arXiv:1711.00270v1 [cs.DC] 1 Nov 2017

Determination of Checkpointing Intervals for
Malleable Applications

K. Raghavendra, ?Sathish S Vadhiyar
!Department of Computer Science and Engineering, Indian Institute of Technology, Madras, India
2Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
raghavendra83 @gmail.com, vss@iisc.ac.in

Abstract—Selecting optimal intervals of checkpointing an ap-
plication is important for minimizing the run time of the
application in the presence of system failures. Most of the
existing efforts on checkpointing interval selection were developed
for sequential applications while few efforts deal with parallel
applications where the applications are executed on the same
number of processors for the entire duration of execution. Some
checkpointing systems support parallel applications where the
number of processors on which the applications execute can
be changed during the execution. We refer to these kinds of
parallel applications as malleable applications. In this paper, we
develop a performance model for malleable parallel applications
that estimates the amount of useful work performed in unit time
(UWT) by a malleable application in the presence of failures as
a function of checkpointing interval. We use this performance
model function with different intervals and select the interval
that maximizes the UWT value. By conducting a large number
of simulations with the traces obtained on real supercomputing
systems, we show that the checkpointing intervals determined
by our model can lead to high efficiency of applications in the
presence of failures.

I. INTRODUCTION

With the development of high performance systems with
massive number of processors[l] and long running scal-
able scientific applications that can use the processors for
executions[2], the mean time between failures (MTBF) of
the processors used for a single application execution has
tremendously decreased[3]. Hence many checkpointing sys-
tems have been developed to enable fault tolerance for appli-
cation executions[4], [, [6], [7], [8]. A checkpointing system
periodically saves the state of an application execution. The
application, in the event of a failure, rolls back to the latest
stored or checkpointed state and continues execution.

Recent efforts in checkpointing systems are related to the
development of parallel applications that can change the
number of processors during execution[8], [6]. We refer to
these kinds of parallel applications as malleable applications.
Malleable parallel applications are highly useful in systems
with large number of nodes where the resource availability can
vary frequently. In these systems, upon failures of processors
used for processor execution, the application can be made to
execute on the available processors rather than waiting for
the failed processors to be repaired. Malleable applications

This work is supported by Department of Science and Technology, India.
project ref no. SR/S3/EECE/59/2005/8.6.06

can also make use of the nodes that become available during
execution.

One of the important parameters in a checkpointing system
that provides fault tolerance is the checkpointing interval or
the period of checkpointing the application’s state. Smaller
checkpointing intervals lead to increased application execution
overheads due to checkpointing while larger checkpointing
intervals lead to increased times for recovery in the event of
failures. Hence, optimal checkpointing intervals that lead to
minimum application execution time in the presence of failures
will have to be determined. Large number of efforts have
developed techniques for determining optimal checkpointing
intervals[9]. These techniques were primarily developed for
sequential applications. They also consider parallel applica-
tions where the number of processors used by an application
remains constant throughout execution. We refer to these kinds
of parallel applications as moldable applications.

In this paper, we develop strategies for determining efficient
checkpointing intervals for malleable parallel applications.
To our knowledge, ours is the first effort for malleable
applications. Our work is based on the work by Plank and
Thomason[10] for finding checkpointing intervals and suitable
number of processors for executing moldable parallel applica-
tions with minimal execution time in the presence of failures.
We extend their Markov models to incorporate states and
transitions that allow reconfiguration of applications from one
processor configuration to another in the event of failures. The
states of our Markov model are automatically determined from
a specified reconfiguration policy. We use different checkpoint-
ing and recovery overheads for different states corresponding
to different number of processors. We also define and use a
new metric for evaluation of a checkpointing interval for a
malleable application, namely, the amount of useful work per
unit time (UWT) performed by the application in the presence
of failures. Our Markov model is used to estimate the UWT of
an application as a function of checkpointing interval. We use
this performance model function with different checkpointing
intervals and select the interval that maximizes the UWT
value. To reduce the modeling time, we have developed
techniques for eliminating low probable states and transitions,
and parallelized the steps for building the model.

We evaluate the efficiency of our model by using the optimal
checkpointing intervals determined by our model in trace-
based simulations and finding the total amount of useful work

http://arxiv.org/abs/1711.00270v1

performed by an application in the presence of failures. Our
simulations were conducted with large number of failure traces
obtained on both dedicated batch systems for a 9-year period
on 8 parallel systems and non-dedicated volatile workstations,
for three parallel applications, and with three recovery or
rescheduling policies. We show that checkpointing intervals
determined by our models lead to greater than 80% application
efficiency in terms of useful work performed by the application
in the presence of failures.

Following are our primary contributions.
1. Developing a model for execution of malleable applications
based on the the model by Plank and Thomason for moldable
applications. This includes significant extensions to the origi-
nal model including different definitions for the states of the
model, and automatic determination of the states and transition
probabilities based on reconfiguration or rescheduling policies.
2. Definition of a new metric for evaluating checkpointing
intervals for malleable applications.
3. Optimizing the model by elimination of states and employ-
ing parallelism.
4. Extensive simulations with real world failure traces for
different applications and with different rescheduling policies.

Section [l summarizes the work by Plank and Thomason on
modeling moldable applications. Section [[Ill describes in detail
our model for malleable parallel applications and the metric
used for evaluation of checkpointing intervals determined by
our model. Section [[V] explains the optimizations of the model
framework. Section describes the rescheduling policies
used by our model. In Section [VII we describe the various
simulation experiments we conducted to show the efficiency of
the checkpointing intervals determined by our models. Section
presents related work in the area. Section gives
conclusions and Section [[X] presents future work.

II. BACKGROUND: CHECKPOINT INTERVALS FOR
MOLDABLE APPLICATIONS

The work by Plank and Thomason[10] developed a finite-
state Markov chain based performance model to characterize
the execution of long running moldable parallel application
in the presence of failures. They use the model to find the
checkpointing interval, I, and the number of processors, a, for
execution of a long running application in a system with NV
(N > a) processors. Their goal is to minimize the running
time of the application in the presence of failures. Spare
processors are defined as candidate processors for replacing a
processor that failed during application execution. The number
of spare processors, S, is N —a. L is the checkpointing latency
or the total time spent for checkpointing and C' is defined as
the checkpointing overhead or the extra time incurred by the
application due to checkpointing. Typically, C' < L due to
optimizations performed in checkpointing systems. R is the
time spent in recovery from a failure. The model assumes
exponential distribution for inter-occurrence times of failures
and repairs for a processor. A denotes the failure rate and
0 denotes the repair rate for a single processor. Given a
trace of failures and repairs of a processor, the mean time to

No Failure of n act;
i Ive
Within (R+’+L) s

Recovery

Failure gf an active processor
No spatre available

Failure of an active processor

within (R+1+L) seconds
Spare available

Fewer thana active processors

Fig. 1. States and Transitions for Markov model for moldable applications,
M mold

failure (MTTF) of the processor is calculated as the average
of times between failures of the processor. The mean time to
repair (MTTR) of a processor is calculated as the average of
times from when the processor fails to when the processor is
available for execution. For a multi-processor system, A and 6
are calculated as the reciprocal of the average of MTTFs and
MTTRs, respectively, for all processors.

The Markov chain, M ™", consists of three types of states,
namely, up, down and recovery, as shown in Figure [[l The
application is in an up state if at least a processors are
available for execution. If one of the processors used for the
execution of the application fails and the total number of
functional processors remaining in the system is less than a,
the application is halted and is considered to be in a down
state. The application remains in this state until some of the
failed processors are repaired and at least a processors become
available for execution again. In this case, the application goes
to a recovery state. The application also enters a recovery
state from an up state if after the failure of a processor
used during the execution, the number of remaining functional
processors is at least a. In the recovery state, the application
tries to recover from the previous checkpoint, spending R
seconds for rollback to the checkpointed state, and remains
in the recovery state until it creates a new checkpoint after
(I + L) seconds. If during the (R + I + L) seconds, none
of the processors fail, the application enters an up state and
continues execution. If one of the processors fails during
the recovery and spares are available for replacement of the
failed processor, the application enters another recovery state
and restarts the recovery process. However, if spares are not
available, the application enters a down state.

The Markov model, M™°! consists of S + 1 up states, S
recovery states and a down states. An up state denoted by
[U:s], 0 <s <5, corresponds to application execution on a
processors with s spare processors in the system at the time

Fig. 2. Birth-Death Markov Chain S™

the state is entered. A recovery state denoted by [R : s], 0 <
s < 8, corresponds to application recovery on a processors
with s spares available at the start of the recovery. When the
application exits an up state due to failure of one of the a
processors with s + 1 spares available, it goes to [R : s] state
after replacing the failed processor with one of the s+1 spares.
After a span of (R+I+L) seconds in a recovery state, [R : s1],
the application enters an up state, [U : s2], where s2 is the
number of spares in the system when the up state is entered.
If an application exits an up state due to failure of one of the
a processors and the total number of functional processors in
the systems is a — 1, the down state, [D : a — 1], is entered.
The down state denoted by [D : p], 0 < p < a, represents the
system with only p processors available. The recovery state,
[R : 0], is entered from a down state, [D : a— 1], after repair of
a failed processor resulting in exactly a functional processors.

The probabilities of transitions from the states in /™' are
based on the number of functional spares available after the
exits of the states. These probabilities are calculated using a
birth-death Markov chain, S7, that helps find the probability of
starting with 4 spares and ending with j spares, 0 <i,j < S,
after 7 seconds. The Markov chain, S7, consists of S+1 states,
denoted [B : 5], 0 < s < S, , as shown in Figure[2] Each state,
[B : s], corresponds to s functional spares and .S — s processors
under repair. Transition out of a state [B : s] is either to the
state [B : s — 1] corresponding to failure of a single processor
with probability s\ or to [B : s+ 1] corresponding to repair of
a processor with probability (S —s)6. The states are numbered
1to S+1 from left to right such that state i represents S —i+1
functional spares.

A (S +1) x (S + 1) square matrix, R, of instantaneous
probabilities is defined as:

—9\ SA 0 0
0 —((S—DA+0) - 0 0

R=| : : : : :
0 0 —(A+(S=1)0) A

0 0 —-S0 S6

(1)

The matrix R is used to calculate a (S + 1) x (S + 1)
matrix, Q7 = [QE;-T], shown in Equation 2] where the [7, j]
entry is the probability that the Markov chain S7 starting in
state ¢ enters state j after 7 seconds. Thus qgfi 41,5—j41 18
the probability of starting with ¢ functional spares and ending
with j spares after 7 seconds.

Q°7" = expm(Rr7) 2)

expm(R7) is the matrix exponential of Rr.
If f. is the probability density function of the TTF (time
to failure) random variable 7, the likelihoods of transitions

between the states in ST are given by the (S + 1) x (S + 1)
matrix:

5= [Qs 0 0
t

The transition probabilities in the original Markov model,
M™l_are calculated using the Q%" and [qf;] matrices of the
birth-death Markov chain, S7. We illustrate the calculations
for probabilities of transitions from the recovery states. For
successful transitions from recovery to up states in M™!, a
failure must not occur within 6 = R + I + L seconds. The
probability of no active processor failure during the interval
[0,6] is e~**. The probabilities of the specific up states
after transitions are given by Q°?, obtained by substituting
d for 7 in Equation 2l Thus, the grobability of transition from
[R:i] to [U:j]is (e7*)(q5°; 1 g_;.1)- The probability
of an active processor failure within & seconds is 1 — e~%%,
The failure results in a transition to a recovery state or the
down state [D : a — 1] depending on the number of spares.
The probability density function of the TTF random variable
7 is aA~*7 and is conditioned on 7 being in the interval
[0, 6]. Thus substituting f(t) = 1“_’\;% in Equation 3] and
integrating over the interval [0, §], the matrix of likelihoods,
QfteeS = [qﬁec’s], of transitions between the states in S7
is calculated. The probability of a transition from [R : i] to
[R : j] in M™old i then (1 — e=*3)gfeeS, ' and to
[D:a—1]is (1 —e g7 ¢ ;. Similar calculations
are used to find the transition probabilities from the up and
down states and are explained in [[10]. For finding the transition
probabilities from the up states, the matrix of likelihoods,
QUrS = [qf_]f’s], is used. QUP° is calculated by substituting
f+(t) = aXe™* in Equation [and integrating over the
interval [0, 0o]. The integral equations for the calculations of
transition probabilities from the up and recovery states, using
Equation B are solved by computing the eigen values and
eigen vectors of the R matrix, shown in Equation [[I These
solutions are also described in detail in [10]. The calculated
probabilities of transitions in M™°!¢ are represented by a
square matrix, Pld with the number of rows or columns
equal to the total number of up, recovery and down states,
and row of P™°! corresponds to a state of /™' such that
P[Z—Old is the probability of transition from state ¢ to state j in
Mmold.

Each transition, i, j, in M™! is also weighted by U; ;,
the average amount of useful time or uptime spent by the
application in the state corresponding to the start of the
transition and D; ;, the non-useful or down time spent by
the application in the state. The uptime is the time spent
by the application performing useful work and is equal to
the failure-free running time of the application not enabled
with checkpointing. The down time includes the time spent
in checkpointing, C, recovery, R, recomputation of work lost
due to a failure, and the time spent in the down states. For
example, for a transition from a recovery state [R : i| to an
up state [U : j|, the useful time, U, ; = I and the down
time, D; ; = R + L. For a transition to another recovery

state, [R : j], a failure must have occurred within the ¢
seconds. Thus, the useful time, U; ; = 0 and the down time,
Di; = & — 6%, the MTTF (mean time to failure)
conditioned on failure within § seconds. The useful and down
times for the other transitions are calculated similarly and
are shown in the work by Plank and Thomason[10]. Thus
square matrices, U and D are constructed corresponding to
the transition matrix, P!,

The long-run properties of M™°' where M is taken
through a large number of transitions, are used to find the long-
run probability of the occupancy of state . This is given by
the entry 7; in the unique solution of the matrix equation,
I = IIP™ If M™° is taken through n transitions
randomized according to the transition probabilities, and if n;
is the number of occurrences of state ¢ during those transitions,

then
Uz

m; = lim

“)
Since each visit to state ¢ is followed by probabilistic selection
of an exit transition, the limiting relative frequency of occur-
rence of transition ¢ — 7 is the joint probability 7ri]31-7j°ld.
Thus, for a long-running task, Ul'_’jﬂ'l'Pi’jOld and Diyjﬂ'l-Pi’jOld
are the expected contributions of useful and non-useful times,
respectively, due to the relative frequency of transition ¢ — j.
The availability, A, 7, for a given number of processors, a,
used for execution and a given checkpointing interval, I, is
the ratio of the mean useful time spent per transition to the
mean total time per transition and is calculated as:

A= Zi,j Uiyjﬂ'iPi,jOld
a,] =
> Uij + Dy j)mi Pt

By trying different values for a and I, the work by Plank
and Thomason chooses a and I that minimize the expected
execution time of the application in the presence of failures,
RT, /A, 1, where RT, is the estimated failure-free execution
time.

(&)

III. CHECKPOINT INTERVALS FOR MALLEABLE
APPLICATIONS

Few checkpointing systems enable malleable applications
where the number of processors used for execution can be
changed during the execution. In our model for executing
malleable applications in a system consisting of N processors,
instead of choosing a fixed number of processors, a, at the
beginning of execution, the number of processors for execution
is chosen at different points in application execution. The
number of processors chosen at a particular point of execution
is a function of the number of functional processors available
at that point and is specified by a rescheduling policy. The
rescheduling policy is denoted by a vector, rp, of size N where
rp; denotes the number of processors that will be selected for
application execution given ¢ functional processors. The vector
rp is specified as input to our model. Section [V] explains the
different kinds of rescheduling policies employed in this work.

In this section, we describe our Markov model for execution
of malleable applications, the inputs and outputs of our model,

and the process of selecting the best checkpointing intervals
for malleable applications.

A. Markov Model

Our model for malleable applications also involves three
kinds of states, namely, up, down and recovery. In our model,
a long-running malleable parallel application initially starts
execution on rp; number of processors with ¢ total number
of functional processors in the system at the beginning of
execution. At this point, the application is considered to
be in an up state. The application, after every I seconds,
stores a checkpoint, incurring an application overhead of C..,,
corresponding to 7p; processors. For our work, we assume
that the checkpoint overhead, C,,, is equal to the latency,
L;p,. When a processor used by the executing application fails,
the application is recovered on rp; processors corresponding
to j total number of functional processors available at the
time of failure. Thus the application makes a transition to
a recovery state. Recovery involves redistribution of data
in the application from the previous processor configuration
to the new configuration. Unlike for moldable applications,
the time taken for recovery, Rj;, depends on the number
of processors, k, used by the application before failure and
the number of processors, [, on which the application will
be recovered. In the recovery state, the application tries
to recover from the previous checkpoint and create a new
checkpoint after (R, rp; + 1 + Cyp,) seconds. If during this
time, none of the processors involved in the recovery fails,
the application enters an up state. If one of the processors
involved in recovery fails, the application restarts the recovery
process in another recovery state. Thus in our model, the
checkpointing overhead and the rescheduling cost vary for
different states and transitions corresponding to the number of
active processors used for execution and recovery at different
points of execution. The application goes to a down state if the
total number of functional processors in the system is less than
the minimum number of processors required for execution.
Without loss of generality, for this work, we assume that the
application can execute on a single processor. Hence there is
only one down state in our model corresponding to failure
of all processors in the system. The states and transitions for
our model for malleable applications are illustrated in Figure
B Comparing with Figure the corresponding figure for
moldable applications, we find that the primary difference is
in terms of the transitions to and from the down state.

In our Markov model, M™@! for malleable applications,
an up state is denoted by [U : a, s] where 1 < a < N is the
number of active processors used for execution of application
in the state and 0 < s < S is the number of spare processors
corresponding to the state. S (= N — a) is the maximum
number of spares in the system corresponding to a active
processors. Thus the total number of up states in M™% is
equal to W A recovery state is similarly denoted by
[R: a,s] where 1 < a < N is the number of active processors
on which the application is recovered and s is the number of
spare processors corresponding to the state. The recovery state

No Failyre ofan

Recovery

Failure of an active processor

within (R+1+L) seconds
Spare available

. active
Withj, Pro
thin (R+I+L) seco, dCeSSor
Nds
e‘f’o‘
Failure qf an active processor 3

i O
No fundtional processor @ \)e S

No functional processor

Fig. 3. States and Transitions for Markov model for malleable applications,
M'mall

[R : a, s] corresponds to a unique element in the rescheduling
policy vector, rp. Specifically, [R : a,s| corresponds to
(a+5)™" element in rp where (a+s) denotes the total number
of functional processors in the system and 7p(q4s) (= a)
denotes the number of processors selected for recovery or
execution. Since the size of rp vector is N, the total number
of recovery states in M™% is N. The exact recovery states
in our model are thus dependent on the specified rescheduling
policy and are dynamically determined

Relating this Markov model, M ™, to the Markov model
for moldable applications, M™°!4 the up states in M ™!
contain the up states in M™°! that correspond to given
number of active processors, a, for all possible values of a.
In M™°! the recovery states for application recovery on a
processors correspond to the number of spares available at the
time of recovery. In M™% the recovery states correspond
to the total number of functional processors available at the
time of recovery and the actual number of processors used for
recovery can vary in different states.

The probabilities of transitions between the states in M™%/
are represented by a square matrix, P%!, with the number
of rows or columns equal to the total number of up, recovery
and down states. In order to fill the entries in the matrix
for transitions from the states corresponding to application
execution or recovery on specific number of processors, a, with
S (= N — a) number of spares, a birth-death Markov chain,
S7, and the corresponding Q% 7, QUP* and Q%> matrices
are constructed in the same way as in the model, M mold for
moldable applications. However, unlike for A/™°!4 where a
single birth-death Markov model was constructed for modeling
execution on a fixed number of active processors, a (with S

INote that the number of up states is not related to the entries in the
rescheduling policy vector, rp. The number of up states is not equal to IV,
the number of recovery states, since after recovery on aj processors with
s1 spares as dictated by the rp vector, the application can enter an up state
[U : a1 : s2] with different number of spares, s2, available at the start of the
up state.

spares), we construct N such birth-death Markov models for
M™ corresponding to execution on N possible number of
active processors with the corresponding number of spares and
obtain N corresponding Q*7, QUP>* and Q'**“* matrices,
where 0 < s < N.

These probabilities of transitions starting with a certain
number of spares and ending with another number of spares
are used to calculate the entries of the P! matrix. For a
number of active processors used for execution or recovery,
and S(= N —a) spares, an [i, j] entry in the matrix P™% cor-
responding to a recovery-to-up transition is calculated based
on the [S — i+ 1,5 — j + 1] entry in the Q*®* similar
to the calculation of [i,j] entries in the P™°'¢ matrix for
moldable applications. However, unlike in the construction
of Pl an entry [i,7] in the P™ corresponding to a
transition to a recovery state cannot be calculated directly from
the corresponding [S — i+ 1,S — j + 1] entry in the QUPS
or Qf®% matrices. This is because the ending state of the
transition to a recovery state in M™% not only depends on the
number of spares, but also on the number of active processors
used for recovery. The number of active processors in turn
depends on the rescheduling policy given by the rescheduling
policy vector, rp. For example, for a transition from an up
state, [U : al : sl] to a recovery state with s2 spares, the
[S—s1+1,8 —s2] entry in the QUP+¥ matrix is used for the
calculation of probability of transition to the recovery state
[R @ TP(s24a1-1),52] in the P™ matrix. (s2 + al — 1)
is the total number of available functional processors at the
start of the recovery corresponding to s2 spares. This is the
sum of the number of spare processors and the number of
remaining active processors used for execution in the up state.
The number of remaining active processors at the end of
the up state is al — 1 since one of the active processors at
the beginning of the up state has failed during the execution
causing the application to transition to the recovery state.
rPsatal—1(< (82 4+ al — 1)) is the number of processors on
which the application will be recovered corresponding to the
total number of functional processors, (s2 + al — 1), and is
specified in the rescheduling policy.

B. Useful Work per Unit Time

For a moldable parallel application, the best checkpointing
interval, I, for a given number of processors, a, is selected
by trying different values for I, obtaining availability, A, r,
for each value using the Markov model, and choosing the
interval for which RT,/A, is minimum. Here, RT, is
the estimated failure-free execution time, and RT,/A, 1 is
the estimated executed time in the presence of failures for
the application. However this approach cannot be used for
finding the best checkpointing interval for malleable parallel
applications. This is because the number of processors used
for execution changes during the execution and hence changes
in the various states of our model, M™ Thus a single
failure free running time corresponding to a certain number
of processors cannot be used.

For malleable applications, we use a metric called total
useful work per unit time (UWT) defined as:
- Ur+Dy
where W7 is the total amount of useful work, and Uy and D;
are the total up and down times for a checkpointing interval,
I. The up and down times are calculated as described in
Section [lIl for moldable applications. For a state visited in our
model, M ™ corresponding to certain number of processors,
a, let uptime be the total up time spent in the state. The
amount of useful work performed in the state, work, is the
estimated amount of computations that can be performed on
a processors in uptime seconds spent in the state and is
calculated as work = workinunittime, X uptime where
workinunittime, is the amount of computations that can
be performed on a processors in one second. For example,
for iterative regular parallel applications, workinunittime,
can be the number of iterations that can be completed by
the application in one second on a processors. The vector
workinunittime for different number of processors is given
as an input to our model, M™%, W; for the complete model
for a specified checkpointing interval, I, is calculated by
accumulating the amount of useful work performed in all the
states visited in the model during execution.

Thus, a transition, (i — j), in M™ is weighted by
the average up time, U; ;, down time, D; ;, and the amount
of useful work performed by the application, W; ;, in the
state corresponding to the start of the transition. The square
matrices, U, D and W are constructed corresponding to the
transition matrix, P™!, Using the long-run properties of
Mmall and calculating 7; as in M mold ' the amount of useful
work per unit time, UWTT, for a given checkpointing interval,
I, is calculated as:

uwr (6)

Zi,j Wivjﬂ'i})i,ja”
> Uij + Dy j)m Pt
C. Selecting Checkpointing Intervals

UWTy = (7)

The user specifies the following parameters for building our

model, Mmall,

1. N, A and 6 corresponding to the system,

2. a vector C' corresponding to checkpointing of the application
for different number of processors,

3. a matrix R corresponding to recovery from a certain number
of processors to a different number of processors,

4. a vector workinunittime for the application,

5. a vector rp specifying the rescheduling policy, and

6. a checkpointing interval, .

The model is used to obtain UWTT for a checkpointing inter-
val, I. By trying different values for I, the user chooses the
interval that maximizes the expected useful work performed
by the application per unit time.

Most of the parameters necessary for the user to select
efficient checkpointing intervals can be easily derived. For N,
the user specifies the total number of processors available in
the system. Given a failure trace for a system, A and 6 can be

derived by observing the times between any two consecutive
failures and the times taken for repairs of a failed system,
respectively, and calculating the averages of the times. We have
developed programs that can be used with standard failure
traces to automatically calculate \ and 6.

The vectors, workinunittime and C, and the matrix, R,
are obtained by benchmarking the applications. Our work
on checkpointing intervals is primarily intended for long-
running large scientific applications. Such applications are
typically benchmarked by the users for different problem sizes
and number of processors for application development and
performance improvement. The user links his application with
a checkpointing library, executes parts of the application for
different configurations, and collects the times taken for the
executions. For example, for an iterative application, the user
executes the application for few iterations, finds the time taken
for execution of the iterations, and obtains the number of
iterations executed in a second or work performed by the appli-
cation in unit time. For checkpointing and recovery overheads,
the user obtains the times by inserting time stamps at the
beginning and end of the checkpointing and recovery codes,
respectively, in the checkpointing library. The checkpointing
and recovery codes are invoked as functions that are inserted
in the application codes in many checkpointing systems[6],
[8, and hence can be easily identified by the user. For
obtaining recovery overheads, the user can induce failures to
an executing application on a certain number of processors and
continue on a different number of processors. After obtaining
the work performed in unit time, checkpointing and recovery
overheads, for a certain set of processor configurations, the
user can construct the vectors, workinunittime and C, and
the matrix, R, respectively, for all number of processors
using either simple techniques including average, maximum
or minimum or complex strategies like extrapolations. The
vectors, workinunittime and C, and the matrix, R, are
constructed only once for a given application and system and
are used for multiple executions.

The complexity of constructing the rescheduling policy
vector, rp, depends on the complexity of the rescheduling
policy that the user wants to implement. A simple rescheduling
policy can be to continue the application on all the available
number of processors. In this case, the rescheduling policy
vector will simply contain integers ranging from 1 to NV, the
total number of processors in the system. Some rescheduling
policies are discussed in Section [Vl

IV. IMPLEMENTATION AND OPTIMIZATIONS

We have developed MATLAB scripts for implementing
the process of selecting checkpointing intervals for mal-
leable applications. Our scripts are based on the MATLAB
scripts developed for moldable applications by Plank and
Thomason|[[10].

The number of up states in our model, M™% is O(N?).
In order to reduce the number of up states and hence the space
complexity and execution time of our model, we eliminate an
up state if the probabilities of transitions to the up state is less

than a threshold, thres. Large values of thres will result in
elimination of many up states and will result in high modeling
errors. Small values of thres will not eliminate significant
number of states and hence cannot significantly reduce the
space and time complexities of the model. Hence we choose
a value for thres that results in small modeling errors due
to elimination of states and significant number of eliminated
states. We conducted 750 different experiments by building our
model with different failure traces corresponding to different
As, different checkpointing intervals, I, and different appli-
cation parameters, R and C. For each of these experiments,
we used eight different thresholds for thres, and executed the
resulting reduced models. We computed a score for a threshold
for an experiment as:

score = (1.0 — threserror) + [(elims) 8)

where threserror (between 0.0—1.0) is the model error due to
elimination of the up states and is calculated as the percentage
difference between the UWT of the original model, M/™a!,
and the UW'T of the reduced model with some up states
eliminated. elims is the number of eliminated up states. «
is the weight associated with the modeling error and [is the
weight associated with the number of eliminated up states.
Large values of « result in high scores for thres values
that yield small modeling errors while large values of j3
result in high scores for thres values that yield models with
large number of eliminated up states. Since modeling with
small errors is fundamental to the determination of efficient
checkpointing intervals, we used « values greater than (3 in
our equation for computation of a score corresponding to a
thres value. We performed many experiments with different
values of « and 3 such that « > 3 and chose @ = 0.7 and
B = 0.3, since these values resulted in models with accuracies
closer to the original model and with significant number of
eliminated states and hence significant reduction in modeling
space and time complexity. We then find the threshold which
has the maximum score in most of our experiments. Based on
these experiments, we fixed thres as 0.0006. This threshold
of probability resulted in average number of eliminations of
27-54% of up states in our experiments.

To find the probabilities of transitions in our model, M mall
we construct IV birth-death Markov chains, S™ and N corre-
sponding matrices, QUP® and Q%¢““ corresponding to N
different number of active processors used for application
execution. Since the computations of these matrices for a
certain number of active processors are independent of the
computations for a different number of active processors,
the construction of the birth-death Markov chains and the
computations in the resulting matrices for different number
of active processors can be parallelized resulting in reduced
execution times of our model. We adopted a master-worker
paradigm where the master program gives the next available
number of processors to a free worker for the calculations of
the corresponding transition probabilities. With these optimiza-
tions, the running time of our model for a given checkpointing
interval is approximately 2-10 minutes. The cost of determin-

ing a checkpointing interval, due to running the model, for an
application execution on a system with a given-failure trace
is a one-time cost for many executions. This is because the
selected checkpointing interval can be used multiple times for
the application executions until the failure rates on the system
change significantly.

V. RESCHEDULING POLICIES

Our Markov model for malleable applications, M™, is
constructed based on a rescheduling policy that decides the
number of processors for application execution for a given
total number of available processors at a point in the execution.
In this work, we consider three policies for rescheduling.

1. Greedy: In this policy, when an application recovers after
failure, it chooses all the available processors for continuing
the execution.

2. Performance Based (PB): In this policy, if a is the number
of processors available for execution, the application chooses
n processors, n < a, for which the failure-free execution time
of the application, execTime,, iS minimum.

3. Availability Based (AB): In this policy, the applica-
tion chooses n processors, n < a, for which the average
number of failures, avgFailure,, is minimum. To calculate
avgFailure, using a failure trace for a system with a total of
N processors, n processors are randomly chosen from the N
processors in the system. The total number of failures for the
chosen n processors in the trace is calculated as total Fail.
For calculating total F'ail, a failure is counted if at least one
of the n processors fail at a point of time in the failure trace.
total Fail is then divided by n to obtain avgT otal Fail. This
is repeated for 50 different random choices of n processors
and the average of avgtotal F'ail values for the 50 random
choices is calculated as avgFailure,,.

VI. EXPERIMENTS AND RESULTS

We evaluated our model using three different applications,
three different rescheduling policies and large number of
failure traces.

A. Failure Data

For our experiments, we used two kinds of failure traces.
One kind of failure trace corresponds to failure data collected
by and available at Los Alamos National Laboratory (LANL)
[L1]. The data includes the times of failures and repairs of
the processors recorded over a period of 9 years (1996-2005)
on 22 different production high performance computing (HPC)
systems at LANL. For our work, we used two systems, system-
1 containing 128 processors and system-2 containing 512 pro-
cessors. The second kind of failure trace corresponds to execu-
tion traces of about 740 workstations in the Condor pool [12]]
at University of Wisconsin recorded for a 18-month period
(April 2003 — October 2004)@ The Condor project allows
execution of guest jobs on workstations when they are not used
by their owners. When the workstation owners return, the guest

2We would like to thank Dr. Rich Wolski, UCSB, for providing sanitized
Condor traces without the host identifiers.

jobs are vacated. For the purpose of our study, we consider
use of a Condor pool for the execution of a parallel malleable
application where the application is a guest job to the Condor
workstations. We thus consider vacation of a guest job in the
Condor trace due to reclaiming of the workstation by its owner
as a failure of the parallel application. The application has to
be checkpointed and continued on a set of free workstations.
The resources in Condor pool are highly volatile with high
failure rates. We consider executing malleable applications
on such a volatile set of disparate resources. The use of
such volatile environments for parallel applications is largely
unclear. By conducting our experiments with the two kinds of
failure traces, one corresponding to dedicated production batch
systems and the other corresponding to highly non-dedicated
interactive systems, we attempt to evaluate the efficiencies of
the checkpointing intervals determined by our model for the
different kinds of environments with different failure rates. We
also analyze the variations in the checkpointing intervals for
the two environments.

B. Applications

We used three different parallel applications.

1. ScaLAPACK]13] linear system solver for solving over
determined real linear systems using QR factorization. The
specific kernel used was PDGELS. 2-D block cyclic distribu-
tion was used for the double precision matrix.

2. PETSc[14] Conjugate Gradient (CG) application to solve
a system of linear equations with a real symmetric positive
definite matrix.

3. Molecular dynamics simulation (MD) of Lennard-Jones
system systolic algorithm. N particles are divided evenly
among the P processes running on the parallel machine. The
calculation of forces is divided into P stages. The traveling
particles are shifted to the right neighbor processor in a ring
topology.

The three applications were executed on a 48-core AMD
Opteron cluster consisting of 12 2-way dual-core AMD
Opteron 2218 based 2.64 GHz Sun Fire servers with CentOS
4.3 operating system, 4 GB RAM, 250 GB Hard Drive and
connected by Gigabit Ethernet. We assume that the machines
corresponding to the failure traces are similar to the processors
in our cluster.

The applications were made malleable by instrumenting
them with function calls to SRS (Stop Restart Software), a
user-level semi-transparent checkpointing library for malleable
applications [8]. SRS provides functions for marking data
for checkpointing, reading checkpointed data into variables,
specifying the checkpointing locations and determining if the
application is continued from a previous run. The functions
for marking and reading checkpoint data also allow the users
to specify the data distribution followed for the different
variables. By determining the number of processors and the
data distributions, used for the current and the previous runs,
the SRS library automatically performs the redistributions of
data among the current available processors. An application
is executed for different problem sizes on a certain number

TABLE I
CHECKPOINTING (C') AND RECOVERY (12) OVERHEADS

C' (secs.) R (secs.)
Application | Min [Avg [Max Min [Avg [Max
QR 91.90 99.19 117.28 | 8.74 17.21 32.97
CG 8.96 9.55 9.75 8.89 12.56 15.12
MD 1.35 1.84 2.70 8.27 14.12 17.05

of processors, a, for a fixed number of iterations and the
average execution time is calculated. workinunittime, is
then obtained for the application for a processors by dividing
the number of iterations by the average execution time. The
average execution times for different number of processors
were also used to calculate the rescheduling policy vector, rp,
for the rescheduling policies.

To obtain a vector of checkpointing cost, C, and a matrix
for recovery cost, IR, the application instrumented with SRS
was executed with different problem sizes on different number
of processors and the average times for checkpointing or
checkpointing overheads were obtained. These checkpointing
overheads were then extrapolated to larger number of proces-
sors using LAB Fit curve fitting tool[15] to form the vector of
checkpointing overheads, C. To form the matrix of recovery
costs, R, the instrumented application was started on a certain
number of processors, a1, stopped using SRS tools and imme-
diately continued on a different number of processors, as. The
resulting recovery time between the stopping and continuing
execution on different number of processors is noted. This
was repeated for different problem sizes and the average of
the recovery times was used for the entry, [a1,as] of the R
matrix. These costs were then extrapolated for larger number
of processors using LAB Fit.

Figure] shows the number of iterations performed in one
second or the workininuttime values extrapolated to 512
processors for the three applications. We find that the MD
application is highly scalable and performs more useful work
than the other applications. The QR application with large
number of matrix operations is less scalable than MD while
the CG application is the least scalable. Table [Il gives the
minimum, average and maximum of the checkpointing and
recovery overheads for the three applications for different
processor configurations. We find that the QR application has
the maximum checkpointing overhead since it checkpoints
large number of large-sized matrices while the MD and CG
applications mostly checkpoint vectors. The MD application
has the least checkpointing overhead since the checkpoints
consist of fewer data structures. The recovery overheads are
mostly the same in all applications since recovery involves
simultaneous data redistributions between the processors.

C. Evaluation

For an application with a given workinunittime, C, R, and
rp, our models were invoked for different execution segments
for the failure traces of a system. A given execution segment
for a failure trace on a system of N processors, corresponds

workinunittime for MD, QR, and CG applications
25 . ! ! ! ! ! ! ; ;

=MD
—0QR
—CG

=
3
T
L

workinunittime

S

0 i i i i i i i i i i
0 50 100 150 200 250 300 350 400 450 500
Number of Processors

Fig. 4. workininuttime values for the applications

to a random start time, start, and random duration, dur, for
application execution. Based on start, A and 6 are calculated
for the execution segment using the history of failures that
occurred on the processors before start. Our model, M mall
is invoked with the parameters, workinunittime, C, R, rp,
N, X and 0 for a given application, and execution segment for
a failure trace of a system, with different values of I.

We have developed a simulator to assess the quality of
the checkpointing intervals determined by our model for an
application execution on an execution segment. Our simulator
uses the same inputs to our model along with duration, dur,
for simulating the application execution that started at start
point in the failure trace and executed for dur seconds.
At start, the simulator considers the number of available
processors and based on the rescheduling policy, 7p, chooses a
set of available processors, a1, for application simulation. The
simulator then simulates application execution by advancing
the time and accumulating checkpointing intervals, I to the
useful computation time, u,,. After every I seconds, the
simulator simulates application checkpointing by advancing
C,, seconds in time. This is repeated until a failure occurs in
one of the a; processors. At this point, the simulator calculates
the amount of useful work spent on a; processors, uw,, as
UWq, = workinunillimeq, X Uq,. It accumulates uw,, to
total amount of useful work, UW . After failure, the simulator
once again considers the number of available processors. If
none of the processors are available, the simulator adds the
time corresponding to waiting for one of the processors to be
repaired for application continuation. At that point in time, the
simulator considers the total number of available processors,
and based on the rescheduling policy, rp, chooses another set
of available processors, ag, for application execution. Based
on the previous and current set of processors for application
execution, a; and ag, respectively, the simulator advances the
time by R,, 4, seconds for recovery. After recovery, the simu-
lator once again advances time by accumulating checkpointing
intervals, I, until one of the processors in ao fails at which

point it calculates the useful work spent in ag processors,
UWq,, and adds this to total useful time, UW. This process
continues until the simulator reaches start + dur seconds of
time, at which point it outputs the total useful work performed
by the application as UW.

For a given application execution in an execution segment
of a failure trace, we calculate model efficiency. To find
model efficiency, we find the checkpointing interval, I,,0del,
corresponding to large UWT,,,4c; values produced by the
model. We then find the useful work output by the simulator,
UW7,, ..:» for the execution segment corresponding to I odei-
We also find the highest useful work, UWj;gnese, output
by the simulator for the execution segment when executed
with different values of checkpointing interval. We denote the
checkpointing interval corresponding to UWhighest as Isim.
We find the percentage difference, pd, between UWj;ghest and
UWri,,. ... to give the percentage of work lost due to executing
the application with the interval determined by our model. The
percentage difference, pd, represents the model inefficiency,
while (100 — pd) represents the model efficiency.

Due to modeling errors, instead of choosing the interval
corresponding to the highest UW'T,, 541 Value, we choose the
intervals corresponding to UW T, ,4.; values that are within
8% of the highest UWT,,,04c1- We then calculate the average
of these intervals as I,,,,4¢;. For exploring different checkpoint
intervals to determine I,,,,4.;, We use a minimum checkpoint
interval, I,,,;,,. The checkpointing intervals are doubled starting
from I,,;, until the UWT,,,4e for the current checkpoint
interval is less than the value for the previous interval. We then
perform binary-search within the intervals corresponding to the
top three UWT,,04e1 values to explore more checkpointing
intervals corresponding to high UWT,,,4e; Vvalues. For this
work, we use 5 minutes for I,,;,.

D. Results

Table [shows the model efficiency for different number
of processors on different systems for QR application with
greedy rescheduling policy. In all cases, the efficiency of
our model in terms of the amount of useful work performed
by the application in the presence of failures, using the
intervals determined by our model, as shown in column 5,
was greater than 80%. Thus, the intervals determined using
our models are highly efficient for executing malleable parallel
applications on systems with failures. We also find that the
checkpointing intervals determined by our model increases
with decrease in failure rates of systems indicating that the
model presents practically relevant checkpointing intervals.
The average UW'T' values, determined using the simulator,
corresponding to I,04e; and Ig;,, are comparable and follow
similar trends for the different systems. This shows that the
checkpointing intervals determined by our models are highly
competent with the best checkpointing intervals. The intervals
determined by our model are smaller for the Condor systems
than for the batch systems, with the interval approximately
equal to 35 minutes when considering execution of malleable
parallel applications on a Condor pool of 256 processors. This

is due to the highly volatile non-dedicated Condor environment
as indicated by the higher failure rates or As for the Condor
systems. However, we find that our model efficiencies for
the Condor systems are equivalent to the efficiencies for the
batch systems, implying that our model can determine efficient
checkpointing intervals for both dedicated batch systems and
non-dedicated interactive systems.

We also compared the model efficiencies for the three
applications on 128 processors of system-1 with greedy
rescheduling strategy. Table shows the efficiencies for the
applications. The table shows that the checkpointing intervals
by our models are more than 90% efficient in terms of the
amount of useful work performed by the applications. This
shows that our modeling strategy is applicable to different ap-
plications. We find that the checkpointing intervals determined
by our model, Imodel, are largest for the QR application.
As shown in Table [QR application has high checkpointing
and recovery overheads. Hence our modeling strategy tries
to maximize the amount of useful work for the QR appli-
cation by selecting larger checkpointing intervals resulting in
smaller non-useful or down times for the application. We find
that the UWT values corresponding to I,04e; and Ig, are
comparable. For all the three applications, the UWT values
calculated for application executions in the presence of failures
are within 4-11% of the corresponding failure-free maximum
workinunittime values shown in Figure 4l This shows that
by adopting malleability, and choosing efficient checkpointing
intervals by our models, applications can execute with nearly
failure-free high performance even in the presence of failures.

We also investigated the usefulness of non-dedicated highly-
volatile Condor environments for the execution of malleable
parallel applications. The work by Plank and Thomason[10]
showed that Condor systems, due to high failure rates and
checkpointing overheads, are not suitable for execution of
moldable applications since a fixed number of processors are
generally not available for the entire duration of application
execution on such systems. Accordingly, it was shown that
execution on only one processor in Condor environment
provided the least runtimes for the applications. We explored
the use of such systems for malleable applications. Figure
shows simulation of a sample execution of QR application on
128 processors of the Condor system for a duration of 80 days
with the greedy rescheduling policy. I,,,04er Of 1.53 hours, the
checkpointing interval determined by our model, was used for
the execution. We also used C = R = 20 minutes, the worst-
case checkpointing and recovery overheads on shared Condor
systems and networks.

As Figure 3 shows, different number of processors are used
for execution at different times. More than 100 processors
are used in most cases since the greedy rescheduling strategy
chooses the maximum number of processors available for
execution. The UWT value for this execution is 7.29. This
UWT value, obtained in the presence of failures on the
Condor systems, is nearly 70% of the corresponding failure-
free maximum workinunittime value for QR application

Processors used by QR application on Condor
135 T T T

130

125

120

115

1101

Number of Processors

1051

100

951

90

85
0

| I I 1 . I .
10 20 30 40 50 60 70 80
Time (in days)

Fig. 5. Simulation of QR application execution on Condor system for 80 days
(128 processors, checkpointing interval = I,,04¢; = 1.53 hours, C = R =
20 minutes)

shown in Figure @l Thus, while highly volatile environments
like Condor are not suitable for executions of moldable
applications, they can be used to provide high efficiency for
malleable applications due to the flexibility in terms of the
number of processors used for execution and the efficient
checkpointing intervals determined by our models.

Table [[V] shows the model efficiency and the amount of
useful work corresponding to the intervals determined by our
models for the three rescheduling policies for QR application
on 128 processors of system-1. We find that in all the
rescheduling policies, the efficiency was greater than 80%. We
also find that the AB rescheduling policy yields the maximum
work for the application. This is because the policy attempts to
execute the application on small number of processors where
the mean time to failures is low. Hence larger checkpointing
intervals are chosen for application execution, as shown in the
table, leading to less checkpointing overheads and more useful
work. The greedy strategy performs the least useful work since
it always executes the application on maximum number of
available processors where the mean time to failures is high
leading to high checkpointing and recovery overheads. The PB
policy considers number of processors for which failure-free
running time is minimum. Since the QR application is highly
scalable, the PB rescheduling policy attempts to execute on
large number of processors where the failure rates are high.
Hence, the checkpointing intervals and the resulting amount
of useful work for the PB policy are comparable to those
for the greedy policy. Thus, we find that for large number of
systems with failures, executing on smaller number of systems
with less failure rates (AB) leads to more useful work by the
application than executing the application on the number of
processors corresponding to maximum performance (PB).

Figure [6(a)] shows the model inefficiencies with increasing
failure rates for QR application on a condor trace with 256
processors and for greedy rescheduling policy. The figure
shows that the model inefficiencies decrease or model efficien-

TABLE Il
MODEL EFFICIENCIES FOR DIFFERENT SYSTEMS (QR APPLICATION, GREEDY RESCHEDULING POLICY)

Procs.| System Average A Average 0 Average Average Average Average
Model I’model UwT UwT
Efficiency (hours) for for Isim
% Imodel
64 system-1 1/(6.42 days) 1/(47.13 min.) 80.17 2.81 8.27 9.45
128 system-1 1/(104.61 days) 1/ (56.03 min.) 90.37 17.78 9.57 10.46
256 system-2 1/(81.82 days) 1/(168.48 min.) 86. 14 5.32 8.67 9.85
512 system-2 1/(68.36 days) 1/(115.43 min.) 95.74 3.68 9.76 10.17
64 condor 1/(6.32 days) 1/(52.377 min.) 82.33 2.75 8.44 9.52
128 condor 1/(6.36 days) 1/(54.848 min.) 87.19 1.53 8.26 9.08
256 condor 1/(5.19 days) 1/(125.23 min.) 93.38 0.67 7.89 8.32
TABLE III Model inefficiency with respect to failure rate
MODEL EFFICIENCIES FOR THE 3 APPLICATIONS (SYSTEM-1, 128 s ' ' ' ' ' ' '
PROCESSORS, GREEDY RESCHEDULING POLICY)
25 1
Application Average Average Average Average 3
Model Lmoder | UWT UWT 2 5l]
Efficiency (hours) for for Igim E
% Imodet % 15 1
QR 90.37 17.78 9.57 10.47 £
CG 95.66 7.59 0.85 0.88 g
MD 90.06 137 17.96 19.72 g oy]
o
st 1
TABLE IV
MODEL EFFICIENCIES FOR DIFFERENT RESCHEDULING POLICIES (QR o ‘ Ll ‘ ‘ ‘ ‘
APPLICATION, SYSTEM-1, 128 PROCESSORS) 0.8 1 12 14 16 18 2 2.2
Failure rate (lambda) [1/minutes] X107
Resched. Average Model | Average Average (a) Different Failure Rates (256 processors)
Policy Efficiency % Linodel U ngw del
(hours) (X 10) Model inefficiency with respect to duration of execution
Greedy 90.3 17.41 108.27 45 ' ' ' ' ' ' ' '
PB 90.0 17.44 110.20 i 5 |
AB 83.1 88.42 133.15
. 35F 1
5
. o . . . g% 1
cies increase with increasing failure rates. Thus our model is e
. < 25 q
effectively able to predict application behavior on systems with g
. €
frequent failures than for systems with sporadic failures. This o 20f 1
. s
is because the history of failure rates on systems with sporadic 5 15t :]
failures cannot be effectively used to predict the future failures @ ol |
on those systems. We also compared the model efficiencies J
for varying durations of application execution. Figure |6(b) 5 kT ll ﬁ 1
shows the results for QR application execution with condor 4 Ay e PR\,

traces on 128 processors and for greedy rescheduling policy.
The results show that our model inefficiency decreases or
model efficiency improves with increasing durations. This is
because the long-running properties of our Markov model are
especially suited for long-running parallel applications than
for short applications.

E. Summary

In addition to showing validation and efficiency results,
our experiments have also shown some interesting and new
observations. We have shown that with the help of malleability
and our checkpointing intervals, applications can execute with
near failure-free performance in the presence of failures.
We have also shown that malleability and our checkpointing

0 20 40 60 80 100 120
Duration of execution (days)

(b) Different Durations (128 processors)

Fig. 6. Model Efficiency for Different Failure Rates and Durations (QR
application, condor trace, greedy rescheduling policy)

intervals encourage executions on volatile environments like
Condor, the environments considered to be not suitable for
parallel applications in the earlier efforts.

VII. RELATED WORK

There is a vast amount of literature on checkpointing
interval selction[9]]. In this section, we focus on some of the

highly relevant efforts. The work by Daly[[16] develops a first-
order model to determinine optimum checkpointing interval.
The work then develops a higher-order model for improving
accuracy for small talues of MTBF. The work assumes Poisson
failure rate and considers single processor failures.

The work by Nurmi et al.[17] determines checkpointing
intervals that maximize efficiency of an application when
executed on volatile resource-harvesting systems such as
Condor[12] and SETI@Home|[18]. They use three differ-
ent distributions including exponential, Weibull and hyper-
exponential for fitting hostorical data on machine availabilty.
They then use the future lifetime distribution along with the
checkpoint parameters including checkpointing intervals in a
three-state Markov model for application execution and deter-
mine the interval that minimize execution time. Their Markov
model is based on the work by by Vaidya[l19]. Their work
is intended for sequential processes executing in the Condor
environment. They show that the type of failure distribution
does not affect the application execution performance.

The work by Ren et al.[20] considers proving fault tolerance
for guest jobs executing on resources provided voluntarily in
fine grained cycle sharing (FGCS) systems. In their work, they
calculate checkpointing interval using a low overhead one-step
look ahead heuristic. In this heuristic, they divide execution
time into steps and compare the costs of checkpointing at a
step and the subsequent step using the probability distribution
function for failures. Their model does not assume a specific
distribution and is intended for sequential guest jobs.

Plank and Elwasif[21]] study the implications of theoretical
results related to optimal checkppointing intervals on actual
performance of application executions in the presence of
failures. They perform the study using simulations of long
running applications with failure traces obtained on three
parallel systems. One of the primary results of their work
is that the exponential distribution of machine availability,
although inaccurate, can be used for practical purposes to
determine checkpointing intervals for parallel applications.

To our knowledge, the model by Plank and Thomason[10]
is the most comprehensive model for determining check-
pointing intervals for parallel applications. Their work tries
to determine the number of processors and checkpointing
interval for executing moldable parallel applications on a
parallel system given a failure trace on the system. The model
assumes exponential distribution for inter-arrival times of
failures. They use the concept of spare processors for replacing
the systems that failed during application execution. They
show by means of simulations that checkpointing intervals
determined by their model lead to reduced execution times in
the presence of failures. Their work was intended for typical
parallel checkpointing systems that do not allow the number
of processors to change during application execution. With
increasing prevelance of checkpointing systems for malleable
parallel applications, we base our work on their model and sig-
nificantly modify different aspects of their model to determine
checkpointing intervals for such systems.

VIII. CONCLUSIONS

The work described in this paper presents the first effort,
to our knowledge, for selecting checkpointing intervals for
efficient execution of malleable parallel applications in the
presence of failures. The work is based on a Markov model
for malleable applications that includes states for execution on
different number of processors during application execution.
We have also defined a new metric for evaluation of such
models. The states of our model are based on rescheduling
policies. By conducting large number of simulations with
failure traces obtained for real high performance systems,
we showed that the checkpointing intervals determined by
our model lead to efficient executions of malleable parallel
applications in the presence of failures.

IX. FUTURE WORK

We plan to augment our model with different kinds of
failure distributions. We also plan to experiment with different
redistribution policies. The checkpoint intervals from our
model will be integrated with a real checkpointing system that
provides malleability and fault tolerance. Finally, we plan to
extend our model for determining checkpointing intervals for
executions on multi-cluster grids and heterogeneous systems.

REFERENCES

[1] |http://www.top500.org.

[2] L. Oliker, A. Canning, J. Carter, C. lancu, M. Lijewski, S. Kamil,
J. Shalf, H. Shan, E. Strohmaier, S. Ethier, and T. Goodale, “Scientific
Application Performance on Candidate PetaScale Platforms,” in IPDPS
’07: Proceedings of the 21st IEEE International Parallel and Distributed
Processing Symposium, 2007, pp. 1-12.

F. Petrini, K. Davis, and J. Sancho, “System-Level Fault-Tolerance in
Large-Scale Parallel Machines with Buffered Coscheduling,” in /PDPS
"04: Proceedings of the 21st IEEE International Parallel and Distributed
Processing Symposium, 2004, pp. 209—.

L. Chen, Q. Zhu, and G. Agrawal, “Supporting Dynamic Migration in
Tightly Coupled Grid Applications,” in SC *06: Proceedings of the 2006
ACM/IEEE conference on Supercomputing, 2006, p. 117.

[51 J. Ruscio, M. Heffner, and S. Varadarajan, “DejaVu: Transparent User-
Level Checkpointing, Migration, and Recovery for Distributed Systems,”
in IPDPS ’07: Proceedings of the 21st IEEE International Parallel and
Distributed Processing Symposium, 2007, pp. 1-8.

R. Fernandes, K. Pingali, and P. Stodghill, “Mobile MPI Programs
in Computational Grids,” in PPoPP '06: Proceedings of the eleventh
ACM SIGPLAN symposium on Principles and Practice of Parallel
Programming, 2006, pp. 22-31.

M. Schulz, G. Bronevetsky, R. Fernandes, D. Marques, K. Pingali, and
P. Stodghill, “Implementation and Evaluation of a Scalable Application-
Level Checkpoint-Recovery Scheme for MPI Programs,” in Supercom-
puting, 2004. Proceedings of the ACM/IEEE SC2004 Conference, 2004,
pp. 38—

[8] S. Vadhiyar and J. Dongarra, “SRS - A Framework for Developing
Malleable and MigratableParallel Applications for Distributed Systems,”
Farallel Processing Letters, vol. 13, no. 2, pp. 291-312, 2003.

E. Elnozahy, D. Johnson, and Y. Wang, “A Survey of Rollback-Recovery
Protocols in Message-Passing Systems,” Dept. of Computer Science,
Carnegie Mellon University, Tech. Rep. CMU-CS-96-18, 1996.

J. Plank and M. Thomason, “Processor Allocation and Checkpoint
Interval Selection in Cluster Computing Systems,” Journal of Parallel
and Distributed Computing, vol. 61, no. 11, pp. 1570-1590, 2001.
http://institute.lanl.gov/data/lanldata.shtml|
http://www.cs.wisc.edu/condor,

L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
1. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley,
D. Walker, and R. C. Whaley, ScaLAPACK Users’ Guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 1997.

3

[t}

[4

finar

[6

—_

[7

—

[9

—

[10]

(11]
[12]
[13]

http://www.top500.org
http://institute.lanl.gov/data/lanldata.shtml
http://www.cs.wisc.edu/condor

[14]

[15]
[16]

(17]

[18]
[19]

[20]

[21]

S. Balay, K. Buschelman, W. Gropp, D. Kaushik, M. Knepley,
L. McInnes, B. Smith, and H. Zhang, “PETSc Web Page,” 2001,
http://www.mcs.anl.gov/petscl

http://zeus.df.ufcg.edu.br/labfitl

J. Daly, “A Higher Order Estimate of the Optimum Checkpoint Interval
for Restart Dumps,” Future Generation Computer Systems, vol. 22,
no. 3, pp. 303-312, 2006.

D. Nurmi, R. Wolski, and J. Brevik, “Model-based checkpoint schedul-
ing for volatile resource environments,” Dept. of Computer Science,
University of California Santa Barbara, Tech. Rep. 2004-25, 2004.
http://setiathome.ssl.berkeley.edu.

N. Vaidya, “Impact of Checkpoint Latency on Overhead Ratio of a
Checkpointing Scheme,” IEEE Transactions on Computers, vol. 46,
no. 8, pp. 942-947, 1997.

X. Ren, R. Eigenmann, and S. Bagchi, “Failure-Aware Checkpointing
in Fine-Grained Cycle Sharing Systems,” in HPDC '07: Proceedings
of the 16th International Symposium on High Performance Distributed
Computing, 2007, pp. 33-42.

J. Plank and W. Elwasif, “Experimental Assessment of Workstation
Failures and Their Impact on Checkpointing Systems,” in FTCS '98:
Proceedings of the The Twenty-Eighth Annual International Symposium
on Fault-Tolerant Computing, 1998, p. 48.

http://www.mcs.anl.gov/petsc
http://zeus.df.ufcg.edu.br/labfit
http://setiathome.ssl.berkeley.edu

	I Introduction
	II Background: Checkpoint Intervals for Moldable Applications
	III Checkpoint Intervals for Malleable Applications
	III-A Markov Model
	III-B Useful Work per Unit Time
	III-C Selecting Checkpointing Intervals

	IV Implementation and Optimizations
	V Rescheduling Policies
	VI Experiments and Results
	VI-A Failure Data
	VI-B Applications
	VI-C Evaluation
	VI-D Results
	VI-E Summary

	VII Related Work
	VIII Conclusions
	IX Future Work
	References

