
ar
X

iv
:1

71
1.

00
27

0v
1

 [c
s.

D
C

]
1

N
ov

 2
01

7

Determination of Checkpointing Intervals for

Malleable Applications

1K. Raghavendra, 2Sathish S Vadhiyar
1Department of Computer Science and Engineering, Indian Institute of Technology, Madras, India
2Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India

raghavendra83@gmail.com, vss@iisc.ac.in

Abstract—Selecting optimal intervals of checkpointing an ap-
plication is important for minimizing the run time of the
application in the presence of system failures. Most of the
existing efforts on checkpointing interval selection were developed
for sequential applications while few efforts deal with parallel
applications where the applications are executed on the same
number of processors for the entire duration of execution. Some
checkpointing systems support parallel applications where the
number of processors on which the applications execute can
be changed during the execution. We refer to these kinds of
parallel applications as malleable applications. In this paper, we
develop a performance model for malleable parallel applications
that estimates the amount of useful work performed in unit time
(UWT) by a malleable application in the presence of failures as
a function of checkpointing interval. We use this performance
model function with different intervals and select the interval
that maximizes the UWT value. By conducting a large number
of simulations with the traces obtained on real supercomputing
systems, we show that the checkpointing intervals determined
by our model can lead to high efficiency of applications in the
presence of failures.

I. INTRODUCTION

With the development of high performance systems with

massive number of processors[1] and long running scal-

able scientific applications that can use the processors for

executions[2], the mean time between failures (MTBF) of

the processors used for a single application execution has

tremendously decreased[3]. Hence many checkpointing sys-

tems have been developed to enable fault tolerance for appli-

cation executions[4], [5], [6], [7], [8]. A checkpointing system

periodically saves the state of an application execution. The

application, in the event of a failure, rolls back to the latest

stored or checkpointed state and continues execution.

Recent efforts in checkpointing systems are related to the

development of parallel applications that can change the

number of processors during execution[8], [6]. We refer to

these kinds of parallel applications as malleable applications.

Malleable parallel applications are highly useful in systems

with large number of nodes where the resource availability can

vary frequently. In these systems, upon failures of processors

used for processor execution, the application can be made to

execute on the available processors rather than waiting for

the failed processors to be repaired. Malleable applications

This work is supported by Department of Science and Technology, India.
project ref no. SR/S3/EECE/59/2005/8.6.06

can also make use of the nodes that become available during

execution.

One of the important parameters in a checkpointing system

that provides fault tolerance is the checkpointing interval or

the period of checkpointing the application’s state. Smaller

checkpointing intervals lead to increased application execution

overheads due to checkpointing while larger checkpointing

intervals lead to increased times for recovery in the event of

failures. Hence, optimal checkpointing intervals that lead to

minimum application execution time in the presence of failures

will have to be determined. Large number of efforts have

developed techniques for determining optimal checkpointing

intervals[9]. These techniques were primarily developed for

sequential applications. They also consider parallel applica-

tions where the number of processors used by an application

remains constant throughout execution. We refer to these kinds

of parallel applications as moldable applications.

In this paper, we develop strategies for determining efficient

checkpointing intervals for malleable parallel applications.

To our knowledge, ours is the first effort for malleable

applications. Our work is based on the work by Plank and

Thomason[10] for finding checkpointing intervals and suitable

number of processors for executing moldable parallel applica-

tions with minimal execution time in the presence of failures.

We extend their Markov models to incorporate states and

transitions that allow reconfiguration of applications from one

processor configuration to another in the event of failures. The

states of our Markov model are automatically determined from

a specified reconfiguration policy. We use different checkpoint-

ing and recovery overheads for different states corresponding

to different number of processors. We also define and use a

new metric for evaluation of a checkpointing interval for a

malleable application, namely, the amount of useful work per

unit time (UWT) performed by the application in the presence

of failures. Our Markov model is used to estimate the UWT of

an application as a function of checkpointing interval. We use

this performance model function with different checkpointing

intervals and select the interval that maximizes the UWT

value. To reduce the modeling time, we have developed

techniques for eliminating low probable states and transitions,

and parallelized the steps for building the model.

We evaluate the efficiency of our model by using the optimal

checkpointing intervals determined by our model in trace-

based simulations and finding the total amount of useful work

http://arxiv.org/abs/1711.00270v1

performed by an application in the presence of failures. Our

simulations were conducted with large number of failure traces

obtained on both dedicated batch systems for a 9-year period

on 8 parallel systems and non-dedicated volatile workstations,

for three parallel applications, and with three recovery or

rescheduling policies. We show that checkpointing intervals

determined by our models lead to greater than 80% application

efficiency in terms of useful work performed by the application

in the presence of failures.

Following are our primary contributions.

1. Developing a model for execution of malleable applications

based on the the model by Plank and Thomason for moldable

applications. This includes significant extensions to the origi-

nal model including different definitions for the states of the

model, and automatic determination of the states and transition

probabilities based on reconfiguration or rescheduling policies.

2. Definition of a new metric for evaluating checkpointing

intervals for malleable applications.

3. Optimizing the model by elimination of states and employ-

ing parallelism.

4. Extensive simulations with real world failure traces for

different applications and with different rescheduling policies.

Section II summarizes the work by Plank and Thomason on

modeling moldable applications. Section III describes in detail

our model for malleable parallel applications and the metric

used for evaluation of checkpointing intervals determined by

our model. Section IV explains the optimizations of the model

framework. Section V describes the rescheduling policies

used by our model. In Section VI, we describe the various

simulation experiments we conducted to show the efficiency of

the checkpointing intervals determined by our models. Section

VII presents related work in the area. Section VIII gives

conclusions and Section IX presents future work.

II. BACKGROUND: CHECKPOINT INTERVALS FOR

MOLDABLE APPLICATIONS

The work by Plank and Thomason[10] developed a finite-

state Markov chain based performance model to characterize

the execution of long running moldable parallel application

in the presence of failures. They use the model to find the

checkpointing interval, I , and the number of processors, a, for

execution of a long running application in a system with N
(N > a) processors. Their goal is to minimize the running

time of the application in the presence of failures. Spare

processors are defined as candidate processors for replacing a

processor that failed during application execution. The number

of spare processors, S, is N−a. L is the checkpointing latency

or the total time spent for checkpointing and C is defined as

the checkpointing overhead or the extra time incurred by the

application due to checkpointing. Typically, C < L due to

optimizations performed in checkpointing systems. R is the

time spent in recovery from a failure. The model assumes

exponential distribution for inter-occurrence times of failures

and repairs for a processor. λ denotes the failure rate and

θ denotes the repair rate for a single processor. Given a

trace of failures and repairs of a processor, the mean time to

Up

Down

Recovery

Failure of an active processorSpare available

No Failure of an active processor
within (R+I+L) seconds

Failure of an active processor

No spare available

within (R
+I+L) seconds

Failure of an active processor

Failure of an active processor

within (R+I+L) seconds
Spare available

Repair o
f a processor le

ading to

 a
ctive processors

a

No spare available

Fewer than active processorsa

Fig. 1. States and Transitions for Markov model for moldable applications,
Mmold

failure (MTTF) of the processor is calculated as the average

of times between failures of the processor. The mean time to

repair (MTTR) of a processor is calculated as the average of

times from when the processor fails to when the processor is

available for execution. For a multi-processor system, λ and θ
are calculated as the reciprocal of the average of MTTFs and

MTTRs, respectively, for all processors.

The Markov chain, Mmold, consists of three types of states,

namely, up, down and recovery, as shown in Figure 1. The

application is in an up state if at least a processors are

available for execution. If one of the processors used for the

execution of the application fails and the total number of

functional processors remaining in the system is less than a,

the application is halted and is considered to be in a down

state. The application remains in this state until some of the

failed processors are repaired and at least a processors become

available for execution again. In this case, the application goes

to a recovery state. The application also enters a recovery

state from an up state if after the failure of a processor

used during the execution, the number of remaining functional

processors is at least a. In the recovery state, the application

tries to recover from the previous checkpoint, spending R
seconds for rollback to the checkpointed state, and remains

in the recovery state until it creates a new checkpoint after

(I + L) seconds. If during the (R + I + L) seconds, none

of the processors fail, the application enters an up state and

continues execution. If one of the processors fails during

the recovery and spares are available for replacement of the

failed processor, the application enters another recovery state

and restarts the recovery process. However, if spares are not

available, the application enters a down state.

The Markov model, Mmold consists of S + 1 up states, S
recovery states and a down states. An up state denoted by

[U : s], 0 ≤ s ≤ S, corresponds to application execution on a
processors with s spare processors in the system at the time

[B:S] [B:S−1] [B:1] [B:0]

Fig. 2. Birth-Death Markov Chain Sτ

the state is entered. A recovery state denoted by [R : s], 0 ≤

s < S, corresponds to application recovery on a processors

with s spares available at the start of the recovery. When the

application exits an up state due to failure of one of the a
processors with s+ 1 spares available, it goes to [R : s] state

after replacing the failed processor with one of the s+1 spares.

After a span of (R+I+L) seconds in a recovery state, [R : s1],
the application enters an up state, [U : s2], where s2 is the

number of spares in the system when the up state is entered.

If an application exits an up state due to failure of one of the

a processors and the total number of functional processors in

the systems is a − 1, the down state, [D : a − 1], is entered.

The down state denoted by [D : p], 0 ≤ p < a, represents the

system with only p processors available. The recovery state,

[R : 0], is entered from a down state, [D : a−1], after repair of

a failed processor resulting in exactly a functional processors.

The probabilities of transitions from the states in Mmold are

based on the number of functional spares available after the

exits of the states. These probabilities are calculated using a

birth-death Markov chain, Sτ , that helps find the probability of

starting with i spares and ending with j spares, 0 ≤ i, j ≤ S,

after τ seconds. The Markov chain, Sτ , consists of S+1 states,

denoted [B : s], 0 ≤ s ≤ S, , as shown in Figure 2. Each state,

[B : s], corresponds to s functional spares and S−s processors

under repair. Transition out of a state [B : s] is either to the

state [B : s− 1] corresponding to failure of a single processor

with probability sλ or to [B : s+1] corresponding to repair of

a processor with probability (S−s)θ. The states are numbered

1 to S+1 from left to right such that state i represents S−i+1
functional spares.

A (S + 1) × (S + 1) square matrix, R, of instantaneous

probabilities is defined as:

R =















−Sλ Sλ · · · 0 0
θ −((S − 1)λ+ θ) · · · 0 0
...

...
...

...
...

0 0 · · · −(λ+ (S − 1)θ) λ
0 0 · · · −Sθ Sθ















(1)

The matrix R is used to calculate a (S + 1) × (S + 1)
matrix, QS,τ = [qS,τi,j], shown in Equation 2, where the [i, j]
entry is the probability that the Markov chain Sτ starting in

state i enters state j after τ seconds. Thus qS,τS−i+1,S−j+1 is

the probability of starting with i functional spares and ending

with j spares after τ seconds.

QS,τ = expm(Rτ) (2)

expm(Rτ) is the matrix exponential of Rτ .

If fτ is the probability density function of the TTF (time

to failure) random variable τ , the likelihoods of transitions

between the states in Sτ are given by the (S + 1)× (S + 1)
matrix:

[qSij] =

∫

t

QS,tfτ (t)dt (3)

The transition probabilities in the original Markov model,

Mmold, are calculated using the QS,τ and [qSij] matrices of the

birth-death Markov chain, Sτ . We illustrate the calculations

for probabilities of transitions from the recovery states. For

successful transitions from recovery to up states in Mmold, a

failure must not occur within δ = R + I + L seconds. The

probability of no active processor failure during the interval

[0, δ] is e−aλδ. The probabilities of the specific up states

after transitions are given by QS,δ, obtained by substituting

δ for τ in Equation 2. Thus, the probability of transition from

[R : i] to [U : j] is (e−aλδ)(qS,δS−i+1,S−j+1). The probability

of an active processor failure within δ seconds is 1 − e−aλδ.

The failure results in a transition to a recovery state or the

down state [D : a − 1] depending on the number of spares.

The probability density function of the TTF random variable

τ is aλ−aλτ and is conditioned on τ being in the interval

[0, δ]. Thus substituting fτ (t) = aλ−aλt

1−e−aλδ in Equation 3 and

integrating over the interval [0, δ], the matrix of likelihoods,

QRec,S = [qRec,S
ij], of transitions between the states in Sτ

is calculated. The probability of a transition from [R : i] to

[R : j] in Mmold is then (1 − e−aλδ)qRec,S
S−i+1,S−j+1 and to

[D : a − 1] is (1 − e−aλδ)qRec,S
S−i+1,S+1. Similar calculations

are used to find the transition probabilities from the up and

down states and are explained in [10]. For finding the transition

probabilities from the up states, the matrix of likelihoods,

QUp,S = [qUp,S
i,j], is used. QUp,S is calculated by substituting

fτ (t) = aλe−aλt in Equation 3 and integrating over the

interval [0,∞]. The integral equations for the calculations of

transition probabilities from the up and recovery states, using

Equation 3, are solved by computing the eigen values and

eigen vectors of the R matrix, shown in Equation 1. These

solutions are also described in detail in [10]. The calculated

probabilities of transitions in Mmold are represented by a

square matrix, Pmold, with the number of rows or columns

equal to the total number of up, recovery and down states,

and row of Pmold corresponds to a state of Mmold such that

Pmold
i,j is the probability of transition from state i to state j in

Mmold.

Each transition, i, j, in Mmold is also weighted by Ui,j ,

the average amount of useful time or uptime spent by the

application in the state corresponding to the start of the

transition and Di,j , the non-useful or down time spent by

the application in the state. The uptime is the time spent

by the application performing useful work and is equal to

the failure-free running time of the application not enabled

with checkpointing. The down time includes the time spent

in checkpointing, C, recovery, R, recomputation of work lost

due to a failure, and the time spent in the down states. For

example, for a transition from a recovery state [R : i] to an

up state [U : j], the useful time, Ui,j = I and the down

time, Di,j = R + L. For a transition to another recovery

state, [R : j], a failure must have occurred within the δ
seconds. Thus, the useful time, Ui,j = 0 and the down time,

Di,j = 1
aλ

− δ e−aλδ

1−e−aλδ , the MTTF (mean time to failure)

conditioned on failure within δ seconds. The useful and down

times for the other transitions are calculated similarly and

are shown in the work by Plank and Thomason[10]. Thus

square matrices, U and D are constructed corresponding to

the transition matrix, Pmold.

The long-run properties of Mmold, where Mmold is taken

through a large number of transitions, are used to find the long-

run probability of the occupancy of state i. This is given by

the entry πi in the unique solution of the matrix equation,

Π = ΠPmold. If Mmold is taken through n transitions

randomized according to the transition probabilities, and if ni

is the number of occurrences of state i during those transitions,

then

πi = lim
n→∞

ni

n+ 1
(4)

Since each visit to state i is followed by probabilistic selection

of an exit transition, the limiting relative frequency of occur-

rence of transition i → j is the joint probability πiP
mold
i,j .

Thus, for a long-running task, Ui,jπiP
mold
i,j and Di,jπiP

mold
i,j

are the expected contributions of useful and non-useful times,

respectively, due to the relative frequency of transition i → j.

The availability, Aa,I , for a given number of processors, a,

used for execution and a given checkpointing interval, I , is

the ratio of the mean useful time spent per transition to the

mean total time per transition and is calculated as:

Aa,I =

∑

i,j Ui,jπiP
mold
i,j

∑

i,j(Ui,j +Di,j)πiPmold
i,j

(5)

By trying different values for a and I, the work by Plank

and Thomason chooses a and I that minimize the expected

execution time of the application in the presence of failures,

RTa/Aa,I , where RTa is the estimated failure-free execution

time.

III. CHECKPOINT INTERVALS FOR MALLEABLE

APPLICATIONS

Few checkpointing systems enable malleable applications

where the number of processors used for execution can be

changed during the execution. In our model for executing

malleable applications in a system consisting of N processors,

instead of choosing a fixed number of processors, a, at the

beginning of execution, the number of processors for execution

is chosen at different points in application execution. The

number of processors chosen at a particular point of execution

is a function of the number of functional processors available

at that point and is specified by a rescheduling policy. The

rescheduling policy is denoted by a vector, rp, of size N where

rpi denotes the number of processors that will be selected for

application execution given i functional processors. The vector

rp is specified as input to our model. Section V explains the

different kinds of rescheduling policies employed in this work.

In this section, we describe our Markov model for execution

of malleable applications, the inputs and outputs of our model,

and the process of selecting the best checkpointing intervals

for malleable applications.

A. Markov Model

Our model for malleable applications also involves three

kinds of states, namely, up, down and recovery. In our model,

a long-running malleable parallel application initially starts

execution on rpi number of processors with i total number

of functional processors in the system at the beginning of

execution. At this point, the application is considered to

be in an up state. The application, after every I seconds,

stores a checkpoint, incurring an application overhead of Crpi

corresponding to rpi processors. For our work, we assume

that the checkpoint overhead, Crpi
is equal to the latency,

Lrpi
. When a processor used by the executing application fails,

the application is recovered on rpj processors corresponding

to j total number of functional processors available at the

time of failure. Thus the application makes a transition to

a recovery state. Recovery involves redistribution of data

in the application from the previous processor configuration

to the new configuration. Unlike for moldable applications,

the time taken for recovery, Rk,l, depends on the number

of processors, k, used by the application before failure and

the number of processors, l, on which the application will

be recovered. In the recovery state, the application tries

to recover from the previous checkpoint and create a new

checkpoint after (Rrpi,rpj
+ I +Crpj

) seconds. If during this

time, none of the processors involved in the recovery fails,

the application enters an up state. If one of the processors

involved in recovery fails, the application restarts the recovery

process in another recovery state. Thus in our model, the

checkpointing overhead and the rescheduling cost vary for

different states and transitions corresponding to the number of

active processors used for execution and recovery at different

points of execution. The application goes to a down state if the

total number of functional processors in the system is less than

the minimum number of processors required for execution.

Without loss of generality, for this work, we assume that the

application can execute on a single processor. Hence there is

only one down state in our model corresponding to failure

of all processors in the system. The states and transitions for

our model for malleable applications are illustrated in Figure

3. Comparing with Figure 1, the corresponding figure for

moldable applications, we find that the primary difference is

in terms of the transitions to and from the down state.

In our Markov model, Mmall, for malleable applications,

an up state is denoted by [U : a, s] where 1 ≤ a ≤ N is the

number of active processors used for execution of application

in the state and 0 ≤ s ≤ S is the number of spare processors

corresponding to the state. S (= N − a) is the maximum

number of spares in the system corresponding to a active

processors. Thus the total number of up states in Mmall is

equal to
N(N+1)

2 . A recovery state is similarly denoted by

[R : a, s] where 1 ≤ a ≤ N is the number of active processors

on which the application is recovered and s is the number of

spare processors corresponding to the state. The recovery state

Up

Down

Recovery

Failure of an active processorSpare available

No Failure of an active processor
within (R+I+L) seconds

Failure of an active processor

Failure of an active processor

Failure of an active processor

within (R+I+L) seconds
Spare available

Repair o
f a processor

No functional processor

No functional processor

within (R
+I+L) seconds

No functional processor

Fig. 3. States and Transitions for Markov model for malleable applications,
Mmall

[R : a, s] corresponds to a unique element in the rescheduling

policy vector, rp. Specifically, [R : a, s] corresponds to

(a+s)th element in rp where (a+s) denotes the total number

of functional processors in the system and rp(a+s)(= a)
denotes the number of processors selected for recovery or

execution. Since the size of rp vector is N , the total number

of recovery states in Mmall is N . The exact recovery states

in our model are thus dependent on the specified rescheduling

policy and are dynamically determined.1

Relating this Markov model, Mmall, to the Markov model

for moldable applications, Mmold, the up states in Mmall

contain the up states in Mmold that correspond to given

number of active processors, a, for all possible values of a.

In Mmold, the recovery states for application recovery on a
processors correspond to the number of spares available at the

time of recovery. In Mmall, the recovery states correspond

to the total number of functional processors available at the

time of recovery and the actual number of processors used for

recovery can vary in different states.

The probabilities of transitions between the states in Mmall

are represented by a square matrix, Pmall, with the number

of rows or columns equal to the total number of up, recovery

and down states. In order to fill the entries in the matrix

for transitions from the states corresponding to application

execution or recovery on specific number of processors, a, with

S (= N − a) number of spares, a birth-death Markov chain,

Sτ , and the corresponding QS,τ , QUp,S and QRec,S matrices

are constructed in the same way as in the model, Mmold, for

moldable applications. However, unlike for Mmold, where a

single birth-death Markov model was constructed for modeling

execution on a fixed number of active processors, a (with S

1Note that the number of up states is not related to the entries in the
rescheduling policy vector, rp. The number of up states is not equal to N ,
the number of recovery states, since after recovery on a1 processors with
s1 spares as dictated by the rp vector, the application can enter an up state
[U : a1 : s2] with different number of spares, s2, available at the start of the
up state.

spares), we construct N such birth-death Markov models for

Mmall corresponding to execution on N possible number of

active processors with the corresponding number of spares and

obtain N corresponding Qs,τ , QUp,s and QRec,s matrices,

where 0 ≤ s < N .

These probabilities of transitions starting with a certain

number of spares and ending with another number of spares

are used to calculate the entries of the Pmall matrix. For a
number of active processors used for execution or recovery,

and S(= N−a) spares, an [i, j] entry in the matrix Pmall cor-

responding to a recovery-to-up transition is calculated based

on the [S − i + 1, S − j + 1] entry in the QRec,S similar

to the calculation of [i, j] entries in the Pmold matrix for

moldable applications. However, unlike in the construction

of Pmold, an entry [i, j] in the Pmall corresponding to a

transition to a recovery state cannot be calculated directly from

the corresponding [S − i + 1, S − j + 1] entry in the QUp,S

or QRec,S matrices. This is because the ending state of the

transition to a recovery state in Mmall not only depends on the

number of spares, but also on the number of active processors

used for recovery. The number of active processors in turn

depends on the rescheduling policy given by the rescheduling

policy vector, rp. For example, for a transition from an up

state, [U : a1 : s1] to a recovery state with s2 spares, the

[S− s1+1, S− s2] entry in the QUp,S matrix is used for the

calculation of probability of transition to the recovery state

[R : rp(s2+a1−1), s2] in the Pmall matrix. (s2 + a1 − 1)
is the total number of available functional processors at the

start of the recovery corresponding to s2 spares. This is the

sum of the number of spare processors and the number of

remaining active processors used for execution in the up state.

The number of remaining active processors at the end of

the up state is a1 − 1 since one of the active processors at

the beginning of the up state has failed during the execution

causing the application to transition to the recovery state.

rps2+a1−1(≤ (s2 + a1 − 1)) is the number of processors on

which the application will be recovered corresponding to the

total number of functional processors, (s2 + a1 − 1), and is

specified in the rescheduling policy.

B. Useful Work per Unit Time

For a moldable parallel application, the best checkpointing

interval, I , for a given number of processors, a, is selected

by trying different values for I , obtaining availability, Aa,I ,

for each value using the Markov model, and choosing the

interval for which RTa/Aa,I is minimum. Here, RTa is

the estimated failure-free execution time, and RTa/Aa,I is

the estimated executed time in the presence of failures for

the application. However this approach cannot be used for

finding the best checkpointing interval for malleable parallel

applications. This is because the number of processors used

for execution changes during the execution and hence changes

in the various states of our model, Mmall. Thus a single

failure free running time corresponding to a certain number

of processors cannot be used.

For malleable applications, we use a metric called total

useful work per unit time (UWT) defined as:

UWT =
WI

UI +DI

(6)

where WI is the total amount of useful work, and UI and DI

are the total up and down times for a checkpointing interval,

I . The up and down times are calculated as described in

Section II for moldable applications. For a state visited in our

model, Mmall, corresponding to certain number of processors,

a, let uptime be the total up time spent in the state. The

amount of useful work performed in the state, work, is the

estimated amount of computations that can be performed on

a processors in uptime seconds spent in the state and is

calculated as work = workinunittimea × uptime where

workinunittimea is the amount of computations that can

be performed on a processors in one second. For example,

for iterative regular parallel applications, workinunittimea
can be the number of iterations that can be completed by

the application in one second on a processors. The vector

workinunittime for different number of processors is given

as an input to our model, Mmall. WI for the complete model

for a specified checkpointing interval, I , is calculated by

accumulating the amount of useful work performed in all the

states visited in the model during execution.

Thus, a transition, (i → j), in Mmall is weighted by

the average up time, Ui,j , down time, Di,j , and the amount

of useful work performed by the application, Wi,j , in the

state corresponding to the start of the transition. The square

matrices, U, D and W are constructed corresponding to the

transition matrix, Pmall. Using the long-run properties of

Mmall, and calculating πi as in Mmold, the amount of useful

work per unit time, UWTI , for a given checkpointing interval,

I , is calculated as:

UWTI =

∑

i,j Wi,jπiP
mall
i,j

∑

i,j(Ui,j +Di,j)πiPmall
i,j

(7)

C. Selecting Checkpointing Intervals

The user specifies the following parameters for building our

model, Mmall:

1. N , λ and θ corresponding to the system,

2. a vector C corresponding to checkpointing of the application

for different number of processors,

3. a matrix R corresponding to recovery from a certain number

of processors to a different number of processors,

4. a vector workinunittime for the application,

5. a vector rp specifying the rescheduling policy, and

6. a checkpointing interval, I .

The model is used to obtain UWTI for a checkpointing inter-

val, I . By trying different values for I , the user chooses the

interval that maximizes the expected useful work performed

by the application per unit time.

Most of the parameters necessary for the user to select

efficient checkpointing intervals can be easily derived. For N ,

the user specifies the total number of processors available in

the system. Given a failure trace for a system, λ and θ can be

derived by observing the times between any two consecutive

failures and the times taken for repairs of a failed system,

respectively, and calculating the averages of the times. We have

developed programs that can be used with standard failure

traces to automatically calculate λ and θ.

The vectors, workinunittime and C, and the matrix, R,

are obtained by benchmarking the applications. Our work

on checkpointing intervals is primarily intended for long-

running large scientific applications. Such applications are

typically benchmarked by the users for different problem sizes

and number of processors for application development and

performance improvement. The user links his application with

a checkpointing library, executes parts of the application for

different configurations, and collects the times taken for the

executions. For example, for an iterative application, the user

executes the application for few iterations, finds the time taken

for execution of the iterations, and obtains the number of

iterations executed in a second or work performed by the appli-

cation in unit time. For checkpointing and recovery overheads,

the user obtains the times by inserting time stamps at the

beginning and end of the checkpointing and recovery codes,

respectively, in the checkpointing library. The checkpointing

and recovery codes are invoked as functions that are inserted

in the application codes in many checkpointing systems[6],

[8], and hence can be easily identified by the user. For

obtaining recovery overheads, the user can induce failures to

an executing application on a certain number of processors and

continue on a different number of processors. After obtaining

the work performed in unit time, checkpointing and recovery

overheads, for a certain set of processor configurations, the

user can construct the vectors, workinunittime and C, and

the matrix, R, respectively, for all number of processors

using either simple techniques including average, maximum

or minimum or complex strategies like extrapolations. The

vectors, workinunittime and C, and the matrix, R, are

constructed only once for a given application and system and

are used for multiple executions.

The complexity of constructing the rescheduling policy

vector, rp, depends on the complexity of the rescheduling

policy that the user wants to implement. A simple rescheduling

policy can be to continue the application on all the available

number of processors. In this case, the rescheduling policy

vector will simply contain integers ranging from 1 to N , the

total number of processors in the system. Some rescheduling

policies are discussed in Section V.

IV. IMPLEMENTATION AND OPTIMIZATIONS

We have developed MATLAB scripts for implementing

the process of selecting checkpointing intervals for mal-

leable applications. Our scripts are based on the MATLAB

scripts developed for moldable applications by Plank and

Thomason[10].

The number of up states in our model, Mmall, is O(N2).
In order to reduce the number of up states and hence the space

complexity and execution time of our model, we eliminate an

up state if the probabilities of transitions to the up state is less

than a threshold, thres. Large values of thres will result in

elimination of many up states and will result in high modeling

errors. Small values of thres will not eliminate significant

number of states and hence cannot significantly reduce the

space and time complexities of the model. Hence we choose

a value for thres that results in small modeling errors due

to elimination of states and significant number of eliminated

states. We conducted 750 different experiments by building our

model with different failure traces corresponding to different

λs, different checkpointing intervals, I , and different appli-

cation parameters, R and C. For each of these experiments,

we used eight different thresholds for thres, and executed the

resulting reduced models. We computed a score for a threshold

for an experiment as:

score = α(1.0 − threserror) + β(elims) (8)

where threserror (between 0.0−1.0) is the model error due to

elimination of the up states and is calculated as the percentage

difference between the UWT of the original model, Mmall,

and the UWT of the reduced model with some up states

eliminated. elims is the number of eliminated up states. α
is the weight associated with the modeling error and β is the

weight associated with the number of eliminated up states.

Large values of α result in high scores for thres values

that yield small modeling errors while large values of β
result in high scores for thres values that yield models with

large number of eliminated up states. Since modeling with

small errors is fundamental to the determination of efficient

checkpointing intervals, we used α values greater than β in

our equation for computation of a score corresponding to a

thres value. We performed many experiments with different

values of α and β such that α > β and chose α = 0.7 and

β = 0.3, since these values resulted in models with accuracies

closer to the original model and with significant number of

eliminated states and hence significant reduction in modeling

space and time complexity. We then find the threshold which

has the maximum score in most of our experiments. Based on

these experiments, we fixed thres as 0.0006. This threshold

of probability resulted in average number of eliminations of

27-54% of up states in our experiments.

To find the probabilities of transitions in our model, Mmall,

we construct N birth-death Markov chains, Sτ and N corre-

sponding matrices, QUp,S and QRec,S corresponding to N
different number of active processors used for application

execution. Since the computations of these matrices for a

certain number of active processors are independent of the

computations for a different number of active processors,

the construction of the birth-death Markov chains and the

computations in the resulting matrices for different number

of active processors can be parallelized resulting in reduced

execution times of our model. We adopted a master-worker

paradigm where the master program gives the next available

number of processors to a free worker for the calculations of

the corresponding transition probabilities. With these optimiza-

tions, the running time of our model for a given checkpointing

interval is approximately 2-10 minutes. The cost of determin-

ing a checkpointing interval, due to running the model, for an

application execution on a system with a given-failure trace

is a one-time cost for many executions. This is because the

selected checkpointing interval can be used multiple times for

the application executions until the failure rates on the system

change significantly.

V. RESCHEDULING POLICIES

Our Markov model for malleable applications, Mmall, is

constructed based on a rescheduling policy that decides the

number of processors for application execution for a given

total number of available processors at a point in the execution.

In this work, we consider three policies for rescheduling.

1. Greedy: In this policy, when an application recovers after

failure, it chooses all the available processors for continuing

the execution.

2. Performance Based (PB): In this policy, if a is the number

of processors available for execution, the application chooses

n processors, n ≤ a, for which the failure-free execution time

of the application, execT imen, is minimum.

3. Availability Based (AB): In this policy, the applica-

tion chooses n processors, n ≤ a, for which the average

number of failures, avgFailuren, is minimum. To calculate

avgFailuren using a failure trace for a system with a total of

N processors, n processors are randomly chosen from the N
processors in the system. The total number of failures for the

chosen n processors in the trace is calculated as totalFail.
For calculating totalFail, a failure is counted if at least one

of the n processors fail at a point of time in the failure trace.

totalFail is then divided by n to obtain avgTotalFail. This

is repeated for 50 different random choices of n processors

and the average of avgtotalFail values for the 50 random

choices is calculated as avgFailuren.

VI. EXPERIMENTS AND RESULTS

We evaluated our model using three different applications,

three different rescheduling policies and large number of

failure traces.

A. Failure Data

For our experiments, we used two kinds of failure traces.

One kind of failure trace corresponds to failure data collected

by and available at Los Alamos National Laboratory (LANL)

[11]. The data includes the times of failures and repairs of

the processors recorded over a period of 9 years (1996-2005)

on 22 different production high performance computing (HPC)

systems at LANL. For our work, we used two systems, system-

1 containing 128 processors and system-2 containing 512 pro-

cessors. The second kind of failure trace corresponds to execu-

tion traces of about 740 workstations in the Condor pool [12]

at University of Wisconsin recorded for a 18-month period

(April 2003 – October 2004).2 The Condor project allows

execution of guest jobs on workstations when they are not used

by their owners. When the workstation owners return, the guest

2We would like to thank Dr. Rich Wolski, UCSB, for providing sanitized
Condor traces without the host identifiers.

jobs are vacated. For the purpose of our study, we consider

use of a Condor pool for the execution of a parallel malleable

application where the application is a guest job to the Condor

workstations. We thus consider vacation of a guest job in the

Condor trace due to reclaiming of the workstation by its owner

as a failure of the parallel application. The application has to

be checkpointed and continued on a set of free workstations.

The resources in Condor pool are highly volatile with high

failure rates. We consider executing malleable applications

on such a volatile set of disparate resources. The use of

such volatile environments for parallel applications is largely

unclear. By conducting our experiments with the two kinds of

failure traces, one corresponding to dedicated production batch

systems and the other corresponding to highly non-dedicated

interactive systems, we attempt to evaluate the efficiencies of

the checkpointing intervals determined by our model for the

different kinds of environments with different failure rates. We

also analyze the variations in the checkpointing intervals for

the two environments.

B. Applications

We used three different parallel applications.

1. ScaLAPACK[13] linear system solver for solving over

determined real linear systems using QR factorization. The

specific kernel used was PDGELS. 2-D block cyclic distribu-

tion was used for the double precision matrix.

2. PETSc[14] Conjugate Gradient (CG) application to solve

a system of linear equations with a real symmetric positive

definite matrix.

3. Molecular dynamics simulation (MD) of Lennard-Jones

system systolic algorithm. N particles are divided evenly

among the P processes running on the parallel machine. The

calculation of forces is divided into P stages. The traveling

particles are shifted to the right neighbor processor in a ring

topology.

The three applications were executed on a 48-core AMD

Opteron cluster consisting of 12 2-way dual-core AMD

Opteron 2218 based 2.64 GHz Sun Fire servers with CentOS

4.3 operating system, 4 GB RAM, 250 GB Hard Drive and

connected by Gigabit Ethernet. We assume that the machines

corresponding to the failure traces are similar to the processors

in our cluster.

The applications were made malleable by instrumenting

them with function calls to SRS (Stop Restart Software), a

user-level semi-transparent checkpointing library for malleable

applications [8]. SRS provides functions for marking data

for checkpointing, reading checkpointed data into variables,

specifying the checkpointing locations and determining if the

application is continued from a previous run. The functions

for marking and reading checkpoint data also allow the users

to specify the data distribution followed for the different

variables. By determining the number of processors and the

data distributions, used for the current and the previous runs,

the SRS library automatically performs the redistributions of

data among the current available processors. An application

is executed for different problem sizes on a certain number

TABLE I
CHECKPOINTING (C) AND RECOVERY (R) OVERHEADS

C (secs.) R (secs.)
Application Min Avg Max Min Avg Max

QR 91.90 99.19 117.28 8.74 17.21 32.97

CG 8.96 9.55 9.75 8.89 12.56 15.12

MD 1.35 1.84 2.70 8.27 14.12 17.05

of processors, a, for a fixed number of iterations and the

average execution time is calculated. workinunittimea is

then obtained for the application for a processors by dividing

the number of iterations by the average execution time. The

average execution times for different number of processors

were also used to calculate the rescheduling policy vector, rp,

for the rescheduling policies.

To obtain a vector of checkpointing cost, C, and a matrix

for recovery cost, R, the application instrumented with SRS

was executed with different problem sizes on different number

of processors and the average times for checkpointing or

checkpointing overheads were obtained. These checkpointing

overheads were then extrapolated to larger number of proces-

sors using LAB Fit curve fitting tool[15] to form the vector of

checkpointing overheads, C. To form the matrix of recovery

costs, R, the instrumented application was started on a certain

number of processors, a1, stopped using SRS tools and imme-

diately continued on a different number of processors, a2. The

resulting recovery time between the stopping and continuing

execution on different number of processors is noted. This

was repeated for different problem sizes and the average of

the recovery times was used for the entry, [a1, a2] of the R
matrix. These costs were then extrapolated for larger number

of processors using LAB Fit.

Figure 4 shows the number of iterations performed in one

second or the workininuttime values extrapolated to 512

processors for the three applications. We find that the MD

application is highly scalable and performs more useful work

than the other applications. The QR application with large

number of matrix operations is less scalable than MD while

the CG application is the least scalable. Table I gives the

minimum, average and maximum of the checkpointing and

recovery overheads for the three applications for different

processor configurations. We find that the QR application has

the maximum checkpointing overhead since it checkpoints

large number of large-sized matrices while the MD and CG

applications mostly checkpoint vectors. The MD application

has the least checkpointing overhead since the checkpoints

consist of fewer data structures. The recovery overheads are

mostly the same in all applications since recovery involves

simultaneous data redistributions between the processors.

C. Evaluation

For an application with a given workinunittime, C, R, and

rp, our models were invoked for different execution segments

for the failure traces of a system. A given execution segment

for a failure trace on a system of N processors, corresponds

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

Number of Processors

w
or

ki
nu

ni
tti

m
e

workinunittime for MD, QR, and CG applications

MD

CG
QR

Fig. 4. workininuttime values for the applications

to a random start time, start, and random duration, dur, for

application execution. Based on start, λ and θ are calculated

for the execution segment using the history of failures that

occurred on the processors before start. Our model, Mmall,

is invoked with the parameters, workinunittime, C, R, rp,

N , λ and θ for a given application, and execution segment for

a failure trace of a system, with different values of I .

We have developed a simulator to assess the quality of

the checkpointing intervals determined by our model for an

application execution on an execution segment. Our simulator

uses the same inputs to our model along with duration, dur,

for simulating the application execution that started at start
point in the failure trace and executed for dur seconds.

At start, the simulator considers the number of available

processors and based on the rescheduling policy, rp, chooses a

set of available processors, a1, for application simulation. The

simulator then simulates application execution by advancing

the time and accumulating checkpointing intervals, I to the

useful computation time, ua1
. After every I seconds, the

simulator simulates application checkpointing by advancing

Ca1
seconds in time. This is repeated until a failure occurs in

one of the a1 processors. At this point, the simulator calculates

the amount of useful work spent on a1 processors, uwa1
as

uwa1
= workinunittimea1

× ua1
. It accumulates uwa1

to

total amount of useful work, UW . After failure, the simulator

once again considers the number of available processors. If

none of the processors are available, the simulator adds the

time corresponding to waiting for one of the processors to be

repaired for application continuation. At that point in time, the

simulator considers the total number of available processors,

and based on the rescheduling policy, rp, chooses another set

of available processors, a2, for application execution. Based

on the previous and current set of processors for application

execution, a1 and a2, respectively, the simulator advances the

time by Ra1,a2
seconds for recovery. After recovery, the simu-

lator once again advances time by accumulating checkpointing

intervals, I , until one of the processors in a2 fails at which

point it calculates the useful work spent in a2 processors,

uwa2
, and adds this to total useful time, UW . This process

continues until the simulator reaches start + dur seconds of

time, at which point it outputs the total useful work performed

by the application as UW .

For a given application execution in an execution segment

of a failure trace, we calculate model efficiency. To find

model efficiency, we find the checkpointing interval, Imodel,

corresponding to large UWTmodel values produced by the

model. We then find the useful work output by the simulator,

UWImodel
, for the execution segment corresponding to Imodel.

We also find the highest useful work, UWhighest, output

by the simulator for the execution segment when executed

with different values of checkpointing interval. We denote the

checkpointing interval corresponding to UWhighest as Isim.

We find the percentage difference, pd, between UWhighest and

UWImodel
to give the percentage of work lost due to executing

the application with the interval determined by our model. The

percentage difference, pd, represents the model inefficiency,

while (100− pd) represents the model efficiency.

Due to modeling errors, instead of choosing the interval

corresponding to the highest UWTmodel value, we choose the

intervals corresponding to UWTmodel values that are within

8% of the highest UWTmodel. We then calculate the average

of these intervals as Imodel. For exploring different checkpoint

intervals to determine Imodel, we use a minimum checkpoint

interval, Imin. The checkpointing intervals are doubled starting

from Imin until the UWTmodel for the current checkpoint

interval is less than the value for the previous interval. We then

perform binary-search within the intervals corresponding to the

top three UWTmodel values to explore more checkpointing

intervals corresponding to high UWTmodel values. For this

work, we use 5 minutes for Imin.

D. Results

Table II shows the model efficiency for different number

of processors on different systems for QR application with

greedy rescheduling policy. In all cases, the efficiency of

our model in terms of the amount of useful work performed

by the application in the presence of failures, using the

intervals determined by our model, as shown in column 5,

was greater than 80%. Thus, the intervals determined using

our models are highly efficient for executing malleable parallel

applications on systems with failures. We also find that the

checkpointing intervals determined by our model increases

with decrease in failure rates of systems indicating that the

model presents practically relevant checkpointing intervals.

The average UWT values, determined using the simulator,

corresponding to Imodel and Isim are comparable and follow

similar trends for the different systems. This shows that the

checkpointing intervals determined by our models are highly

competent with the best checkpointing intervals. The intervals

determined by our model are smaller for the Condor systems

than for the batch systems, with the interval approximately

equal to 35 minutes when considering execution of malleable

parallel applications on a Condor pool of 256 processors. This

is due to the highly volatile non-dedicated Condor environment

as indicated by the higher failure rates or λs for the Condor

systems. However, we find that our model efficiencies for

the Condor systems are equivalent to the efficiencies for the

batch systems, implying that our model can determine efficient

checkpointing intervals for both dedicated batch systems and

non-dedicated interactive systems.

We also compared the model efficiencies for the three

applications on 128 processors of system-1 with greedy

rescheduling strategy. Table III shows the efficiencies for the

applications. The table shows that the checkpointing intervals

by our models are more than 90% efficient in terms of the

amount of useful work performed by the applications. This

shows that our modeling strategy is applicable to different ap-

plications. We find that the checkpointing intervals determined

by our model, Imodel, are largest for the QR application.

As shown in Table I, QR application has high checkpointing

and recovery overheads. Hence our modeling strategy tries

to maximize the amount of useful work for the QR appli-

cation by selecting larger checkpointing intervals resulting in

smaller non-useful or down times for the application. We find

that the UWT values corresponding to Imodel and Isim are

comparable. For all the three applications, the UWT values

calculated for application executions in the presence of failures

are within 4-11% of the corresponding failure-free maximum

workinunittime values shown in Figure 4. This shows that

by adopting malleability, and choosing efficient checkpointing

intervals by our models, applications can execute with nearly

failure-free high performance even in the presence of failures.

We also investigated the usefulness of non-dedicated highly-

volatile Condor environments for the execution of malleable

parallel applications. The work by Plank and Thomason[10]

showed that Condor systems, due to high failure rates and

checkpointing overheads, are not suitable for execution of

moldable applications since a fixed number of processors are

generally not available for the entire duration of application

execution on such systems. Accordingly, it was shown that

execution on only one processor in Condor environment

provided the least runtimes for the applications. We explored

the use of such systems for malleable applications. Figure 5

shows simulation of a sample execution of QR application on

128 processors of the Condor system for a duration of 80 days

with the greedy rescheduling policy. Imodel of 1.53 hours, the

checkpointing interval determined by our model, was used for

the execution. We also used C = R = 20 minutes, the worst-

case checkpointing and recovery overheads on shared Condor

systems and networks.

As Figure 5 shows, different number of processors are used

for execution at different times. More than 100 processors

are used in most cases since the greedy rescheduling strategy

chooses the maximum number of processors available for

execution. The UWT value for this execution is 7.29. This

UWT value, obtained in the presence of failures on the

Condor systems, is nearly 70% of the corresponding failure-

free maximum workinunittime value for QR application

0 10 20 30 40 50 60 70 80
85

90

95

100

105

110

115

120

125

130

135

Time (in days)

N
um

be
r

of
 P

ro
ce

ss
or

s

Processors used by QR application on Condor

Fig. 5. Simulation of QR application execution on Condor system for 80 days
(128 processors, checkpointing interval = Imodel = 1.53 hours, C = R =
20 minutes)

shown in Figure 4. Thus, while highly volatile environments

like Condor are not suitable for executions of moldable

applications, they can be used to provide high efficiency for

malleable applications due to the flexibility in terms of the

number of processors used for execution and the efficient

checkpointing intervals determined by our models.

Table IV shows the model efficiency and the amount of

useful work corresponding to the intervals determined by our

models for the three rescheduling policies for QR application

on 128 processors of system-1. We find that in all the

rescheduling policies, the efficiency was greater than 80%. We

also find that the AB rescheduling policy yields the maximum

work for the application. This is because the policy attempts to

execute the application on small number of processors where

the mean time to failures is low. Hence larger checkpointing

intervals are chosen for application execution, as shown in the

table, leading to less checkpointing overheads and more useful

work. The greedy strategy performs the least useful work since

it always executes the application on maximum number of

available processors where the mean time to failures is high

leading to high checkpointing and recovery overheads. The PB

policy considers number of processors for which failure-free

running time is minimum. Since the QR application is highly

scalable, the PB rescheduling policy attempts to execute on

large number of processors where the failure rates are high.

Hence, the checkpointing intervals and the resulting amount

of useful work for the PB policy are comparable to those

for the greedy policy. Thus, we find that for large number of

systems with failures, executing on smaller number of systems

with less failure rates (AB) leads to more useful work by the

application than executing the application on the number of

processors corresponding to maximum performance (PB).

Figure 6(a) shows the model inefficiencies with increasing

failure rates for QR application on a condor trace with 256

processors and for greedy rescheduling policy. The figure

shows that the model inefficiencies decrease or model efficien-

TABLE II
MODEL EFFICIENCIES FOR DIFFERENT SYSTEMS (QR APPLICATION, GREEDY RESCHEDULING POLICY)

Procs. System Average λ Average θ Average
Model
Efficiency
%

Average
Imodel

(hours)

Average
UWT
for
Imodel

Average
UWT
for Isim

64 system-1 1/(6.42 days) 1/(47.13 min.) 80.17 2.81 8.27 9.45

128 system-1 1/(104.61 days) 1/ (56.03 min.) 90.37 17.78 9.57 10.46

256 system-2 1/(81.82 days) 1/(168.48 min.) 86. 14 5.32 8.67 9.85

512 system-2 1/(68.36 days) 1/(115.43 min.) 95.74 3.68 9.76 10.17

64 condor 1/(6.32 days) 1/(52.377 min.) 82.33 2.75 8.44 9.52

128 condor 1/(6.36 days) 1/(54.848 min.) 87.19 1.53 8.26 9.08

256 condor 1/(5.19 days) 1/(125.23 min.) 93.38 0.67 7.89 8.32

TABLE III
MODEL EFFICIENCIES FOR THE 3 APPLICATIONS (SYSTEM-1, 128

PROCESSORS, GREEDY RESCHEDULING POLICY)

Application Average
Model
Efficiency
%

Average
Imodel

(hours)

Average
UWT
for
Imodel

Average
UWT
for Isim

QR 90.37 17.78 9.57 10.47

CG 95.66 7.59 0.85 0.88

MD 90.06 13.7 17.96 19.72

TABLE IV
MODEL EFFICIENCIES FOR DIFFERENT RESCHEDULING POLICIES (QR

APPLICATION, SYSTEM-1, 128 PROCESSORS)

Resched.
Policy

Average Model
Efficiency %

Average
Imodel

(hours)

Average
UWImodel

(×106)

Greedy 90.3 17.41 108.27

PB 90.0 17.44 110.20

AB 83.1 88.42 133.15

cies increase with increasing failure rates. Thus our model is

effectively able to predict application behavior on systems with

frequent failures than for systems with sporadic failures. This

is because the history of failure rates on systems with sporadic

failures cannot be effectively used to predict the future failures

on those systems. We also compared the model efficiencies

for varying durations of application execution. Figure 6(b)

shows the results for QR application execution with condor

traces on 128 processors and for greedy rescheduling policy.

The results show that our model inefficiency decreases or

model efficiency improves with increasing durations. This is

because the long-running properties of our Markov model are

especially suited for long-running parallel applications than

for short applications.

E. Summary

In addition to showing validation and efficiency results,

our experiments have also shown some interesting and new

observations. We have shown that with the help of malleability

and our checkpointing intervals, applications can execute with

near failure-free performance in the presence of failures.

We have also shown that malleability and our checkpointing

0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
−7

0

5

10

15

20

25

30

Failure rate (lambda) [1/minutes]

P
er

ce
nt

ag
e

m
od

el
 in

ef
fic

ie
nc

y

Model inefficiency with respect to failure rate

(a) Different Failure Rates (256 processors)

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

35

40

45

Duration of execution (days)

P
er

ce
nt

ag
e

m
od

el
 in

ef
fic

ie
nc

y

Model inefficiency with respect to duration of execution

(b) Different Durations (128 processors)

Fig. 6. Model Efficiency for Different Failure Rates and Durations (QR
application, condor trace, greedy rescheduling policy)

intervals encourage executions on volatile environments like

Condor, the environments considered to be not suitable for

parallel applications in the earlier efforts.

VII. RELATED WORK

There is a vast amount of literature on checkpointing

interval selction[9]. In this section, we focus on some of the

highly relevant efforts. The work by Daly[16] develops a first-

order model to determinine optimum checkpointing interval.

The work then develops a higher-order model for improving

accuracy for small talues of MTBF. The work assumes Poisson

failure rate and considers single processor failures.

The work by Nurmi et al.[17] determines checkpointing

intervals that maximize efficiency of an application when

executed on volatile resource-harvesting systems such as

Condor[12] and SETI@Home[18]. They use three differ-

ent distributions including exponential, Weibull and hyper-

exponential for fitting hostorical data on machine availabilty.

They then use the future lifetime distribution along with the

checkpoint parameters including checkpointing intervals in a

three-state Markov model for application execution and deter-

mine the interval that minimize execution time. Their Markov

model is based on the work by by Vaidya[19]. Their work

is intended for sequential processes executing in the Condor

environment. They show that the type of failure distribution

does not affect the application execution performance.

The work by Ren et al.[20] considers proving fault tolerance

for guest jobs executing on resources provided voluntarily in

fine grained cycle sharing (FGCS) systems. In their work, they

calculate checkpointing interval using a low overhead one-step

look ahead heuristic. In this heuristic, they divide execution

time into steps and compare the costs of checkpointing at a

step and the subsequent step using the probability distribution

function for failures. Their model does not assume a specific

distribution and is intended for sequential guest jobs.

Plank and Elwasif[21] study the implications of theoretical

results related to optimal checkppointing intervals on actual

performance of application executions in the presence of

failures. They perform the study using simulations of long

running applications with failure traces obtained on three

parallel systems. One of the primary results of their work

is that the exponential distribution of machine availability,

although inaccurate, can be used for practical purposes to

determine checkpointing intervals for parallel applications.

To our knowledge, the model by Plank and Thomason[10]

is the most comprehensive model for determining check-

pointing intervals for parallel applications. Their work tries

to determine the number of processors and checkpointing

interval for executing moldable parallel applications on a

parallel system given a failure trace on the system. The model

assumes exponential distribution for inter-arrival times of

failures. They use the concept of spare processors for replacing

the systems that failed during application execution. They

show by means of simulations that checkpointing intervals

determined by their model lead to reduced execution times in

the presence of failures. Their work was intended for typical

parallel checkpointing systems that do not allow the number

of processors to change during application execution. With

increasing prevelance of checkpointing systems for malleable

parallel applications, we base our work on their model and sig-

nificantly modify different aspects of their model to determine

checkpointing intervals for such systems.

VIII. CONCLUSIONS

The work described in this paper presents the first effort,

to our knowledge, for selecting checkpointing intervals for

efficient execution of malleable parallel applications in the

presence of failures. The work is based on a Markov model

for malleable applications that includes states for execution on

different number of processors during application execution.

We have also defined a new metric for evaluation of such

models. The states of our model are based on rescheduling

policies. By conducting large number of simulations with

failure traces obtained for real high performance systems,

we showed that the checkpointing intervals determined by

our model lead to efficient executions of malleable parallel

applications in the presence of failures.

IX. FUTURE WORK

We plan to augment our model with different kinds of

failure distributions. We also plan to experiment with different

redistribution policies. The checkpoint intervals from our

model will be integrated with a real checkpointing system that

provides malleability and fault tolerance. Finally, we plan to

extend our model for determining checkpointing intervals for

executions on multi-cluster grids and heterogeneous systems.

REFERENCES

[1] http://www.top500.org.
[2] L. Oliker, A. Canning, J. Carter, C. lancu, M. Lijewski, S. Kamil,

J. Shalf, H. Shan, E. Strohmaier, S. Ethier, and T. Goodale, “Scientific
Application Performance on Candidate PetaScale Platforms,” in IPDPS

’07: Proceedings of the 21st IEEE International Parallel and Distributed

Processing Symposium, 2007, pp. 1–12.
[3] F. Petrini, K. Davis, and J. Sancho, “System-Level Fault-Tolerance in

Large-Scale Parallel Machines with Buffered Coscheduling,” in IPDPS

’04: Proceedings of the 21st IEEE International Parallel and Distributed

Processing Symposium, 2004, pp. 209–.
[4] L. Chen, Q. Zhu, and G. Agrawal, “Supporting Dynamic Migration in

Tightly Coupled Grid Applications,” in SC ’06: Proceedings of the 2006

ACM/IEEE conference on Supercomputing, 2006, p. 117.
[5] J. Ruscio, M. Heffner, and S. Varadarajan, “DejaVu: Transparent User-

Level Checkpointing, Migration, and Recovery for Distributed Systems,”
in IPDPS ’07: Proceedings of the 21st IEEE International Parallel and

Distributed Processing Symposium, 2007, pp. 1–8.
[6] R. Fernandes, K. Pingali, and P. Stodghill, “Mobile MPI Programs

in Computational Grids,” in PPoPP ’06: Proceedings of the eleventh

ACM SIGPLAN symposium on Principles and Practice of Parallel

Programming, 2006, pp. 22–31.
[7] M. Schulz, G. Bronevetsky, R. Fernandes, D. Marques, K. Pingali, and

P. Stodghill, “Implementation and Evaluation of a Scalable Application-
Level Checkpoint-Recovery Scheme for MPI Programs,” in Supercom-

puting, 2004. Proceedings of the ACM/IEEE SC2004 Conference, 2004,
pp. 38–.

[8] S. Vadhiyar and J. Dongarra, “SRS - A Framework for Developing
Malleable and MigratableParallel Applications for Distributed Systems,”
Parallel Processing Letters, vol. 13, no. 2, pp. 291–312, 2003.

[9] E. Elnozahy, D. Johnson, and Y. Wang, “A Survey of Rollback-Recovery
Protocols in Message-Passing Systems,” Dept. of Computer Science,
Carnegie Mellon University, Tech. Rep. CMU-CS-96-18, 1996.

[10] J. Plank and M. Thomason, “Processor Allocation and Checkpoint
Interval Selection in Cluster Computing Systems,” Journal of Parallel

and Distributed Computing, vol. 61, no. 11, pp. 1570–1590, 2001.
[11] http://institute.lanl.gov/data/lanldata.shtml.
[12] http://www.cs.wisc.edu/condor.
[13] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,

I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley,
D. Walker, and R. C. Whaley, ScaLAPACK Users’ Guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 1997.

http://www.top500.org
http://institute.lanl.gov/data/lanldata.shtml
http://www.cs.wisc.edu/condor

[14] S. Balay, K. Buschelman, W. Gropp, D. Kaushik, M. Knepley,
L. McInnes, B. Smith, and H. Zhang, “PETSc Web Page,” 2001,
http://www.mcs.anl.gov/petsc.

[15] http://zeus.df.ufcg.edu.br/labfit.
[16] J. Daly, “A Higher Order Estimate of the Optimum Checkpoint Interval

for Restart Dumps,” Future Generation Computer Systems, vol. 22,
no. 3, pp. 303–312, 2006.

[17] D. Nurmi, R. Wolski, and J. Brevik, “Model-based checkpoint schedul-
ing for volatile resource environments,” Dept. of Computer Science,
University of California Santa Barbara, Tech. Rep. 2004-25, 2004.

[18] http://setiathome.ssl.berkeley.edu.
[19] N. Vaidya, “Impact of Checkpoint Latency on Overhead Ratio of a

Checkpointing Scheme,” IEEE Transactions on Computers, vol. 46,
no. 8, pp. 942–947, 1997.

[20] X. Ren, R. Eigenmann, and S. Bagchi, “Failure-Aware Checkpointing
in Fine-Grained Cycle Sharing Systems,” in HPDC ’07: Proceedings

of the 16th International Symposium on High Performance Distributed

Computing, 2007, pp. 33–42.
[21] J. Plank and W. Elwasif, “Experimental Assessment of Workstation

Failures and Their Impact on Checkpointing Systems,” in FTCS ’98:

Proceedings of the The Twenty-Eighth Annual International Symposium

on Fault-Tolerant Computing, 1998, p. 48.

http://www.mcs.anl.gov/petsc
http://zeus.df.ufcg.edu.br/labfit
http://setiathome.ssl.berkeley.edu

	I Introduction
	II Background: Checkpoint Intervals for Moldable Applications
	III Checkpoint Intervals for Malleable Applications
	III-A Markov Model
	III-B Useful Work per Unit Time
	III-C Selecting Checkpointing Intervals

	IV Implementation and Optimizations
	V Rescheduling Policies
	VI Experiments and Results
	VI-A Failure Data
	VI-B Applications
	VI-C Evaluation
	VI-D Results
	VI-E Summary

	VII Related Work
	VIII Conclusions
	IX Future Work
	References

