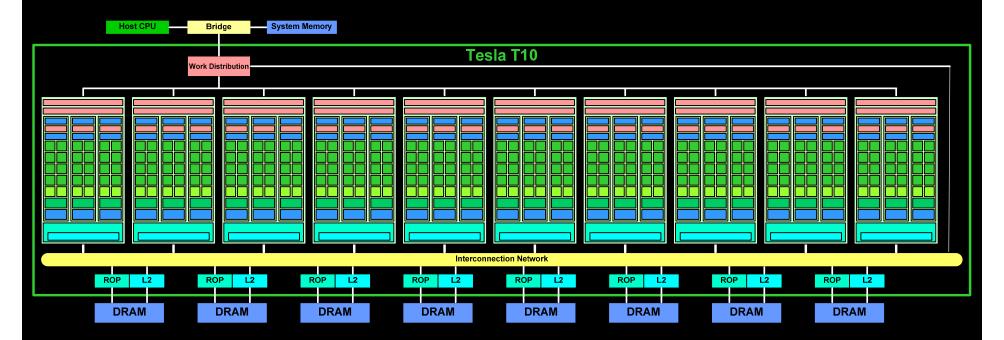
- 20-50X performance over CPU-based code
- Tesla 10-series chip has 1 TeraFLOPs compute
- A Tesla workstation can outperform a CPU cluster
- Demos
 - Particle Simulation
 - Finite Difference
 - Molecular Dynamics
- Need to optimize code to get performance
- Not too hard 3 main rules



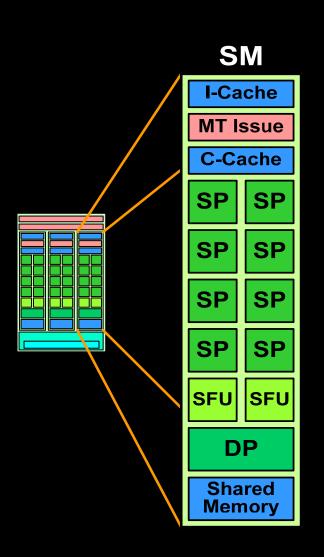
Tesla 10-series Architecture

Tesla 10-Series Architecture

- Massively parallel general computing architecture
- 30 Streaming multiprocessors @ 1.45 GHz with 4.0 GB of RAM
 - 1 TFLOPS single precision (IEEE 754 floating point)
 - 87 GFLOPS double precision



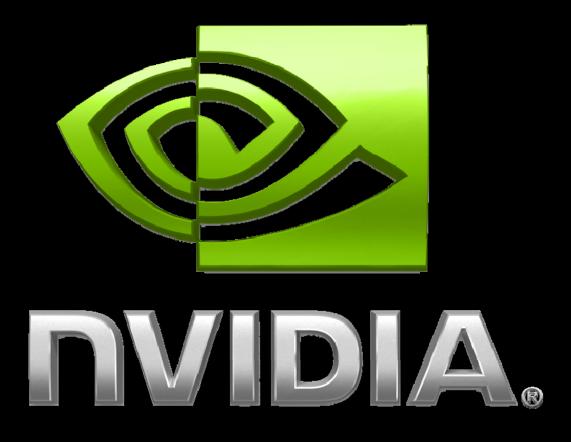
10-Series Streaming Multiprocessor



- 8 SP Thread Processors
 - IEEE 754 32-bit floating point
 - 32-bit float and 64-bit integer
 - 16K 32-bit registers
- 2 SFU Special Function Units
- 1 Double Precision Unit (DP)
 - IEEE 754 64-bit floating point
 - Fused multiply-add
- Scalar register-based ISA
- Multithreaded Instruction Unit
 - 1024 threads, hardware multithreaded
 - Independent thread execution
 - Hardware thread scheduling
- 16KB Shared Memory
 - Concurrent threads share data
 - Low latency load/store

10-series DP 64-bit IEEE floating point

- IEEE 754 64-bit results for all DP instructions
 - DADD, DMUL, DFMA, DtoF, FtoD, DtoI, ItoD, DMAX, DMIN
 - Rounding, denorms, NaNs, +/- Infinity
- Fused multiply-add (DFMA)
 - D = A*B + C; with no loss of precision in the add
 - DDIV and DSQRT software use FMA-based convergence
- IEEE 754 rounding: nearest even, zero, +inf, -inf
- Full-speed denormalized operands and results
- No exception flags
- Peak DP (DFMA) performance 87 GFLOPS at 1.45 GHz
- Applications will almost always be bandwidth limited before limited by double precision compute performance?



Optimizing CUDA Applications For 10-series Architecture

(GeForceGT280, Tesla C1060 & C1070, Quadro 5800)

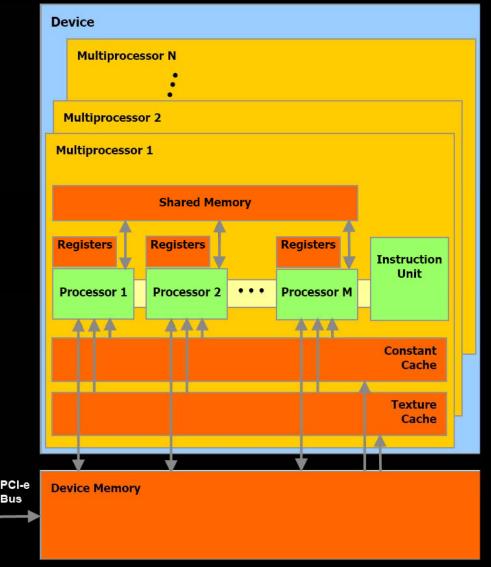
General Rules for Optimization

- Optimize memory transfers
 - Minimize memory transfers from host to device
 - Use shared memory as a cache to device memory
 - Take advantage of coalesced memory access
- Maximize processor occupancy
 - Optimize execution configuration
- Maximize arithmetic intensity
 - More computation per memory access
 - Re-compute instead of loading data

Data Movement in a CUDA Program

Host Memory
Device Memory
[Shared Memory]
COMPUTATION
[Shared Memory]
Device Memory
Host Memory

Host Memory



Particle Simulation Example

Newtonian mechanics on point masses:

```
struct particleStruct{
    float3 pos;
    float3 vel;
    float3 force;
};

pos = pos + vel*dt
vel = vel + force/mass*dt
```

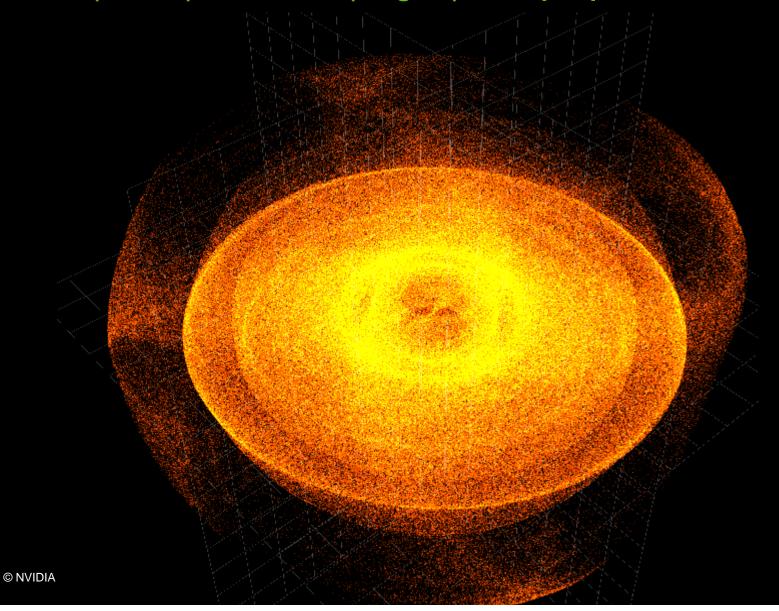
Particle Simulation Applications

- Film Special Effects
- Game Effects
- Monte-Carlo Transport Simulation
- Fluid Dynamics
- Plasma Simulations

1 million non-interacting particles

13

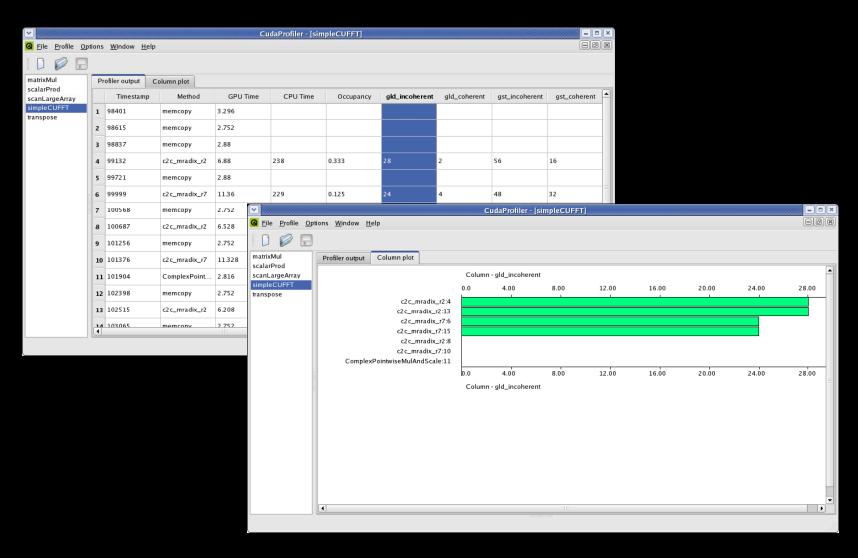
Radial (inward) and Vortex (tangent) force per particle



Expected Performance

- 1 Million Particles
 - Pos, Vel = 36 bytes per particle = 36MB total
- Host to device transfer (PCI-e Gen2)
 - 2 * 36MB / 5.2 GB/s -> 13.8 ms
- Device memory access
 - 2 * 36MB / 80 GB/s -> 0.9 ms
- 1 TFLOPS / 1 million particles
 - Compute Euler Integration -> 0.02ms

Visual Profiler

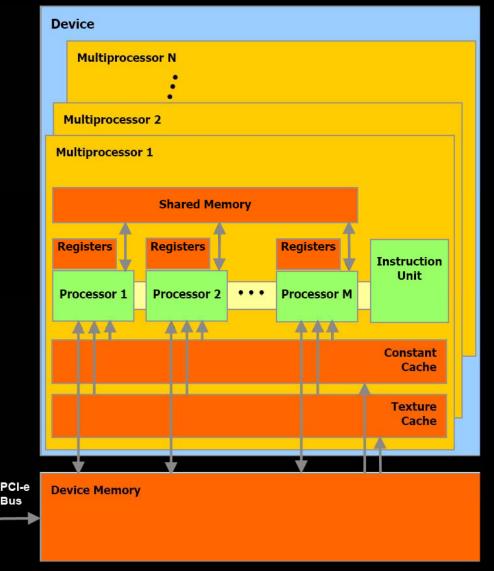


Measured Performance

- Host to device transfer (PCI-e Gen2)
 - 15.3 ms (one-way)
- Integration Kernel (including device memory access)
 - 1.32 ms

Host to Device Memory Transfer

Host Memory
Device Memory
Shared Memory
COMPUTATION
Shared Memory
Device Memory
Host Memory



Host Memory PCI-Bus

Host to Device Memory Transfer

- cudaMemcpy(dst, src, nBytes, direction)
 - Can only go as fast as the PCI-e bus
- Use page-locked host memory
 - Instead of malloc(...), use cudaMallocHost(...)
 - Prevents OS from paging host memory
 - Allows PCI-e DMA to run at full speed
- Use asynchronous data transfers
 - Requires page-locked host memory
- Copy all data to device memory only once
 - Do all computation locally on T10 card

Asynchronous Data Transfers

- Use asynchronous data transfers
 - Requires page-locked host memory

```
cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);

cudaMemcpyAsync(dst1, src1, size, dir, stream1);
kernel<<<grid, block, 0, stream1>>>(...);
cudaMemcpyAsync(dst2, src2, size, dir, stream2);
kernel<<<grid, block, 0, stream2>>>(...);
```


OpenGL Interoperability Rendering directly from device memory

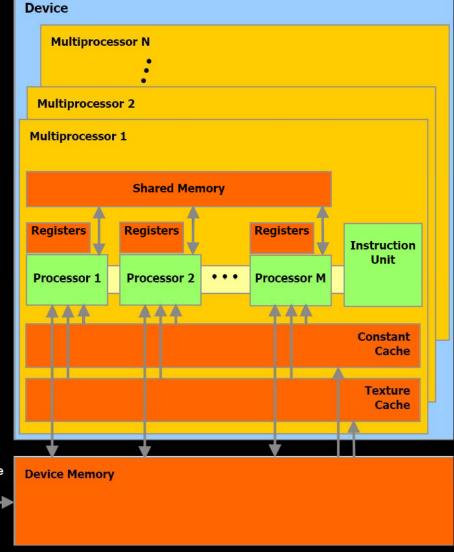
- OpenGL buffer objects can be mapped into the CUDA address space and then used as global memory
 - Vertex buffer objects
 - Pixel buffer objects
- Allows direct visualization of data from computation
 - No device to host transfer with Quadro or GeForce
 - Data stays in device memory very fast compute / viz
 - Automatic DMA from Tesla to Quadro (via host for now)
- Data can be accessed from the kernel like any other global data (in device memory)

Graphics Interoperability

- Register a buffer object with CUDA
 - cudaGLRegisterBufferObject(GLuint buffObj);
 - OpenGL can use a registered buffer only as a source
 - Unregister the buffer prior to rendering to it by OpenGL
- Map the buffer object to CUDA memory
 - cudaGLMapBufferObject(void **devPtr, GLuint buffObj);
 - Returns an address in global memory
 - Buffer must be registered prior to mapping
- Launch a CUDA kernel to process the buffer
- Unmap the buffer object prior to use by OpenGL
 - cudaGLUnmapBufferObject(GLuint buffObj);
- Unregister the buffer object
 - cudaGLUnregisterBufferObject(GLuint buffObj);
 - Optional: needed if the buffer is a render target
- Use the buffer object in OpenGL code

Moving Data to/from Device Memory

Host Memory Device Memory Shared Memory COMPUTATION **Shared Memory Device Memory Host Memory**

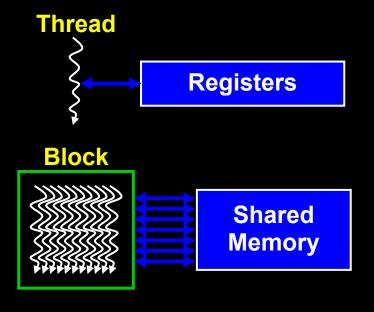


Host Memory PCI-e Bus

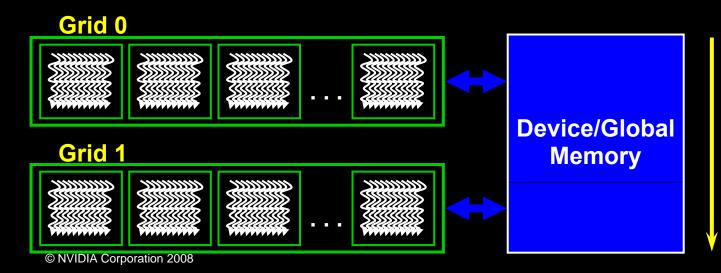
Device and Shared Memory Access

- SM's can access device memory at 80 GB/s
- But, with hundreds of cycles of latency!
- Pipelined execution hides latency
- Each SM has 16KB of shared memory
 - Essentially a user managed cache
 - Latency comparable to registers
- Reduces load/stores to device memory
- Threads cooperatively use shared memory
- Best case multiple memory access per thread, maximum use of shared memory

Parallel Memory Sharing



- Registers: per-thread
 - Private per thread
 - Auto variables, register spill
- Shared Memory: per-block
 - Shared by threads of block
 - Inter-thread communication
- Device Memory: per-application
 - Shared by all threads
 - Inter-Grid communication



Sequential Grids in Time

Shared memory as a cache


```
P[idx].pos = P[idx].pos + P[idx].vel * dt;
P[idx].vel = P[idx].vel + P[idx].force / mass;
```

- Data is accessed directly from device memory in this usage case
- .vel is accessed twice (6 float accesses)
- Hundreds of cycles of latency each time
- Make use of shared memory?

Shared memory as a cache


```
__shared__ float3 s_pos[N_THREADS];
__shared__ float3 s_vel[N_THREADS];
__shared__ float3 s_force[N_THREADS];
int tx = threadldx.x;
idx = threadldx.x + blockldx.x*blockDim.x;
s_pos[tx] = P[idx].pos;
s_vel[tx] = P[idx].vel;
s_force[tx] = P[idx].force;
s_pos[tx] = s_pos[tx] + s_vel[tx] * dt;
s_vel[tx] = s_vel[tx] + s_force[tx] / mass;
P[idx].pos = s_pos[tx];
P[idx].vel = s_vel[tx];
```

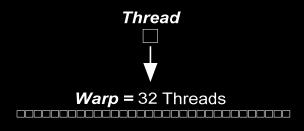
NVIDIA Parallel Execution Model

Thread

Thread:

- Runs a kernel program and performs the computation for 1 data item.
- Thread Index is a built-in variable
- Has a set of registers containing it's program context

NVIDIA multi-tier data parallel model



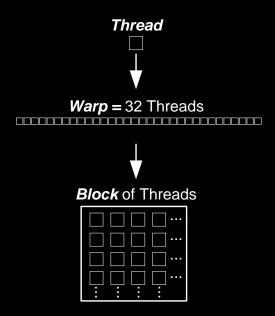
Warp:

- 32 Threads executed together
- Processed in SIMT on SM
- All threads execute all branches

Half Warp:

- 16 Threads
- Coordinated memory access
- Can coalesce load/stores in batches of 16 elements

NVIDIA multi-tier data parallel model

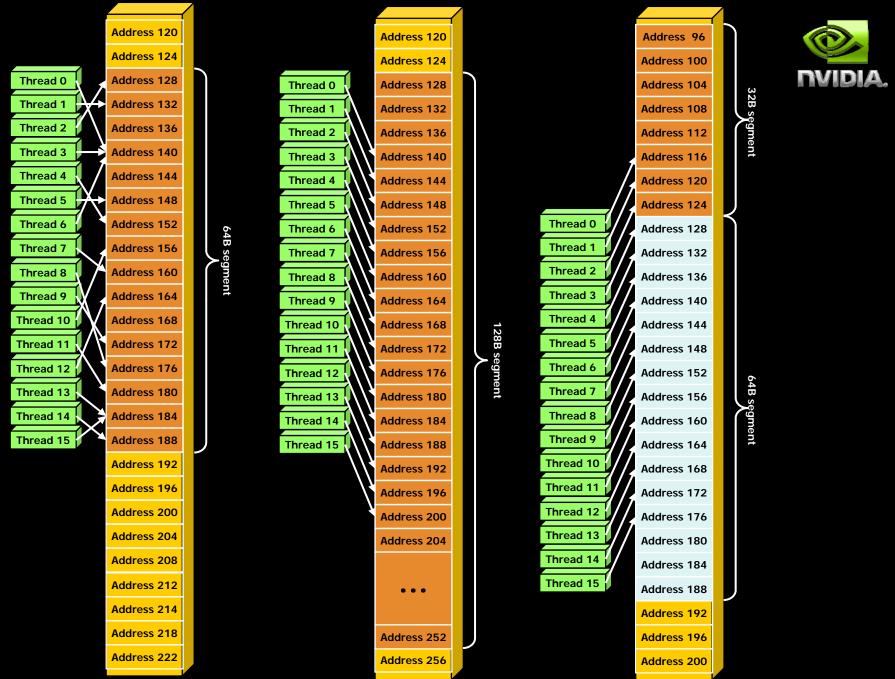


Block:

- 1 or more warps running on the same SM
- Different warps can take different branches
- Can synchronize all warps within a block
- Have common shared memory for extremely fast data sharing

Coalesced Device Memory Access

- When half warp (16 threads) accesses contiguous region of device memory
- 16 data elements loaded in one instruction
 - int, float: 64 bytes (fastest)
 - int2, float2: 128 bytes
 - int4, float4: 256 bytes (2 transactions)
- Regions aligned to multiple of size
- If un-coalesced, issues 16 sequential loads



Particle Simulation Example Worst Case for Coalescing!


```
struct particleStruct{
    float3 pos;
    float3 vel;
    float3 force;
};
```

Thread Load pos.x					15 540
Load pos.z	8	44	80	118	548

Coalesced Memory Access

- Use structure of arrays instead
 - float3 pos[nParticles]
 - float3 vel[nParticles]
 - float3 force[nParticles]
- Accesses coalesced within a few segments

Thread Load pos[idx].x					15 180
Load pos[idx].z	8	20	32	44	188

Only using 1/3 bandwidth - Not ideal

Better Coalesced Access Option 1 – Structure of Arrays

float posz[nParticles];

• Have separate arrays for pos.x, pos.y,... float posx[nParticles]; float posy[nParticles];

Thread	0	1	2	3	15
Load posx[idx]	0	4	8	12	60
Load posy[idx]	64	68	72	76	124
Load posz[idx]	128	132	136	140	188
All threads of war	p with	in 64b	yte reg	jion – 2	2x

© NVIDIA Corporation 2008 34

Better Coalesced Access Option 2 - Typecasting

Load as array of floats (3x size), then typecast to array of float3 for convenience

float fdata[16*3]

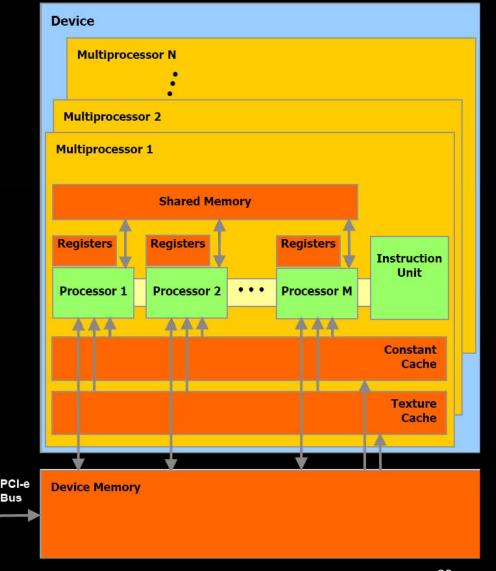
Thread	0	1	2	3	15
Load fdata[i+0]	0	4	8	12	60
Load fdata[i+16]	64	68	72	76	124
Load fdata[i+32]	128	132	136	140	188

float3* pos = (float3*)&fdata

Shared Memory and Computation

Host Memory
Device Memory
Shared Memory
COMPUTATION
Shared Memory
Device Memory
Host Memory

Host Memory



Details of Shared Memory

- Many threads accessing memory
 - Therefore, memory is divided into banks
 - Essential to achieve high bandwidth
- Each bank can service one address per cycle
 - A memory can service as many simultaneous accesses as it has banks
- Multiple simultaneous accesses to a bank result in a bank conflict
 - Conflicting accesses are serialized

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

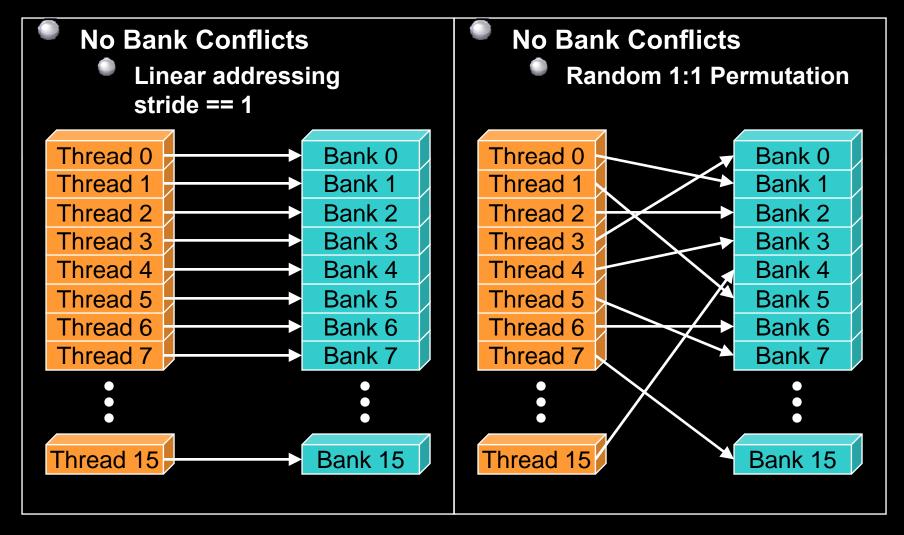
Bank 6

Bank 7

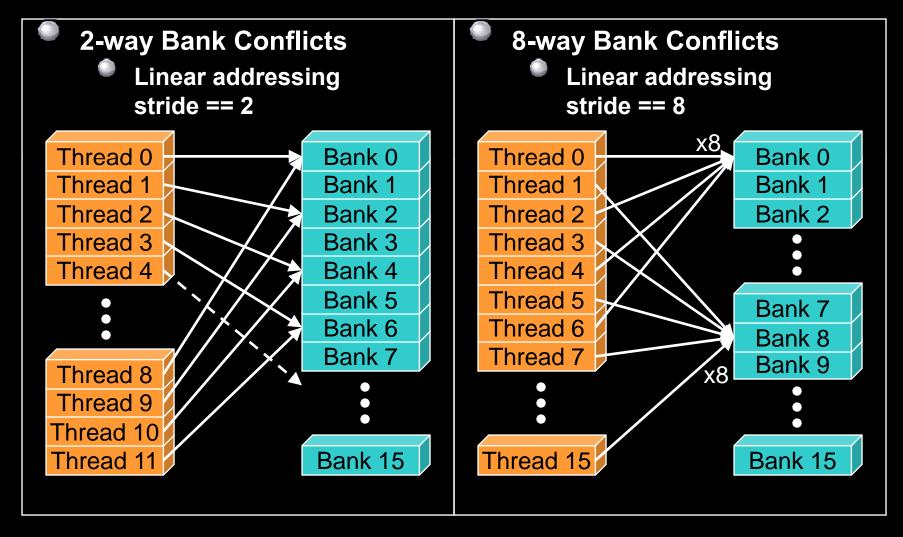
•

Bank 15

Bank Addressing Examples



Bank Addressing Examples



Shared memory bank conflicts

- Shared memory access is comparable to registers if there are no bank conflicts
- Use the visual profiler to check for conflicts
 - warp_serialize signal can usually be used to check for conflicts
- The fast case:
 - If all threads of a half-warp access different banks, there is no bank conflict
 - If all threads of a half-warp read the identical address, there is no bank conflict (broadcast)
- The slow case:
 - Bank Conflict: multiple threads in the same half-warp access the same bank
 - Must serialize the accesses
 - Cost = max # of simultaneous accesses to a single bank.

Shared Memory Access - Particles

- Arrays of float3 in shared memory
 - float3 s_pos[N_THREADS]
- Do any threads of a half-warp access same bank?

```
Thread 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 s_pos.x 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 bank 0 3 6 9 12 15 2 5 8 11 14 1 4 7 10 13
```

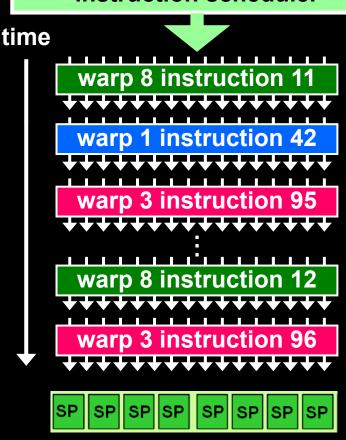
- No bank conflicts ©
- Always true when stride is a prime of 16

Optimizing Computation

- Execution Model Details
- SIMT Multithread Execution
- Register and Shared Memory Usage
- Optimizing for Execution Model
- 10-series Architecture Details
- Single and Double Precision Floating Point
- Optimizing Instruction Throughput

SIMT Multithreaded Execution

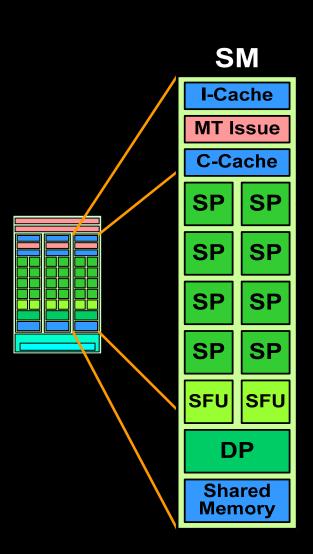
Single-Instruction Multi-Thread instruction scheduler



- SIMT: Single-Instruction Multi-Thread
- Warp: the set of 32 parallel threads that execute a SIMT instruction
- Hardware implements zero-overhead warp and thread scheduling
- Deeply pipelined to hide memory and instruction latency
- SIMT warp diverges and converges when threads branch independently
- Best efficiency and performance when threads of a warp execute together

Register and Shared Memory Usage

- Registers
 - Each block has access to a set of registers on the SM
 - 8-series has 8192 32-bit registers
 - 10-series has 16384 32-bit registers
 - Registers are partitioned among threads
 - Total threads * registers/thread should be < number registers</p>
- Shared Memory
 - 16KB of shared memory on SM
 - If blocks use <8KB, multiple blocks may run on one SM</p>
 - Warps from multiple blocks



Optimizing Execution Configuration

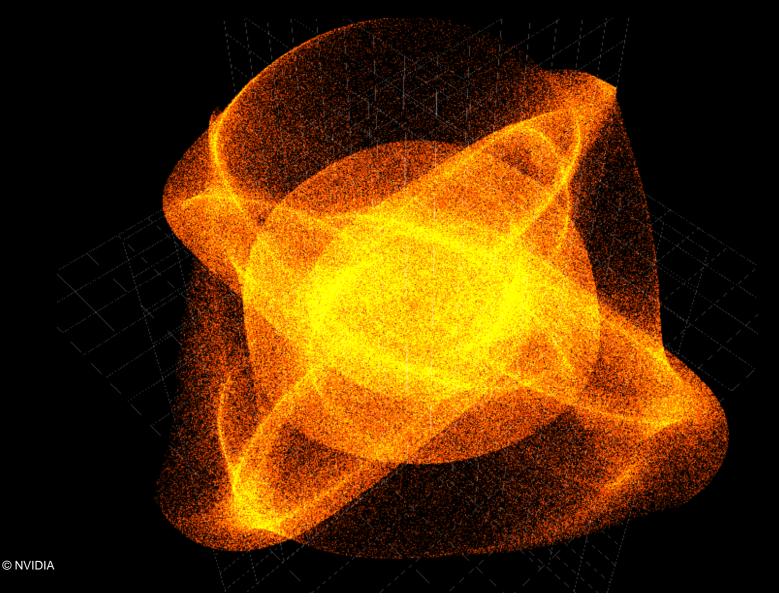
- Use maximum number of threads per block
 - Should be multiple of warp size (32)
 - More warps per block, deeper pipeline
 - Hides latency, gives better processor occupancy
 - Limited by available registers
- Maximize concurrent blocks on SM
 - Use less than 8KB shared memory per block
 - Allows more than one block to run on an SM
 - Can be a tradeoff for shared memory usage

Maximize Arithmetic Intensity

- Particle simulation is still memory bound
- How much more computation can we do?
- Answer is almost unbelievable 100x!
- DEMO: 500+ GFLOPS!
- Can use a higher-order integrator?
 - More complex computationally
 - Can take much larger time-steps
 - Computation vs memory access is worth it!

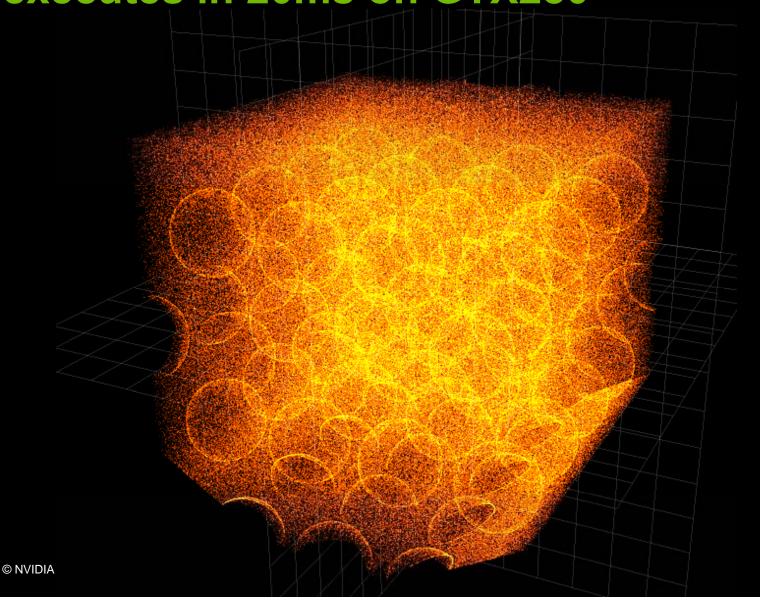
1M particles x 100 fields Executes in 8ms on GTX280

47



1M particles x 100 collision spheres executes in 20ms on GTX280

48



Particle Simulation Optimization Summary

- Page-lock host memory
- Asynchronous host-device transfer
- Data stays in device memory
- Using shared memory vs. registers
- Coalesced data access
- Optimize execution configuration
- Higher arithmetic intensity

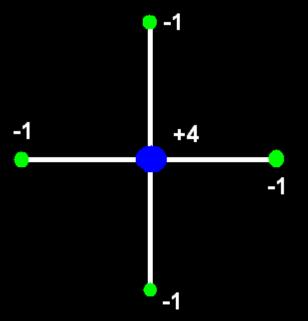
Finite Differences Example

Solving Poisson equation in 2D on fixed grid

$$\Delta u = f$$

$$u = u(x,y)$$
$$f = f(x,y)$$

Gauss-Seidel relaxation 5 – point stencil



Usual Method

Solve sparse matrix problem:

$$A^*u = -f$$
 (use $-f$ so A is pos-def)

Bottlenecked by Memory Throughput

- Matrix is N*N, where N is N_x*N_v
- Even a sparse representation is N*M
- u and f are of size N
- Memory throughput = N * (M + 2) per frame
- For a 1024x1024 grid, N = 1 million
- For a 2nd order stencil, M = 5
- For double precision: 1M * 8 * (5+2) = 56MB
- Host to device memory transfer takes 10.7ms
- Device memory load/store time 0.7ms?

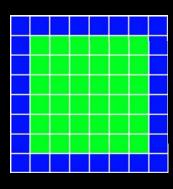
Improving Performance

53

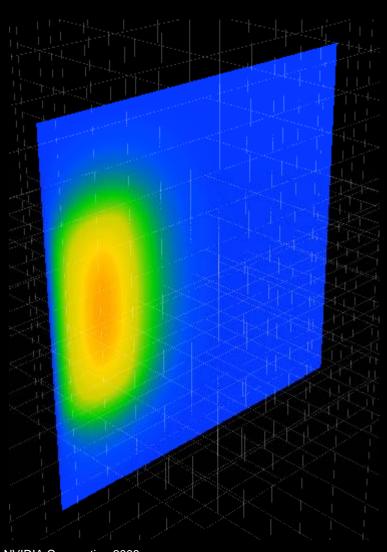
- Transfer data host to device once at start
 - 56MB easily fits on a 10-series card
- Iterate to convergence in device memory
- Use shared memory to buffer u
 - 4x duplicated accesses per block
- Use constant memory for stencil? (no matrix)
- Use texture memory for ρ? (read-only)

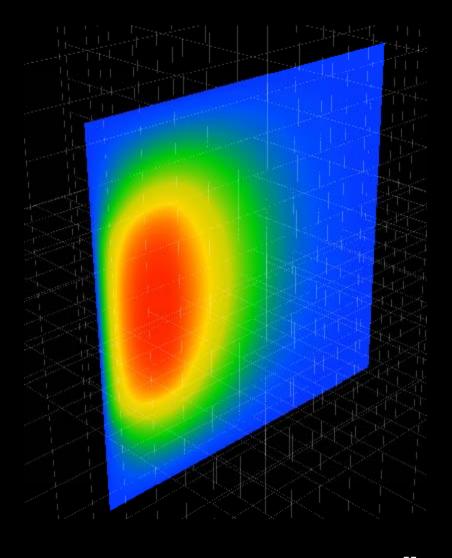
Using Shared MemoryFinite Difference Example

- Load sub-blocks into shared memory
 - 16x16 = 256 threads
 - 16x16x8 = 2048 KB shared memory
 - Each thread loads one double
- Need to synchronize block boundaries
 - Only compute stencil on 14x14 center of cell
 - Load ghost cells on edges
 - Overlap onto neighbor blocks
 - Only 2/3 of threads computing?



512x512 grid, Gauss-Seidel Executes in 0.23ms on GTX280





© NVIDIA Corporation 2008

55

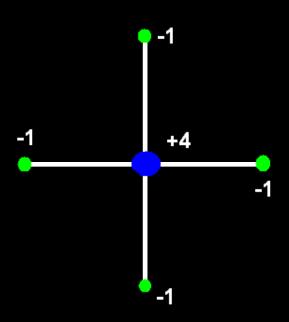
Constant Memory

- Special section of device memory
 - Read only
 - Cached
- Whole warp, same address one load
- Additional load for each different address
- Constant memory declared at file scope
- Set by cudaMemcpyToSymbol(...)

Using Constant Memory Finite Difference Example

Declare the stencil as constant memory

constant double stencil[5]



Texture Memory

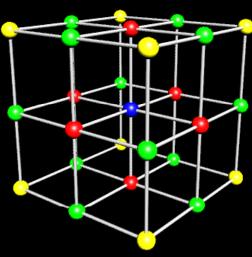
- Special section of device memory
 - Read only
 - Cached by spatial location (1D, 2D, 3D)
- Best performance
 - All threads of a warp hit same cache locale
 - High spatial coherency in algorithm
- Useful when coalescing methods are impractical

Using Texture MemoryFinite Difference Example

- Declare a texture ref
 - texture<float, 1, ...> fTex;
- Bind f to texture ref via an array
 - cudaMallocArray(fArray,...)
 - cudaMemcpy2DToArray(fArray, f, ...);
 - cudaBindTextureToArray(fTex, fArray ...);
- Access with array texture functions
 - $^{\odot}$ f[x,y] = tex2D(fTex, x,y);

Finite Difference Performance Improvement

- Maximize execution configuration
 - 256 threads, each loads one double
 - 16 registers * 256 threads = 4096 registers
 - Ok for both 10-series, 8-series ©
- Maximize arithmetic intensity for 3D
 - 27-point, 4th order stencil
 - Same memory bandwidth
 - More compute
 - Can use fewer grid points
 - Faster convergence



General Rules for Optimization Recap

- Optimize memory transfers
 - Minimize memory transfers from host to device
 - Use shared memory as a cache to device memory
 - Take advantage of coalesced memory access
- Maximize processor occupancy
 - Use appropriate numbers of threads and blocks
- Maximize arithmetic intensity
 - More computation per memory access
 - Re-compute instead of loading data