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Abstract—Accurate and timely prediction of weather phe-
nomena, such as hurricanes and flash floods, require high-
fidelity compute intensive simulations of multiple finer regions
of interest within a coarse simulation domain. Current weather
applications execute these nested simulations sequentially using
all the available processors, which is sub-optimal due to their sub-
linear scalability. In this work, we present a strategy for parallel
execution of multiple nested domain simulations based on parti-
tioning the 2-D processor grid into disjoint rectangular regions
associated with each domain. We propose a novel combination
of performance prediction, processor allocation methods and
topology-aware mapping of the regions on torus interconnects.
Experiments on IBM Blue Gene systems using WRF show that
the proposed strategies result in performance improvement of up
to 33% with topology-oblivious mapping and up to additional
7% with topology-aware mapping over the default sequential
strategy.

Index Terms—weather simulation; performance modeling;
processor allocation; topology-aware mapping;

I. INTRODUCTION

Accurate and timely prediction of catastrophic events such
as hurricanes, heat waves, and thunderstorms enables policy
makers to take quick preventive actions. Such predictions
require high-fidelity weather simulations and simultaneous on-
line visualization to comprehend the simulation output on-the-
fly. Weather simulations mainly comprise of solving non-linear
partial differential equations numerically. Ongoing efforts in
the climate science and weather community continuously
improve the fidelity of weather models by employing higher
order numerical methods suitable for solving model equations
at high resolution discrete elements.

Simulating and tracking multiple regions of interest at
fine resolutions is important in understanding the interplay
between multiple weather phenomena and for comprehensive
predictions. For example, Figure 1 illustrates the phenomena
of two depressions occurring simultaneously in the Pacific
Ocean. Here, it is necessary to track both depressions to
forecast the possibility of a typhoon or heavy rainfall. In such
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scenarios, multiple simulations need to be spawned within
the main parent simulation to track these phenomena. The
high resolution simulations are generally executed as subtasks
within the coarser-level parent simulation.

Fig. 1. Visualization of multi-
ple depressions in August 2010
on Pacific Ocean
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Fig. 2. Execution time of a weather
simulation over a 107 sq. kms. do-
main on Blue Gene/L

In weather simulations involving multiple regions of inter-
est, the nested child simulations are solved r number of times
for each parent integration step, where r is the ratio of the
resolution of the parent simulation to the nested simulation.
At the beginning of each nested simulation, data for each finer
resolution smaller region is interpolated from the overlapping
parent region. At the end of r integration steps, data from the
finer region is communicated to the parent region. The nested
simulations demand a large amount of computation due to their
fine resolutions. Hence, optimizing the executions of nested
simulations can lead to a significant overall performance gain.
Additionally, the need for simultaneous visualization of the
fine-grained weather predictions also entails high frequency
output of weather forecast, which in turn results in huge I/O
costs. Typically, these I/O costs constitute a substantial fraction
(20-40%) of the total simulation time. Thus, reducing the I/O
costs can also improve the overall performance.

Existing weather applications employ a default strategy of
executing the nested simulations corresponding to a single
parent domain sequentially one after the other using the
full set of processors. However, these applications typically
exhibit sub-linear scalability resulting in diminishing returns
as the problem size becomes smaller relative to the number
of available cores. For example, we observed that the popular
Weather Research and Forecasting model (WRF) [1], [2] is
scalable up to large number of cores [3] when executed without
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a subdomain, but exhibits poor scalability when executed with
subdomains. Figure 2 shows the scalability of WRF on a
rack of IBM Blue Gene/L. The simulation corresponded to
a region with parent domain of size 286×307 and involving
a subdomain of size 415×445. Note that the performance of
WRF involving a subdomain saturates at about 512 processors.
Hence in a WRF simulation with two subdomains executed on
a total of 1024 cores, the performance of a subdomain executed
on 512 cores will be about the same as when executed on
all the 1024 cores. Thus, partitioning the 1024 cores equally
among the subdomains for simultaneous execution will give
better performance than serial execution on all the 1024 cores.

We focus on optimizing the parallel execution of high-
resolution nested simulations so as to improve the overall
performance of weather simulations pertaining to multiple
regions of interest. The simultaneous execution of indepen-
dent and non-homogeneous nested simulations, with different
subdomain sizes, requires an efficient partitioning of the entire
processor space into multiple disjoint rectangular processor
grids that can be assigned to the different nested simulations.
This can minimize the parallel execution time if the number
of processors are allocated in proportion to the work load
associated with each nested simulation. This ensures that the
time spent in the r integration steps of the different nested
simulations is nearly equal, and the nested domains reach
the synchronization step with the parent simulation together.
We propose an efficient processor allocation strategy based on
recursive bisection that takes into account the above require-
ments, and also uses estimates of relative execution times of
the nests. We estimate these relative execution times using
a performance prediction model based on linear interpolation
in a 2D domain from a small set of actual simulation times
obtained from profiling runs. Our experiments show that our
prediction model is highly accurate and exhibits less than 6%
prediction error for most configurations.

We also propose topology-aware mapping of the nested
subdomains on torus interconnects. Torus networks are widely
prevalent in modern supercomputers, with 11 of the top 25
supercomputers in the November 2011 list based on torus net-
work topology [4]. In this work, we consider architectures with
3D torus network topology viz. IBM’s Blue Gene/L and Blue
Gene/P. We have developed heuristics for mapping the 2D
virtual process topology involved in the nested simulations to
the 3D torus such that the neighbouring processes in the virtual
topology are mapped onto neighbouring nodes of the torus. We
propose mapping heuristics that minimize the communication
for nested simulations and the parent simulation.

Experiments on IBM Blue Gene systems show that the
proposed performance modeling, partitioning and processor
allocation strategies can improve simulation performance over
the default strategy of employing the maximum number of
processors for all the nested simulations by up to 33% with
topology-oblivious mapping and up to an additional 7% with
topology-aware mapping. We also achieve up to 66% reduction
in MPI Wait times. Our approach for parallelization of mul-
tiple nested simulations also results in better I/O scalability.

To summarize, following are our primary contributions.
1) A performance model for nested simulations based on

linear interpolation that can predict execution times with
less than 6% error.

2) Efficient method for processor allocation that result in 8%
improvement over a naı̈ve proportional allocation policy.

3) Topology-aware 2D to 3D mapping that result in 7%
improvement over topology-oblivious mapping.

II. RELATED WORK

Our work is primarily related to three research areas: (1)
performance modeling and prediction, (2) static load balancing
for parallel applications, and (3) mapping of processes in the
virtual topology onto the physical network topology.

Performance Modeling and Prediction. There has been
a lot of research on performance modeling and prediction of
applications running on HPC systems. Allan et al. [5] compare
tools for predicting performance on a range of architectures
and applications. Due to the rich history of this field, we only
focus on prior work involving weather forecasting applica-
tions. Kerbyson et al. [6] describe an analytical performance
model parameterized in terms of WRF application inputs
(grid size, computation load per grid point, etc.) and system
parameters (processor count, network topology, latencies and
bandwidth, etc.). This model was developed via a careful
manual inspection of the dynamic execution behavior of the
WRF application and was subsequently validated using perfor-
mance measurements on two real systems - an AMD Opteron
based cluster system and IBM Blue Gene/L. Unlike [6], our
performance prediction model uses linear interpolation based
on the grid size and aspect ratio of the grid using actual
simulation times obtained from a small set of profiling WRF
runs. Delgado et al. [7] (extending their earlier work in [8])
describe a regression-based approach for modeling WRF per-
formance on systems with less than 256 processors, but their
primary focus is on capturing the system related factors such
as clock speed, network bandwidth, which they do via a
multiplicative effects model. Our prediction approach makes
uses of the application specific factors (i.e. grid size and aspect
ratio) without explicitly incorporating system related factors.
Further, [6] and [7] only focus on predicting performance
for single domain configurations whereas we use performance
prediction results for partitioning the available processor space
into different sizes for concurrent execution of nested domains.

Static Load Balancing for Parallel Applications. Paral-
lelization of scientific applications involving numerical model-
ing is a well-studied area with vast amount of literature. Most
of the earlier existing work on static data parallel simulations
such as those in weather modeling applications is based
on domain decomposition where the domain of interest is
divided into smaller subdomains that are assigned to individual
processors such that the load is balanced across the processors
while minimizing the communication costs. There currently
exists a number of approaches such as recursive bisection [9]
and graph partitioning [10] that cater to both regular and
irregular domains and yield very good performance. In recent



years, there has also been work [11] addressing scenarios in-
volving processors with heterogeneous computational capacity
and communication bandwidth that requires partitioning the
domain of interest into multiple subdomains in proportion to
the computational capacity of the processors while taking into
account other constraints. In our current work, application-
specific constraints require that a single nested domain is
assigned to a rectangular processor grid to achieve optimal
performance. We employ an alternate strategy of partitioning
the processor space into multiple disjoint rectangular grids
that are assigned to the individual nested domains so that the
computational capacity is proportional to the domain work-
load. Interestingly, our algorithm for partitioning the processor
space is based on recursive bisection that is often used for
decomposing regular 2D domains.

Mapping. Past work [12]–[16] shows various techniques
to map parallel applications to communication networks.
The techniques vary with the different network topologies.
Specifically, mapping optimizations for Blue Gene torus net-
works [12], [13] take the application communication logs as
an input and generate mapfiles for future application runs to
optimize the hop-byte metric. Bhatele et al. [12] also show
benefits in a single domain WRF application run with their
techniques. These techniques in literature are oblivious to the
exact data flow in the application, though they can be tuned to
map certain critical phases of the application. While they may
be sufficient for single domain WRF application simulations,
multiple sibling domains running simultaneously present a
harder problem. This is because we need to optimize the com-
munication in the main domain as well as the multiple nested
domains. In this paper, we present mapping optimizations for
WRF that selectively map each subdomain to a sub-rectangle
of the torus, while also keeping the number of hops minimal
for the subdomain and parent domain processors.

III. PARALLELIZATION OF SUBDOMAINS

In simulations involving nested domains, the simulation
of the high-resolution nests are highly compute-intensive.
Thus, the performance of these simulations improves with
increasing number of cores. However, increasing the number
of cores often leads to diminishing returns, especially when
applications exhibit sub-linear scalability. The current strategy
in WRF is to execute these high-resolution nested simulations
sequentially, utilizing all the cores to process one nest at a
time. We show that performance of the overall simulation can
be improved by subdividing the processor space into partitions
for simultaneous executions of the nested simulations.

We concurrently execute the multiple nested simulations on
disjoint subsets of processors. Estimates of the execution times
of the nested simulations are required to decide the number of
processors to be allocated for each nested simulation. We use
linear interpolation for performance prediction as described in
Section III-A. The performance prediction of the simulation
times is then used for partitioning the available processor space
for the nested simulations as described in Section III-B.

The simulations of the high-resolution nests are spawned
from the parent domain simulation. As mentioned above, the
default WRF strategy is to spawn the nested simulations on
the full set of available processors; these simulations use
the MPI COMM WORLD communicator. In our approach,
we create sub-communicators for each nested simulation.
Since we use different sub-communicators for different nested
simulations, it is beneficial to map the processes within a
sub-communicator onto neighbouring nodes in the network
topology. Furthermore, since the parent simulation uses the
global communicator, a universal mapping scheme benefits
both the parent and nested simulations. These topology-aware
mapping heuristics are described in Section III-C.

A. Performance Prediction

We propose a performance model that predicts the relative
execution times of the nested simulations with a low error.
A naı̈ve approach is to assume that execution times are
proportional to the number of points in the domain. However,
our experiments indicate that a simple univariate linear model
based on this feature results in more than 19% prediction
errors. Our model uses piecewise linear interpolation based
on the domain sizes. For a domain having width nx and
height ny , we use the following two features of the domain
for interpolation

1) Total number of points in the domain, given by nx · ny .
2) Aspect ratio of the domain, given by nx / ny .

The naı̈ve approach exhibits higher errors than our model
because the total number of points do not capture the x-
communication volume and y-communication volume sepa-
rately. Hence the prediction for domain size of nx1 × ny1
would be same as the prediction for domain size of nx2×ny2
where nx1 ·ny1 = nx2 ·ny2. The aspect ratio together with the
total number of points capture the x- and y-dimensions and
hence give better predictions.

We conducted experiments on a fixed number of processors
for a small set (size = 13) of domains with different domain
sizes and different aspect ratios. The actual execution times
of these 13 domains are used to interpolate the execution
times for other domains of varying sizes. Each domain can be
represented as a point in the XY plane, where the x-coordinate
denotes the total number of points in the domain and the y-
coordinate denotes the aspect ratio. The convex hull of these
13 points is triangulated using Delaunay triangulation [17].
Figure 3(a) shows a snapshot of the triangulation. The vertices
of the triangles represent the known execution times. A domain
D, represented as a point P (x, y) inside the convex hull, will
fall inside one of the triangles as marked in Figure 3(a). P lies
inside 4ABC whose vertices are A(x1, y1), B(x2, y2) and
C(x3, y3). The barycentric coordinates [18] of P are obtained
from A, B and C by Equations (1), (2) and (3). The predicted
execution time TD of P can be interpolated from the execution
times of the domains represented by the vertices of 4ABC



(a) Delaunay Triangulation of points
representing known execution times
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as shown in Equation (4).

λ1 = (y2−y3)∗(x−x3)+(x3−x2)∗(y−y3)
(y2−y3)∗(x1−x3)+(x3−x2)∗(y1−y3)

(1)

λ2 = (y3−y1)∗(x−x3)+(x1−x3)∗(y−y3)
(y2−y3)∗(x1−x3)+(x3−x2)∗(y1−y3)

(2)

λ3 = λ1 − λ2 (3)
TD = λ1 ∗ T(x1,y1) + λ2 ∗ T(x2,y2) + λ3 ∗ T(x3,y3) (4)

The 13 domains required for interpolation will have to be
carefully chosen for good predictions. To determine this set,
we randomly generated a large number of points with domain
size ranging from 94x124 to 415x445 and the aspect ratio
ranging from 0.5 – 1.5. From this large set, we manually
selected a subset of 13 points that nicely cover the rectangular
region defined by the diagonal between (minimum domain
sizes, minimum aspect ratio) and (maximum domain sizes,
maximum aspect ratio). These points were selected in a way
that the region formed by them could be triangulated well.

We note that it suffices to estimate the relative execution
times for processor allocation to the nests. Hence, prediction
on a particular processor size is sufficient to deduce the
relative execution times. For larger domains, i.e. for the points
lying outside the basis set of 13 points, we scale down to
the region of coverage and then interpolate for that point.
Though this does not accurately predict the execution times
of the larger domains, this approach captures the relative
execution times of those larger domains, and hence suffices
as a first order estimate. Therefore, these 13 experiments
suffice for predictions and it is not necessary to obtain the
actual execution times for larger domain sizes. We have tested
this approach on test domains with varying sizes and aspect
ratios, and our predictions exhibit less than 6% error. The
total number of points in these test domains lie in the range
of 55,900 – 94,990, and the aspect ratio lie in the range of
0.5 – 1.5. We also tested by scaling up the number of points
in each sibling, while retaining the aspect ratio.

Our performance model based on Delaunay triangulation
can be very useful in modeling applications where the exact
interplay of the parameters used for modeling are unknown.
In absence of such analytical model, linear interpolation gives
a fairly accurate estimate as shown by our approach.

B. Processor Allocation

We propose a processor allocation strategy in the context
of multiple nested simulations that results in near-optimal

performance. A simple processor allocation strategy is to
equally subdivide the total number of processors among the
nested simulations. However, this results in load imbalance
because of the varying domain sizes of the nested simulations.
We therefore use the relative execution times obtained from
the performance prediction model to decide the number of
processors to allocate for each nested simulation.

The parent simulation domain is solved on the full set of
available processors. The processor space can be considered
as a virtual processor grid of size Px · Py . Consider the
parent simulation domain of size nx × ny . Initially, this
domain is distributed over the processors by assigning rect-
angular regions of size nx/Px × ny/Py to each processor.
The sibling domains are assigned processors as follows. The
virtual processor grid is partitioned into multiple rectangular
subgrids. The number of partitions is equal to the number
of nested simulations. The area of a region allocated for a
nested simulation is proportional to the predicted execution
time of the nested simulation. This is illustrated in Figure 3(b)
– it shows the sub-grids of the processor space allocated
to 4 nested simulations whose predicted execution times (as
obtained from our performance prediction model) are in the
ratio of 0.15 : 0.3 : 0.35 : 0.2.

The subdivision of the 2D virtual process topology into k
rectangular regions is a variant of the rectangular partitioning
problem, which is known to be NP-hard [19]. We develop
some heuristics for this problem. The pseudocode for this is
shown in Algorithm 1. This algorithm divides the processor
grid into regions that are as square-like as possible in order to
minimize the difference in the communication volume of the
X and Y dimensions.

The algorithm works as follows. We start by constructing
a Huffman tree [20] using the execution time ratios as the
weights, as shown in line 1. This gives us a binary tree such
that at every internal node, the left and right children are fairly
well-balanced in terms of the sum of the execution time ratios
of the nested domains that belong to the two subtrees rooted at
these two children. We then use this Huffman tree to construct
a balanced split-tree over the virtual processor grid. This is
done as follows. Note that all the nested domains lie at the
leaves of the Huffman tree. We traverse the internal nodes of
the Huffman tree in a breadth first (BFS) order, as shown in
line 2. For every internal node, we first determine the longer of
the two dimensions in lines 6–10. We then split the current grid
along the longest dimension in the ratio of the total execution
times of the nested domains in the left and right subtrees, as
shown in lines 11–13; we then set the grid sizes for the two
children as shown in lines 14–18.

The partitioning is always done along the longer dimension
to ensure that the rectangles are as square-like as possible.
Figure 4 shows the difference when the first partitioning is
along the longer dimension and when it is along the shorter
dimension for k = 3. As can be seen, rectangle 3 is more
square-like in Figure 4(a) than in Figure 4(b).



Input: Nested simulation domains {D1, D2, · · · , Dk}, execution
time ratios R = {R1, R2, · · · , Rk} of k nested simulations,
total number of processors P , virtual processor grid Px × Py

Output: Partition Px(i), Py(i) for each nested simulation domain
Di for 1 ≤ i ≤ k

Construct a Huffman tree, H , over the nested domains with1
execution time ratios as weights ;

/* Construct a balanced split-tree using the
Huffman tree */

for every internal node u of H traversed in BFS order do2
if (u=root) then3

(Px(u), Py(u)) = (Px, Py)4
if (Px(u) ≤ Py(u)) then5

PShortDim = Px(u), PLongDim = Py(u) ;6
else7

PShortDim = Py(u), PLongDim = Px(u) ;8
end9

Let l and r denote the left and right children of u respectively ;10
Let Subtreel and Subtreer denote the nested domains in the11
subtrees rooted at l and r respectively ;
Wl =

∑
j∈Subtreel

Rj , Wr =
∑

j∈Subtreer
Rj ;12

Divide PLongDim into Pl & Pr in the ratio of Wl : Wr ;13
if (Px(u) ≤ Py(u)) then14

Set (Px(l), Py(l)) = (PShortDim, Pl) &15
(Px(r), Py(r)) = (PShortDim, Pr) ;

else16
Set (Px(l), Py(l)) = (Pl, PShortDim) &17
(Px(r), Py(r)) = (Pr, PShortDim) ;

end18
end19

Algorithm 1: Partitioning algorithm
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Fig. 4. Partitions for k = 3 when the first partition is along the longer
dimension (a) and when it is along the shorter dimension (b)

C. Mapping

Weather simulations are very communication intensive. For
example, in WRF, each integration time-step involves 144
message exchanges with the four neighbouring processes [3].
IBM’s HPCT [21] profiling tools show that about 40% of the
total execution time in WRF is spent in communication.

Mapping is the placement of processes in the virtual
topology onto the physical network topology. In this work
we consider supercomputers with 3D torus interconnects and
hence we address the problem of 2D to 3D mapping as shown
in Figure 5. Figure 5(a) shows the 2D virtual process topology
for a WRF input with 2 sibling domains (sibling 1 and sibling
2) of identical size. This virtual topology is used by the
application for MPI communications. Figure 5(b) shows the
3D torus architecture of many modern-day supercomputers.
Each process in the 2D grid is mapped to one of the nodes in
the 3D network topology. This placement affects the number
of hops in the network between neighbouring processes in
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(a) Virtual process topology for 32
processes

(b) Topology-oblivious
mapping on 4x4x2 torus

Fig. 5. 2D to 3D mapping

the 2D topology because of the difference in the dimen-
sionality. The fewer the hops between the communicating
processes in the torus, the lesser will be the time required
for communication, thereby improving the overall application
performance. We propose mapping heuristics in the context of
nested simulations of multiple regions of interest. We describe
topology-oblivious and topology-aware mapping heuristics in
the following sections.

1) Topology-oblivious mapping: The partitioning scheme
subdivides the processor space into rectangular regions for
simultaneous executions of the nested simulations. The case of
2 nested simulations is shown in Figure 5(a). The processes 0–
3, 8–11, 16–19, 24–27 are allocated to one nested simulation
and the rest of the processes are allocated to the other nested
simulation. The simple mapping scheme is to sequentially map
the processes in increasing order of process numbers to the
torus nodes in increasing order of x, y and z coordinates. This
is shown in Figure 5(b). In this example, the simple sequential
mapping places processes 0–3 on the topmost row (y = 0) of
the first plane (z = 0) of the torus, followed by processes
4–7 in the second row (y = 1, z = 0), 8–11 in the third row
(y = 2, z = 0) and so on.

This simple mapping scheme is sub-optimal for the com-
munications within each of the nested simulations. This is
because the neighbouring rows in the virtual topology are
more than 2 hops apart in the torus, as shown with the help
of green and blue nodes. For example, 0 and 8 are neighbours
in the 2D topology whereas they are 2 hops apart in the torus.
Similarly, process 8 is 3 hops away from process 16 in the
torus. The topology-aware mapping heuristics discussed in the
next section addresses this problem.

2) Topology-aware mapping: The general problem of map-
ping belongs to NP [12]. We describe below two heuristics for
2D to 3D mapping for multiple nested simulations.
Partition mapping - In this algorithm, we map each partition
onto contiguous nodes of the torus. The partition mapping for
the 2D process topology of Figure 5(a) is shown in Figure 6(a).
The neighbouring processes in the virtual topologies of the
partitions are neighbours in the torus. For example, processes
0 and 8 are neighbours in the virtual topology as well as in
the torus. The first plane (z = 0) of the torus retains the 2D
topology of the first partition, as shown by green rectangle
in Figure 5(a) and green nodes in Figure 6(a). Similarly, the
second plane (z = 1) of the torus retains the 2D topology of
the second partition, as shown by blue rectangle in Figure 5(a)



and blue nodes in Figure 6(a).
This mapping also improves the parent domain commu-

nication performance because the neighbouring processes in
the smaller rectangles are also neighbouring processes in the
bigger rectangle. However, some of the processes in the parent
domain are more than 1 hop away. For example, process 3 is
2 hops away from process 4 in Figure 6(a).

(a) Partition mapping (b) Multi-level mapping

Fig. 6. Topology-aware mappings

Multi-level mapping - This is a modification of the partition
mapping such that the neighbouring processes in the nested
simulations as well as the neighbouring processes in the parent
simulations are neighbours in the torus. In this mapping, we
fold the rectangular partition in half and curl it across two z-
planes so that half the rectangle is in first plane and the other
half is in the second plane. This is illustrated in Figure 6(b).

Processes in the first rectangle of Figure 5(a) are folded anti-
clockwise from the first plane (z = 0) to the second plane
(z = 1). For example, process 0 is mapped to coordinate
(0, 0, 0) in the torus, process 1 is mapped to coordinate
(1, 0, 0), process 2 is mapped to (1, 0, 1), and so on. This
ensures the processes in the first rectangle have 1-hop distant
neighbours. Processes in the second rectangle of Figure 5(a)
are folded anti-clockwise from the second plane (z = 1) to
the first plane (z = 0). For example, process 4 is mapped
to coordinate (3, 0, 1) in the torus, process 5 is mapped to
coordinate (2, 0, 1), process 6 is mapped to (2, 0, 0), and so
on. This ensures that the processes in the second rectangle have
1-hop distant neighbours. Thus, this improves performance
of nested simulations. This mapping also ensures that the
processes in the parent domain are 1 hop apart. For example,
processes 3 and 4 are 1 hop apart and so on1. Thus this
universal mapping scheme benefits both the nested simulations
and the parent simulation.

We map nests to sub-rectangles where communication is al-
ways among near neighbours. This being an optimal mapping,
the processes are placed nearby and so the network contention
due to the halo exchanges reduces. Our mapping schemes
can be also applicable where there is an overlap between
the processors allocated to different dependant sub-tasks of
an application.

IV. EXPERIMENTS AND RESULTS

A. Domain Configurations
We used WRF [2] for all our experiments. The parent

simulation domain in WRF can have multiple child domains,

1The links between first and last nodes in a row/column of the torus have
not been shown in the figures.

called nests, which in turn can have children at the second
level. Nests at the same level are called siblings. Our WRF
simulations involved up to a maximum of 4 sibling domains
and resolution of up to 1.5 km. The minimum and maximum
nest sizes used in the experiments were 178x202 and 925x820.
For empirical evaluation, we chose the following two regions.
South East Asia – This covers countries such as Malaysia,
Singapore, Thailand, Cambodia, Vietnam, Brunei, and Philip-
pines. The innermost nests were chosen such that the major
business centers in this region are well represented. All these
locations are affected by the meteorological features that are
developed over South China Sea. Thus, it is desirable to assess
the meteorological impact on these key locations within the
same modelling framework. Figure 7 shows a sample domain
configuration that has the parent domain at 4.5 km resolution
and the sibling domains at 1.5 km resolution. We experimented
with eight different configurations at varying levels of nesting
and different number of sibling domains. Three configurations
had sibling domains at the second level whereas the remaining
ones had siblings at the first level of nesting.

Fig. 7. Sample domain with four sibling nests at 1.5 km resolution.

Pacific Ocean – The second region extends from 100◦E -
180◦E and 10◦S - 50◦N, covering the western Pacific Ocean
region, where typhoons occur frequently. We experimented for
the July 2010 typhoon season with 85 different configurations
of the nest domains. These configurations were randomly gen-
erated with domain size ranging from 94x124 to 415x445 and
the aspect ratio ranging from 0.5 – 1.5. We form multiple nests
to track multiple depressions over the Pacific region. There can
be several depressions forming over the region, which trigger
high-resolution nest formation. The parent domain size is 286
x 307 at 24 km resolution and the nests have 8 km resolution,
with up to 4 siblings at the first level of nesting.

B. Experimental Setup

IBM Blue Gene/L – Blue Gene/L (BG/L) [22] is the first
generation of IBM’s Blue Gene supercomputers. Each node
consists of two 700 MHz PPC 440 processor cores with 1 GB
of physical memory. The system supports two execution modes
for the applications – coprocessor (CO) mode and virtual
node (VN) mode. In the CO mode, one core is dedicated
to communication and other for computation. In the VN
mode, both cores are used for computation. 3D torus network
is the primary communication network in BG/L. We have
experimented on maximum of 1024 cores on BG/L.
IBM Blue Gene/P – Blue Gene/P (BG/P) [23] is the second
generation of Blue Gene supercomputers. Each node contains



four 850 MHz PPC 450 processor cores with 4 GB of physical
memory. BG/P supports three different application execution
modes – Symmetric Multi Processing (SMP) mode, Dual
mode and the VN mode. SMP mode supports one process per
node with up to four threads per process; Dual mode supports
two processes per node with up to two threads per process
and VN mode support four single-threaded processes per node.
The communication network in BG/P is similar to BG/L. We
experimented on up to 8192 cores on BG/P.
WRF Runtime Setup. WRF-ARW version 3.3.2, was used
for the experiments. Parallel netCDF (PnetCDF) [24] was used
for performing I/O on BG/P. The split I/O option of WRF was
used on BG/L, where every process writes its own data onto
the disk. WRF was run in the VN mode on BG/P in order
to study the scalability issues while using higher number of
MPI ranks. In all the simulations, Kain-Fritsch convection pa-
rameterization, Thompson microphysics scheme, RRTM long
wave radiation, Yonsei University boundary layer scheme, and
Noah land surface model were used. We experimented with
both low and high output frequencies for parallel I/O on BG/P.
The output frequency for BG/L simulations was 1 hour.

C. Improvement in execution time

In this section, we present the results on the performance
improvement on BG/L and BG/P using WRF domains with
varying nest sizes and varying number of siblings.

1) Improvement in per-iteration time: The average and
maximum performance improvement in terms of decrease in
the time required for the integration step of WRF is 21.14%
and 33.04%. This is the overall improvement in the simulation
performance on 1024 cores (512 nodes in VN mode) on
BG/L from 85 configurations of varying nest sizes and varying
number of siblings. The minimum nest size considered is
178x202 and the maximum nest size in these configurations
is 394x418. The number of siblings vary from 2–4. This
improvement in integration time is due to the parallel exe-
cution of sibling domains on different subsets of processors.
However, it is important to note that the default strategy of
using all the processors for solving a nest, can be beneficial
if the application exhibits linear or superlinear speedup.
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Fig. 8. Performance improvement of execution time on up to 4096 BG/P
cores including and excluding I/O times

Figure 8 shows the percentage improvement in execution
time, averaged over 30 different domain configurations. The

figure shows that the performance improvement is higher
when the I/O times are also considered. This is because
parallel NetCDF does not scale well with increasing number
of processors. In our approach, fewer number of processors
output data for the siblings, thereby the time to output data is
lesser than the default approach. It should be noted that for any
practical application, generation of output data is important for
visualization and perceiving the simulation output. Hence our
approach proves beneficial for practical scenarios.

2) Improvement in communication time: The average and
maximum percentage improvement in MPI Wait time is
shown in Table I. In WRF, the simulations perform halo
exchanges with 4 neighbouring processes. One of the reasons
for the high wait times observed in the default execution is
due to the high average number of hops between neighbouring
processes. However, in our case, since the siblings are solved
on smaller subset of processors, the average number of hops
decreases resulting in lesser load on the network. This leads to
less congestion and smaller delay for point to point message
transfer between neighbouring processes.

TABLE I
AVERAGE AND MAXIMUM IMPROVEMENT IN MPI WAIT TIMES ON BG/L

AND BG/P

# processors Average (%) Maximum (%)

1024 on BG/L 38.42 66.30

512 on BG/P 30.70 60.92

1024 on BG/P 36.01 60.11

2048 on BG/P 27.02 55.54

4096 on BG/P 28.68 43.86

3) Improvement in sibling simulation time: WRF solves
one parent time step followed by solving r nested time steps.
Therefore, improving the performance of nest solve time steps
improves the overall performance of the application. In our
approach we simultaneously execute all the siblings as com-
pared to sequentially executing them one after the other. We
illustrate the benefit of this approach on the sibling integration
times with the help of a domain configuration which has 4
siblings at the first level. The sibling configurations and the
number of processors allocated to these siblings according
to our partitioning strategy are shown in Table II. Figure 9
compares the nested execution times for this configuration.
The first bar shows the sibling times for the default serial
execution. In this case, the siblings take 0.4, 0.2, 0.2 and 0.3
seconds when executed sequentially on 1024 cores on BG/L.
Since the siblings are solved sequentially, the execution times
add up resulting in 1.1 seconds. In our parallel strategy, when
the siblings are solved on subset of processors, the times taken
are 0.7, 0.6, 0.6 and 0.7 seconds. The individual sibling solve
times have increased due to using fewer than 1024 processors.
However, since these are solved concurrently, the overall time
for nest solve step for the 4 siblings is 0.7 seconds in our
approach and 1.1 seconds in the default approach, thereby
resulting in 36% performance gain for the sibling domains.



TABLE II
SIBLING CONFIGURATIONS FOR 4 SIBLINGS ON BG/L

Sibling 1 Sibling 2 Sibling 3 Sibling 4

Nest size 394x418 232x202 232x256 313x337

#Processors 18x24 18x8 14x12 14x20

0.0

0.3

0.6

0.9

1.2

Ex
ec

ut
io

n 
tim

e 
pe

r i
te

ra
tio

n 
(s

ec
on

ds
)

0.7

0.6 0.6

0.7

0.4

0.2

0.2

0.3 Sibling 1 default time
Sibling 2 default time
Sibling 3 default time
Sibling 4 default time
Sibling parallel times

Fig. 9. Sibling execution times on 1024 processors on BG/L for 4 siblings

Our processor allocation strategy reduces the number of
processors per sibling as compared to the default strategy.
Hence if the nest sizes are large, the performance improvement
by executing the simulation on fewer number of processors
will be low. This is because the scalability of the larger
domains reach saturation at higher number of processors.
Hence as we increase the number of processors for the
simulation, the performance improvement will increase. We
illustrate this with the help of a simulation configuration with
3 large siblings of sizes 586x643, 856x919 and 925x850. The
performance improvement for different number of processors
and the nest execution times for default sequential strategy
and our approach are shown in Figure 10. The performance
improvement on 1024 processors is only 1.33% because of
higher saturation limit for larger nests. As the number of
processors is increased for the full simulation, the number of
processors allocated to the nests also increase. Moreover, the
larger sibling domains reach saturation limit much before 8192
processors and hence we observe a performance improvement
of 20.64% for 8192 processors.
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Fig. 10. Sibling execution times on up to 8192 processors on BG/P. The
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4) Effect on varying sibling configurations: In this section
we present results for varying number of sibling domains and

varying sizes of sibling domains.
Varying number of siblings – The more the number of siblings,
the longer will be the time taken per iteration by the default
approach because of sequential execution of the nests. In our
approach since we concurrently execute all the siblings, the
number of siblings do not affect the time if the maximum
number of processors is sufficiently high for the nest sizes.
Hence we observe that the average performance improvement
for experiments involving 2 siblings is 19.43% whereas the
average improvement in execution time for experiments in-
volving 4 siblings is 24.22%.
Varying sibling sizes – The larger the nest sizes, the higher will
be the number of processors required to improve performance.
Hence we observe that with larger nest sizes the performance
improvement decreases as shown in Table III.

TABLE III
SIBLING CONFIGURATIONS AND PERFORMANCE IMPROVEMENT FOR VARYING NEST

SIZES ON UP TO 8192 BG/P CORES

Maximum nest size 205x223 394x418 925x820

% improvement 25.62 21.87 10.11

D. Improvement with topology-aware mapping

In this section, we present the performance improvement
achieved by the topology-aware mappings discussed in Sec-
tion III-C2. Table IV shows the execution times per iteration
for the default strategy, the topology-oblivious and topology-
aware mappings on 1024 BG/L cores. The first three rows
correspond to 2-sibling domain configuration, and the fourth
and fifth row correspond to 3-sibling and 4-sibling configura-
tions. We observe additional improvement of up to 7% over the
topology-oblivious mapping. It can be seen that our mappings
outperform the existing TXYZ mapping in Blue Gene.

TABLE IV
EXECUTION TIMES (SEC) FOR DEFAULT, TOPOLOGY-OBLIVIOUS AND

TOPOLOGY-AWARE MAPPINGS FOR VARIOUS SIBLING CONFIGURATIONS ON BG/L

Default Topology-
oblivious

Partition
mapping

Multi-level
mapping

TXYZ
mapping

2.77 2.25 2.10 2.07 2.12

3.69 3.08 2.95 2.92 2.95

3.43 2.89 2.72 2.72 2.83

4.98 3.92 3.72 3.72 3.99

4.75 3.53 3.39 3.33 3.44

Figure 11(a) illustrates the percentage improvement in ex-
ecution times over the default strategy. It can be noted that
the multi-level mapping is slightly better or almost equal in
performance as compared to the partition mapping. This is
because even though partition mapping does not optimize the
parent simulation, as explained in Section III-C2, the overall
simulation is not adversely affected because the nested simu-
lations are executed r times more than the parent simulations.

Table V shows the execution times per iteration for the
default strategy, the topology-oblivious and topology-aware
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Fig. 11. Percentage improvement with and without topology-aware mapping
on 1024 BG/L cores

mappings for various sibling configurations on BG/P. The
first two rows correspond to 4-sibling domain configuration
and the third row corresponds to 3-sibling configuration. The
multi-level mapping performs almost similar to the partition
mapping. This may be due to the load imbalance in WRF.

TABLE V
EXECUTION TIMES (SEC) FOR DEFAULT, TOPOLOGY-OBLIVIOUS AND

TOPOLOGY-AWARE MAPPINGS ON 4096 BG/P CORES

Default Topology-oblivious Partition mapping Multi-level mapping

5.43 3.94 3.92 3.93

5.65 4.20 4.1 4.1

5.61 4.39 4.28 4.39

Figure 12 illustrates the reduction in the MPI Wait times
and the average number of hops over the default strategy.
The MPI Wait times decrease by more than 50% on average
for the topology-oblivious and topology-aware mappings. The
topology-aware mappings further decrease the wait times due
to a 50% reduction in the average number of hops. This is due
to our efficient mapping heuristics that map the neighbouring
processes in the virtual topology to the neighbouring torus
nodes. The average number of hops for the topology-oblivious
mapping is the same as the default execution because in both
the cases, the default mapping in BG/P is used. The increase
in communication times for the default approach is due to
more load on the network because of halo exchanges across
multiple hops and hence more delay. We plan to explore other
mapping/contention optimization algorithms as future work.

Configuration 1 Configuration 2 Configuration 3
10

50

100

150

M
PI

_W
ai

t t
im

es
 (s

ec
on

ds
)

Default strategy
Topology-oblivious
Partition mapping
Multi-level mapping

(a) MPI Wait times

Configuration 1 Configuration 2 Configuration 3
0.1

0.5

1.0

Av
er

ag
e 

nu
m

be
r o

f h
op

s

Default strategy
Topology-oblivious
Partition mapping
Multi-level mapping

(b) Average number of hops

Fig. 12. Reduction in MPI Wait times and average number of hops with
and without topology-aware mapping on 4096 BG/P cores

E. Effect on high-frequency output simulations

High resolution operational forecasts typically require fore-
cast output very frequently. In order to simulate this scenario,
we performed experiments with output generated every ten
minutes of a simulation for all the various regions of interest at
the innermost level. We present the results for high-frequency
output simulations. Figures 13(a-c) show the variation of per
time-step times for integration, I/O operations, and the total
time. The I/O time consists of time for writing output files
and processing the boundary conditions. The per iteration in-
tegration time in Figure 13(a) shows a steady decreasing trend
for both the default sequential and the parallel versions until
4096 processors. The parallel sibling version shows slightly
better scaling behavior in the range 4096–8192. However, in
the case of I/O performance, the parallel sibling case provides
significant reduction in I/O time. For the sequential version,
the per iteration I/O time steadily increases with increasing
number of processors. The effect of I/O performance on the
total times is clearly seen in the relative ratios of integration
and I/O times in Figure 14. This observation suggests that
PnetCDF has scalability issues as the number of MPI ranks
increases and could be a real bottleneck in scaling high
resolution weather forecasting simulations. In the parallel
execution case, only a subset of the MPI ranks take part in
writing out a particular output file and thus, this results in
better I/O performance. Since the I/O times remain a relatively
low fraction of the total time, the parallel execution of sibling
nests shows better scalability for the total per iteration time as
shown in Figure 13(c).



Fig. 13. Variation of integration, I/O, and total per iteration times with
number of processors on BG/P.

Fig. 14. Variation of fraction of integration and I/O times averaged over all
the different configurations vs. number of processors on BG/P.

F. Efficiency of our processor allocation and partitioning
strategy

Our performance prediction model coupled with the parti-
tioning algorithm improves the performance by 8% as com-
pared to a naı̈ve strategy of subdividing the processor space
into consecutive rectangular chunks based on the total number
of points in the sibling. We experimented with a 4-sibling
domain configuration, whose default execution time is 4.49
seconds per iteration. The naı̈ve strategy decreases the execu-
tion time to 4.08 seconds, achieving 9% improvement whereas
our algorithm decreases the execution time to 3.72 seconds,
thereby obtaining 17% improvement over the default strategy.

G. Scalability and speedup

We executed a simulation with two sibling nests of 259x229
size for the default sequential approach and our simultaneous
execution approach, varying the number of processors from 32
to 1024. Figure 15 shows the scalability and speedup curves.
Both the approaches have similar scalability saturation limits.
However, our approach exhibits lower execution times for
all processor sizes. Our strategy of simultaneous executions
of siblings shows better speedup than the default sequential
strategy at a higher number of processors. This is because
the simulation stops scaling beyond 700 processors. Hence,
increasing the number of processors for the siblings proves
less useful than solving the siblings simultaneously on smaller
subset of processors. For lower number of processors, the
speedup for both the approaches is almost the same. This
is because the simulation reaches saturation limit at higher
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Fig. 15. Scalability and speedup of default sequential strategy and our
concurrent execution approach.

number of processors. Hence solving them sequentially on the
full set of processors gives equal performance as solving them
concurrently on subsets of processors.

V. DISCUSSION

Though we focussed on weather applications, the algorithms
developed in this work can improve the throughput of appli-
cations with multiple simultaneous simulations within a main
simulation, for example crack propagation in a solid using
LAMMPS [25]. Multiple cracks can be simultaneously atom-
istically simulated within a continuum simulation domain. This
methodology can also be applied to nested high-resolution
coastal circulation modeling using ROMS [26].

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a comprehensive scheme to
optimize weather simulations involving multiple nested re-
gions of interest. We show that the performance of such
weather simulations can be improved by allocating subsets
of processors to each region of interest instead of the entire
processor space. We developed a linear interpolation based
performance prediction model which predicts the execution
times with low error. Our processor allocation scheme based
on Huffman tree construction and recursive bisection outper-
forms a naı̈ve proportional allocation by 7% with respect to
the total execution time. We developed 2D to 3D mapping
heuristics that take into consideration communication in the
nested simulations as well as the parent simulation. We achieve
up to 33% improvement in performance with up to additional
7% improvement with our topology-aware mapping heuristics.
Our topology-oblivious and topology-aware mappings reduce
the communication times by a maximum of 66%. To the best
of our knowledge, ours is the first work which optimizes the
parallel execution of weather simulations involving multiple
nested regions of interest.

In the current work, we experimented with topology-aware
mappings for foldable mappings. In future, we plan to extend
the mapping heuristics for non-foldable mappings as well as
develop novel schemes for the 5D torus topology of Blue
Gene/Q system. We also plan to simultaneously steer these
multiple nested simulations.
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