
A Diffusion-Based Processor Reallocation Strategy
for Tracking Multiple Dynamically Varying Weather

Phenomena

Preeti Malakar∗, Vijay Natarajan∗†, Sathish S. Vadhiyar†, Ravi S. Nanjundiah‡
∗Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India
†Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
‡Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, India

Abstract—Many meteorological phenomena occur at different
locations simultaneously. These phenomena vary temporally and
spatially. It is essential to track these multiple phenomena for
accurate weather prediction. Efficient analysis require high-
resolution simulations which can be conducted by introducing
finer resolution nested simulations, nests at the locations of these
phenomena. Simultaneous tracking of these multiple weather
phenomena requires simultaneous execution of the nests on
different subsets of the maximum number of processors for the
main weather simulation. Dynamic variation in the number of
these nests require efficient processor reallocation strategies. In
this paper, we have developed strategies for efficient partitioning
and repartitioning of the nests among the processors. As a case
study, we consider an application of tracking multiple organized
cloud clusters in tropical weather systems. We first present
a parallel data analysis algorithm to detect such clouds. We
have developed a tree-based hierarchical diffusion method which
reallocates processors for the nests such that the redistribution
cost is less. We achieve this by a novel tree reorganization
approach. We show that our approach exhibits up to 25% lower
redistribution cost and 53% lesser hop-bytes than the processor
reallocation strategy that does not consider the existing processor
allocation.

Index Terms—redistribution; processor reallocation; data anal-
ysis; cloud tracking

I. INTRODUCTION

Accurate and timely prediction of severe weather phenom-

ena such as heavy rainfall, heat waves, and thunderstorms

enables policy makers to take quick preventive actions. Such

predictions require high-fidelity weather simulations. Multiple

similar meteorological phenomena may occur at the same time

in different regions of a geographical domain. For example,

Figure 1 illustrates the phenomena of tall clouds occurring at

multiple regions simultaneously in the Indian region.

Weather simulations need to track these clouds at higher

resolutions. Simulating and tracking these multiple regions

of interest at high resolutions is important in understanding

the weather phenomena and for accurate weather predictions.

These phenomena may vary temporally as well as spatially.

Some of the regions of interest may disappear in subsequent

time steps while new regions of interest may form. For

example, some of the cloud systems1 shown in Figure 1 may

This research is partly supported by Centre for Development of Advanced Computing,
India, project ref. no. CDAC/ESE/STV/C014.

1Cloud systems are a hierarchical organization of clouds.

Fig. 1. Tall clouds over the Indian region during the 2005 monsoon season.
Image generated from WRF simulation. Darker regions correspond to regions
with higher cloud water mixing ratios.

produce severe weather conditions such as high winds, intense

localized rainfall, floods and storm surges over coastal regions,

some clouds may move to different regions and cluster with

other clouds, and some may disappear with time.

Many meteorological phenomena occur at different loca-

tions simultaneously (requiring resolution of finer scales) and

simulation methods have to efficiently handle this. Tracking

these multiple phenomena incur new challenges which are

more difficult to tackle than the simulation of a single phe-

nomenon. We list some of the challenges below.

• Simultaneously tracking the appearance, disappearance

and merging of the phenomena at various locations re-

quires dynamic representations and efficient data analysis.

• Simulating multiple events at high resolutions needs

efficient processor allocation schemes for these multiple

events.

• The dynamic nature of these events require fast data

redistribution strategies.

High-resolution nested simulations, nests, are spawned

within the main parent simulation to simultaneously track

these multiple regions of interest. Each nested simulation is

executed on disjoint subsets of the total number of processors

for high performance [1]. Therefore, with dynamic appearance

and disappearance of regions of interest, we need to modify

the processor allocation for the nests. The processors allocated

to the nests in the previous time step of simulation will have

to be freed if the nests do not exist in the current time step.

Similarly, a subset of processors needs to be allocated to the

2013 42nd International Conference on Parallel Processing

0190-3918/13 $26.00 © 2013 IEEE

DOI 10.1109/ICPP.2013.14

50

2013 42nd International Conference on Parallel Processing

0190-3918/13 $26.00 © 2013 IEEE

DOI 10.1109/ICPP.2013.14

50

2013 42nd International Conference on Parallel Processing

0190-3918/13 $26.00 © 2013 IEEE

DOI 10.1109/ICPP.2013.14

50

2013 42nd International Conference on Parallel Processing

0190-3918/13 $26.00 © 2013 IEEE

DOI 10.1109/ICPP.2013.14

50

2013 42nd International Conference on Parallel Processing

0190-3918/13 $26.00 © 2013 IEEE

DOI 10.1109/ICPP.2013.14

50

2013 42nd International Conference on Parallel Processing

0190-3918/13 $26.00 © 2013 IEEE

DOI 10.1109/ICPP.2013.14

50

new nests formed in the current time step. The removal of old

nests and addition of new nests may lead to new processor

allocation for the old nests which continue to exist from the

previous time step.

Reconfiguration of processor allocation implies data redis-

tribution for the old nests. In this work, we have developed

a tree-based hierarchical diffusion algorithm for processor

allocation that reduces data movement by considering the old

processor allocation. This algorithm results in lower redistri-

bution time as compared to a strategy that does not consider

the existing processor allocation.

We have implemented the redistribution algorithm to sup-

port resource reconfigurations in an application that detects

and tracks organized tropical convective cloud systems which

have widespread occurrence of tall cumulonimbus clouds as a

distinct signature. These clouds are associated with thunder-

storms and atmospheric instability, forming from water vapour

carried by powerful upward air currents. They can produce

heavy rain and flash flooding. Hence, it is important to track

these clouds. These clouds may form and disappear with time.

We have developed a parallel data analysis algorithm that

detects these clouds from simulation output. We spawn nests

over these regions of interest within the running simulation,

and also dynamically remove nests when the old regions of

interest no longer exist. For weather simulation, we use the

popular Weather Research and Forecast model (WRF) [2].

The key contributions of this paper are as follows:

1) A parallel data analysis algorithm to detect and track

clouds on-the-fly.

2) A framework that supports dynamic nest formation and

processor rescheduling within a running simulation.

3) A novel tree-based hierarchical diffusion algorithm for

processor allocation that minimizes data redistribution

cost.

We performed experiments on Blue Gene/L and Intel Xeon-

based clusters using both real data corresponding to Mumbai

rainfall of 2005, and synthetic nest formations and deletions

for the same period. Our results showed that we were able to

reduce the redistribution time by 25% over the scratch method

and resulted in 53% lesser hop-bytes on Blue Gene/L.

While we have used the tracking of tall clouds as a case

study, our algorithms for data analysis and processor allocation

are generic and applicable to other scenarios that involve

multiple dynamically varying nested simulations.

Section II describes related work in adaptive mesh refine-

ment and graph partitioning. Section III presents our parallel

data analysis algorithm. Section IV presents our data redistri-

bution strategies. Section V presents experimental results to

illustrate the performance improvement achieved. Section VI

concludes and enumerates our future efforts.

II. RELATED WORK

Many of the existing efforts in mesh adaptation and reparti-

tioning have been in the domain of Adaptive Mesh Refinement

(AMR) applications [3], [4], in which repartitioning and

dynamic load balancing are critical components. Schloegel

et al. present a multilevel diffusion scheme for repartitioning

adaptive meshes [5]. A commonly used strategy for mesh

repartitioning is to map the problem to graph partitioning and

attempt to minimize the edge-cut representing the amount of

communication between the partitions [3], [5], [6]. In our case,

the partitions are the nests and there is no communication

between the nests. Hence the graph partitioning heuristics are

not directly applicable in our case.

Moreover, existing efforts in AMR [3], [7] and irregular

mesh applications [5] perform repartitioning of adaptively

refined meshes primarily to achieve dynamic load balancing.

In our work, load balancing is implicitly achieved by parti-

tioning the processor space into multiple disjoint rectangular

grids that are assigned to the individual nested domains in

proportion to the domain workloads. The primary focus of

our work is repartitioning the rectangular processor grid into

sub-rectangles while minimizing the data redistribution cost

when nests dynamically appear and disappear. In our case,

a rectangular process grid needs to be allocated for each

nested domain and one processor executes a region of a nested

domain. The new processor allocation after the redistribution

is also a sub-rectangle of the rectangular process grid for

the parent simulation. Thus we require to reform the existing

rectangles such that there is maximum overlap between the

old and new process grids (sub-rectangles) for the same nest

in consecutive adaptation points.

Furthermore, in AMR applications, a grid is refined multiple

times and inter-grid operations between the refinement levels

are considered while repartitioning using Space Filling Curve

(SFC) strategies like Hilbert ordering [8]. In our case the

multiple high-resolution nests are formed at different locations

in the simulation domain and there is no communication

between these nests. We focus on minimizing the data re-

distribution and maximizing the overlap between the old and

new rectangular process grids for the same nest. Hence SFC

based repartitioning is not applicable for our domain.

Sinha et al. [4] presented an adaptive system sensitive

partitioning of AMR applications that tune the partitioning

parameters to improve overall performance. In these efforts,

the virtual 2D process topology is not considered to make

redistribution decisions. However, in our work we need to al-

locate a sub-rectangle of the 2D process grid to each nest. This

requires us to consider the virtual 2D process topology in our

redistribution algorithm for the selection of sub-rectangles.

III. TRACKING ORGANIZED CLOUD CLUSTERS VIA

PARALLEL DATA ANALYSIS

In this section, we describe an algorithm for parallel data

analysis of simulation output. The algorithm analyzes the

cloud water mixing ratio (QCLOUD) and outgoing long wave

radiation (OLR) in WRF simulation output to detect tall clouds

in tropical weather systems. These clouds are referred to as

cumulonimbus clouds. They extend vertically from 1 km above

the surface to more than 10 km. QCLOUD is the amount

of liquid water contained in a cloud. Generally, high values

of QCLOUD correspond to tall clouds. OLR is the infrared

515151515151

radiation at the top of the atmosphere. Coherent patterns of

low OLR indicate occurrence of organized cloud systems (such

as tropical depressions and cyclones) and would contain tall

cumulonimbus clouds. A combination of OLR and QCLOUD

better identifies such systems and precludes identification of

isolated cumulonimbus (as QCLOUD alone would do) [9]. We

use 200 as the upper threshold for OLR [10].

Each process running WRF generates output for its subdo-

main and writes into a split file. These split files are analyzed

in parallel as shown in Algorithm 1. This algorithm forms

contiguous, non-overlapping, and small clusters whose sizes

do not grow uncontrollably. It is simple and fast and hence

suitable for online analysis. Let P be the number of processes

running WRF and N be the number of processes which

analyze the QCLOUD values in the split files. The algorithm

takes as input the split files {F1, F2, · · · , FP }. These split files

are distributed to the N processes. Each of the N processes

analyze k files (lines 1–2). The subset S of files, where

|S| = k, is chosen as a rectangular subset of (Px, Py), where

Px·Py = P is the rectangular process decomposition in WRF.

Thus P is divided into N rectangular subsets.

The value of QCLOUD at each grid point in each split file is

aggregated if the outgoing long wave radiation OLR ≤ 200
(lines 4–9). The fraction of the grid points which satisfy the

above criteria, olrfraction, is calculated (lines 7–8). The

aggregated QCLOUD values, one value per file, are then sent

by all the N processes to a root process, rank 0 in our case.

Each process will at most send k values. Note that some of the

split files may not have regions with OLR ≤ 200, in which

case the process owning these split files will send fewer than

k values. The root process gathers the aggregated QCLOUD

values and the olrfraction values (line 11).

The rest of the algorithm is executed only on the root

process. Firstly the aggregated QCLOUD values obtained from

the split files are sorted in non-increasing order (line 13). A

contiguous region with high cloud cover can span multiple

split files processed by multiple processes. To obtain a con-

tiguous region, we perform a variant of nearest neighbour

clustering (NNC) (line 14). NNC outputs a set of clusters

with each cluster containing a contiguous region of high cloud

cover. A rectangle is formed around each cluster (lines 16–

19) and these rectangles constitute nests for fine-resolution

simulations in WRF.

Nearest Neighbour Clustering: The pseudo code for the NNC

algorithm is shown in Algorithm 2. It takes as input the sorted

list of QCLOUD values, qcloudinfo. Each element in qcloudinfo
is a tuple of aggregate QCLOUD values for a split file and the

corresponding fraction of the split file which has OLR ≤ 200.

The QCLOUD value of each element in the list represent the

cloud cover for a subdomain. The spatial location, i.e. the

latitude and longitude extents of a subdomain is used in this

algorithm to determine proximity between two subdomains.

The algorithm iterates over each element in the input array

qcloudinfo (lines 2–20). Line 3 checks whether the aggregate

QCLOUD value and the fraction of the subdomain that has

OLR ≤ 200 are greater than a threshold, which is 0.005 in

Input: Per-process simulation output of one time step from P
processes {F1, F2, · · · , FP }, Number of processes for
parallel data analysis N

Output: Rectangles: Rectangular regions with high cloud water
mixing ratio

/* Divide P files among N processes */
k = P/N ;1
Let S be the set of k files assigned to each of the N processes;2

/* Begin analysis of QCLOUD values in the files
in S by each of the N processes */

count = 0;3
foreach file ∈ S do4

Read QCLOUD and OLR from file for each grid point;5
Aggregate qcloud and increment count where6
OLR[gridpoint] ≤ 200 ∀ gridpoint ∈ file ;

Let area be the total number of grid points in the file;7
olrfraction = count/area;8

end9
/* End analysis */

root = 0; /* Assume rank 0 is the root rank */10
Root collects the qcloud and olrfraction information from every11
process in qcloudinfo;

/* Form rectangular regions in root process */
if (my rank == root) then12

Sort qcloudinfo in decreasing order of qcloudinfo.qcloud;13
Clusters = NNC(qcloudinfo);14
Rectangles = ∅;15
foreach (list ∈ Clusters) do16

Let item = (minX,maxX,minY,maxY) be set of the17
minimum and maximum of x and y coordinates of elements
of list;
Add item to Rectangles;18

end19
end20

Algorithm 1: Parallel Data Analysis (PDA) algorithm

our case. This avoids analyzing smaller cloud-covered regions

with a very low QCLOUD value. Clusters are formed based on

proximity of the elements (lines 4–18). Each cluster represents

a contiguous region of strong cloud cover. An element is added

to a cluster if it is either 1-hop or 2-hop away from an existing

cluster. Initially, the list of clusters is empty. First, we check if

the current element is at 1-hop distance from any element in

an existing cluster (lines 6–9). If this does not hold true, then

we check if the element is 2 hops away from any element in

an existing cluster (lines 10–13).

In lines 6 and 10, the DISTANCE function is invoked to

calculate the proximity. If it returns true, the element is added

to list. If element is within hop distance from member, then

it is added to the cluster list iff it does not deviate the mean

of the QCLOUD values by more than a threshold (30% in our

case) (lines 23–29). This ensures that a cluster of contiguous

cloud region has low standard deviation and also helps in

controlling the size of an existing cluster.

If element is not within 2 hops from any element in any of

the existing clusters, then a new cluster newlist is formed.

element is added to newlist, which is added to the set

of clusters Clusters (lines 16–18). NNC outputs Clusters
which is the set of clusters representing different contiguous

regions of cloud cover.

525252525252

Input: Sorted array qcloudinfo
Output: Clusters: List of elements, clustered by proximity

Clusters = ∅;1
LOOP: foreach element ∈ qcloudinfo do2

if (element.qcloud ≥ threshold and3
element.olrfraction ≥ threshold) then

/* Check if this element is physically
close to any member of any list */

foreach list ∈ Clusters do4
foreach member ∈ list do5

if (DISTANCE (element,member,list,1)) then6
Add element to list;7
Continue next iteration of LOOP;8

end9
if (DISTANCE (element,member,list,2)) then10

Add element to list;11
Continue next iteration of LOOP;12

end13
end14

end15

/* Form a new list */
Initialize newlist;16
Add element to newlist;17
Add newlist to Clusters;18

end19
end20
Return Clusters;21

Begin Function DISTANCE (element, member, list, hop)22

if (distance between member and element == hop) then23

OldMean = Mean of QCLOUD values of members of list;24
NewMean = Mean of QCLOUD values of members of list and25
element.qcloud;

if (NewMean is within 30% of OldMean) then26
Return True;27

end28
end29
Return False;30
End Function DISTANCE31

Algorithm 2: Nearest Neighbour Clustering (NNC) algorithm

The parallel data analysis algorithm is executed simulta-

neously on a different set of processors than the processors

running the WRF simulation. Hence execution of PDA does

not affect WRF execution times. In Algorithm 1, the analysis

of QCLOUD values in each split file is done in parallel because

this is the most time-consuming step. For a maximum of

1024 split files, experiments show that the number of elements

gathered at the root process is less than 200 for most of

the time steps. The sequential NNC algorithm (Algorithm 2)

takes less than a second to cluster such few values. In this

case, parallel clustering would have been an overkill for

online analysis. However, we would like to parallelize the

NNC algorithm in future for simulations on larger number

of processors.

IV. PROCESSOR ALLOCATION

The parallel data analysis (PDA) algorithm computes a set

of regions of interest (ROI) in the domain, which in our case

are the regions with high cloud cover. Nested simulations are

spawned over the regions of interest. We simulate these nests

at high resolutions for better accuracy. The resolutions of these

��� ���

��� ���� ����

�����	

���

���

���

��

(a) Huffman tree for 5 nests
with execution time ratios 0.1 :
0.1 : 0.2 : 0.25 : 0.35

��

��

�

�

�

�

�

(b) Sub-division of the
processor grid Px×Py for
the 5 nests.

Fig. 2. Illustration of processor allocation for nests.

nested simulations are thrice that of the parent simulation.

We modified the WRF code to spawn nests on-the-fly without

stopping the simulation. The initial data for the nested domains

are interpolated from the parent domain.

In a recent work [1], it was shown that significant perfor-

mance improvements can be achieved by executing the nests

simultaneously on different subsets of the total number of

processors, P . We use the performance modeling and Huffman

tree based algorithm in [1] to determine the size of the subset

of processors for a nest and the position of the subset in the

processor grid Px × Py where Px·Py = P . The performance

model is used to predict the execution times of nests based on

the size and aspect ratio of the nests. The Huffman tree based

algorithm is used to determine the initial processor allocation

for each nested domain.

An example of processor allocation for 5 nests is shown in

Figure 2. Assume that the ratios of the predicted execution

times of the nests are 0.1 : 0.1 : 0.2 : 0.25 : 0.35.

These ratios are used as weights in the construction of the

Huffman tree, as shown in Figure 2(a). The corresponding

processor sub-grid for each nest is shown in Figure 2(b).

The 5 sub-rectangles correspond to the set of processors that

execute each of the nests. The start rank i.e. the rank of the

processor at the north-west corner of the sub-rectangle and

the rectangular dimensions of each processor sub-grid for this

example configuration are shown in Table I for a maximum

of 1024 cores.

TABLE I
PROCESSOR ALLOCATION ON 1024 CORES

Nest ID Start Rank Processor sub-grid

1 0 13× 8
2 256 13× 8
3 512 13× 16
4 13 19× 13
5 429 19× 19

The regions of interest may persist in time or disappear in

subsequent time steps. Our regions of interest are the regions

with high cloud cover. Clouds may form and disappear over

a period of time. The PDA algorithm is invoked periodically

(every 2 minutes) to detect regions of interest (ROI) in the

output of the current simulation time step. A nest is spawned

535353535353

whenever a new ROI is detected. A nest is deleted when

an existing ROI is not output by PDA. A retained nest is

one which was output by PDA in the previous invocation

as well as in the current invocation. The insertion, deletion

and retainment of nests cause changes in the Huffman tree

structure and hence in the processor allocation. Therefore

the newly allocated set of processors (receivers) executing a

retained nest may not be the same as the previously allocated

set of processors (senders) for the nest. The senders need to

distribute the nest domain data to the receivers. We modified

the WRF code to execute this redistribution. First the amount

of data to be redistributed is calculated based on the nest size,

followed by MPI Alltoallv to redistribute data for each nest.

The processors that are neither senders nor receivers for a

nest send and receive 0 value during the MPI Alltoallv for

that nest.

� � � �
�� � 	�

� �� �� ��
�� �� �� ��

�	 �

�� ��

�
�

�

Fig. 3. Data redistribution from old to new set of processors assigned to a
nest.

An example is shown in Figure 3 for a nest size of Nx×Ny.

A nest is equally subdivided among its allocated processors

0 − 15 as shown in the left grid. These processors distribute

the nest data to the newly allocated processors 16 − 19 as

shown in the right grid of the figure. It can be observed that

the region of the nest domain that processor 16 owns was

previously owned by 0, 1, 4, 5. Hence 16 receives the domain

data from 0, 1, 4, 5. Similarly, the other receivers also receive

data from 4 senders in this example.

In the above example, the senders and receivers are non-

intersecting sets. The communication cost for the data re-

distribution between the senders and the receivers can be

minimized if the senders and receivers overlap. In torus

networks, minimizing the number of hops between the senders

and receivers can minimize the redistribution cost. We describe

two strategies for data redistribution in the next section.

A. Partition from scratch

In this approach, we partition the entire process grid Px×
Py for processor allocation based on Huffman tree constructed

using the predicted execution times of the nests as weights, as

explained in the previous section. The tree construction does

not consider the current allocation of processors. Hence this

strategy can lead to completely non-overlapping senders and

receivers, which will lead to increased redistribution cost.

For example, let us consider the configuration in Figure 2.

Assume that in the next invocation, PDA outputs the nests

3, 5, 6 as regions of interest. So the nests 1, 2, and 4 will be

deleted and new nest 6 will be formed. Let the ratios of the pre-

dicted execution times of the nests 3, 5, 6 be 0.27 : 0.42 : 0.31.

The corresponding Huffman tree and the processor partition

���� ����

����
�

� �

(a) Huffman tree for nests 3, 5, 6
with execution times in ratios of
0.27 : 0.42 : 0.31.

��

��

�

�

�

(b) Sub-division of the pro-
cessor grid Px × Py for 3
nests.

Fig. 4. Processor allocation for nests using partition from scratch.

are shown in Figure 4. The start rank and the rectangular

dimensions of each processor sub-grid for each nest are given

in Table II for a maximum of 1024 cores. Comparing the

previous and the new allocation for nests 3 and 5 from Tables I

and II, we can observe that there is no overlap between senders

and receivers. This can increase the redistribution cost.

TABLE II
PROCESSOR ALLOCATION ON 1024 CORES

Nest ID Start Rank Processor sub-grid

3 13 19× 13
5 0 13× 32
6 429 19× 19

The redistribution cost may be high in some cases in this

approach. However, the rectangular partitions based on the

Huffman tree are as square-like as possible owing to the tree

construction in the order of increasing weights. The square-

like partitions minimize the execution times of the nests.

B. Tree-based hierarchical diffusion

In this approach, we try to maximize the overlap between

senders and receivers of the retained nests. The key idea is to

shift the boundaries of rectangular partitions for the retained

nests so that the distribution of data is among neighbouring

processes and the overlap in the nest data between the old

and new set of processes is maximized. This minimizes the

redistribution cost, especially on torus networks. An example

is illustrated in Figure 5. Figure 5(a) shows the existing

processor partitioning for nests 1, 2, 3. When a new nest is

added, the existing partitions are shrunk. In this example, the

right boundary of rectangle for nest 1 is shifted to the left

and the left boundaries of the nests 2 and 3 are shifted to the

right, thereby leaving some processors free for inserting the

new nest, as shown in Figure 5(b). This also leads to a large

overlap between the old and new processor partitions for nests

1, 2, 3.

This repartitioning method is based on modifying the tree

corresponding to the current allocation, rather than building

the Huffman tree from scratch. The positions of the nodes

corresponding to the retained nests are kept intact in the tree.

Note that the weights of the old nodes, i.e. the retained nests,

may be modified because the weights represent the ratios of

545454545454

�

�

�

(a)

�

�

�

�

(b)

Fig. 5. (a) Existing and (b) new processor allocation in the hierarchical
diffusion approach.

the number of processors that will execute each nest. When

new nests are added and/or old nests are deleted, the processor

shares of the existing nests may change.

When there is no deletion, and there is only insertion of

new nodes, they are inserted near those existing nodes whose

weights are similar to those of the new nodes. By inserting

a new node near a node in the Huffman tree with similar

weight, we attempt to obtain rectangular partitions for the

nests that are more square-like. However, inserting a new

node near a node with large difference in weights will lead

to skewed rectangles. As reported in [1], square-like partitions

lead to smaller executions times for the nests, while skewed

rectangular partition increases the execution time of a nest.

���

���� ����

�

� �

(a)

���� ������� ���
� � � �

(b)

Fig. 6. (a) Existing and (b) new trees in the hierarchical diffusion approach.
Predicted execution time ratios of the nests are the weights in the leaf nodes.

This is illustrated in the example shown in Figure 5. The

existing and the new trees corresponding to the processor

partitions of Figure 5 are shown in Figure 6. The new tree

in Figure 6(b) is constructed by inserting node 4 near node

1. This is because the weight of node 4 is closest to that of

the new weight of node 1. The size of a partition that each

node gets is proportional to its weight. Thus, the nodes 1 and

4 get 3
7

th
and 4

7

th
of the processors allocated to their parent

node. Since the difference in weights of nodes 1 and 4 is less,

so the resulting rectangles for 1 and 4 will be as square-like

as possible. Note that this would not have been the case if

node 4 was inserted near node 2 whose weight is 0.15. This

is because the corresponding shares for 4 and 2 would have

been 0.4
0.55 = 8

11 and 0.15
0.55 = 3

11 . Thereby the rectangle for node

2 would not have been square-like due to the large difference

in weights. This is illustrated in Figure 7. One can note that

rectangle 2 is skewed as compared to rectangle 4.

When nests are both inserted and deleted, the nodes corre-

sponding to the deleted nests are deleted from the tree. Further,

new nodes are inserted in the positions of deleted nests so

�������
� �

Fig. 7. Skewed rectangle due to large difference in weights of the two nodes.

that the positions of the retained nests remain intact as much

as possible. This may enhance the chance of overlapping old

and new nest processor allocations for the retained nests. The

algorithm for modifying the existing tree for new processor

allocation is detailed in Algorithm 3. The inputs are the

existing tree oldtree, the list of deleted nodes deletednodes,

the modified weights of the retained nests rweights and

the weights of the new nodes nweights. The output is the

modified tree newtree.

Input: Existing tree oldtree, list of deleted nodes deletednodes,
new weights of retained nests rweights, and weights of new
nests nweights.

Output: New tree newtree

freenodes = ∅, siblings = ∅;1
foreach node ∈ deletednodes do2

Mark node as free in the oldtree;3
Add node to freenodes;4
Add sibling of node to siblings;5

end6
foreach weight ∈ rweights do7

Update weight for the corresponding retained node;8
end9
Update weights of internal nodes of oldtree;10

/* Insert in the positions of deleted nodes,
near to the nodes with closest weights */

foreach new weight ∈ nweights do11
if (|freenodes| > 1)) then12

Add new weight to the position of node, where13
node ∈ freenodes ∧ sibnode is sibling of node ∧
d = Weight(sibnode)− new weight ∧
d = argmin

∀ s ∈ siblings
(Weight(s)− new weight)

Delete node from freenodes;14
Delete sibnode from siblings;15

end16
end17
if (|nweights| ≥ |deletednodes|)) then18

Build Huffman tree for the remaining new weights rooted at19
node ∈ freenodes;

else20
Delete the remaining nodes in freenodes from oldtree;21

end22
Copy oldtree to newtree;23

Algorithm 3: Tree-based hierarchical diffusion algorithm

Firstly, nodes from deletednodes are marked as free in

oldtree and added to the set freenodes (lines 2–6). The

siblings of these nodes are added to the set siblings (line 5).

These are used later as insertion points. The weights of the

retained nodes are modified (lines 7–9). Based on the deletion

and modification of weights of retained nodes, the weights

of the internal nodes are updated (line 10). The new weights

are added in the positions of the deleted nodes (lines 11–

17). As explained above, the new nodes should be inserted

near the ones who have closest weights. So, we inspect the

555555555555

��������
��

(a) Deleted nodes marked empty
and weights of retained nests mod-
ified.

��������
���

����
(b) Node 6 inserted near node 5

����

����

�

��

����
(c) Remaining deleted nodes
removed

��

��

�

�
�

(d) Sub-division of the
processor grid based on
the modified tree.

Fig. 8. Steps of the tree-based hierarchical diffusion algorithm for deleting nests 1, 2, 4, retaining nests 3, 5 and adding new nest 6.

weights of the sibling nodes of the deleted nodes. Inserting a

new node in the place of a deleted node will lead to minimum

modification of the existing tree structure. This is shown in line

13. new weight is inserted in the position of node, which was

marked empty earlier. node is selected such that the difference

between the weight of its sibling sibnode and new weight is

minimum. node and sibnode are deleted from their respective

sets (lines 14–15).

Note that the operation in line 13 is done only when there

are multiple nodes in the set freenodes. This is because

when the number of deletions is less than the insertions, we

build Huffman tree using the remaining unmatched weights in

nweights, and this subtree is rooted at the position of the last

element in freenodes. This is shown in lines 18–20. If there

are fewer insertions than deletions, we delete the remaining

nodes of freenodes (line 21). The updated oldtree is output

as newtree.

This approach reduces the data movement between the

senders and receivers and hence achieves significant reduction

in redistribution time as compared to the partition from scratch

method. This is because we attempt to allocate receivers such

that there is large overlap between senders and receivers and

the receivers are neighbouring processes of the senders.

The processor allocation using tree-based hierarchical dif-

fusion algorithm for the example in Figure 2 is shown in

Figure 8. To compare with the partition from scratch approach,

let us assume the same output of PDA that was considered in

Section IV-A (see Figure 4). The nests 1, 2 and 4 are deleted,

nests 3 and 5 are retained and 6 is the new region of interest.

Figure 8(a) shows the tree after nodes 1, 2 and 4 are marked as

deleted and weights of 3 and 5 are modified. Note that deleted

nodes 1, 2 have been combined as one empty node because the

two free rectangles represented by them can be considered as

one free rectangle. Hence there are two free slots available

for inserting new node 6 - the weight of one sibling node is

0.27 and that of the other is 0.42. Node 6 is inserted in the

position of sibling of node 3 because 0.31−0.27 < 0.42−0.31
i.e., the weight of node 3 is closer to weight of node 6.

The rectangular partitioning based on this tree is shown in

Figure 8(d). Comparing this with the partitioning obtained

from the partitioning from scratch method shown in Figure

4(b), we can see that there is considerable overlap between the

old and new set of processors for nests 3 and 5, as compared

to no overlap in the partition from scratch approach. Also, we

observe that the rectangles for 3 and 5 expand to neighbouring

processes because we try to keep the positions of retained nests

as intact as possible.

Note that the resulting modified tree may no longer be a

Huffman tree in this approach. However, the modifications

lead to some overlap between new and old processors and

redistribution among neighbouring processes. Our techniques

are scalable for large number of processors. Also, the maxi-

mum number of hops between old and new set of processors

is likely to increase for the scratch method with larger total

processor count. Therefore the data redistribution time may

increase with increase in number of processors for the scratch

method. Processor reallocation via Huffman tree construction

or reorganization depends on the number of nests and is not

affected by increase in processor count.

C. Dynamic Strategy

The performance differences between the two methods,

namely, the partition from scratch method and our diffusion-

based method, depend on both the execution times of the

resulting partitions and the redistribution costs. The execution

time ratios of the nests and hence the percentage of total

number of processors allocated for the nests are same in

both partition from scratch method and our diffusion-based

method. However, due to integral sides of the sub-rectangles,

the rectangular grids and the aspect ratios of the rectangles for

the same nest configuration may not be exactly the same. For

example, one method may allocate 16 × 18 while the other

may allocate 17 × 17. This can lead to slight difference in

execution times of the nests for the two methods.

Similarly, while we expect the redistribution costs for our

diffusion-based method to be smaller than the partition from

scratch method, there may be cases when the redistribution

costs are almost same in both approaches. This is because

both approaches are based on tree construction using the

ratios of predicted execution times of nests as weights. The

relative order of the weights affect the construction of the

tree, and hence also affects the resulting rectangular processor

grid allocated to the nests. Similar relative order of the

weights of those nests that persist between reconfigurations

may result in similar trees for both approaches, and hence

similar redistribution costs. Therefore we propose a dynamic

strategy that selects the approach which requires minimum

565656565656

redistribution time and execution time. For this, we need to

predict both these times.

1) Performance model for redistribution time: The primary

component of the redistribution time is MPI Alltoallv between

the processors. We assume direct algorithm for MPI Alltoallv

[11] between the processors in mesh and torus based networks.

We predict MPI Alltoallv time as the maximum communica-

tion time between senders and receivers. First, we find the

size of the message that a sender will send to its receiver(s),

and then find the number of hops between the sender and

its receivers. Using this, we find the communication time for

every sender-receiver pair. The maximum of these communi-

cation times is predicted as the time for MPI Alltoallv. For

non-mesh networks like switched networks, the times taken

for sender to send messages to all receivers can be added to

predict the time for MPI Alltoallv.

2) Performance model for execution time: We profiled the

execution times of a small set (size = 13) of domains with

different domain sizes on a few (10 in our case) processor

sizes within the maximum number of processors (1024 in our

case). The actual execution times of these 13 domains are

used to interpolate the execution times of the nests formed

in our simulation using Delaunay triangulation. The details

of these steps are presented in [1]. Additionally, we predict

the execution times of the nests for the 10 processor sizes.

Using these times, we perform linear interpolation to predict

the execution time on desired number of processors. This gives

good prediction accuracies as shown later in Section V. The

prediction execution times are used for dynamic selection of

methods, and also for determining the weights of the nests

needed for processor allocation in the partition from scratch

and our tree-based methods.

Using the above predictions for redistribution and execution

times for both scratch and tree-based approaches, the dynamic

scheme selects the one which has lower sum of these times.

V. EXPERIMENTS AND RESULTS

A. Data analysis algorithm

One of the primary components in our work is the data anal-

ysis algorithm described in Section III to identify clouds and

form nests. We form clusters of contiguous regions with high

cloud cover using QCLOUD values in non-increasing order. A

QCLOUD value in this list represents the aggregated QCLOUD

over a subdomain, where OLR ≤ 200. The contiguous regions

are clustered based on the proximity between the subdomains.

In this section, we compare our nearest neighbour clustering

algorithm described with a simple nearest neighbour clustering

approach. In Figure 9(a), we show the clustering using only

2 hop distance criteria. This strategy checks whether the list

element is within 2 hops from an existing cluster. We can

observe there are some overlapping clusters. In Figure 9(b),

we show the clusters formed by our method. It can be observed

that the clusters formed by our method are non overlapping

because we first check for 1 hop and then 2 hop distance. We

check for 2 hop distance only if the list element is not within 1

hop from an existing cluster. This ensures that the list element

is added to its nearest cluster. We insert into a cluster only if

the mean deviation is not more than 30% to ensure that the

cluster size does not grow uncontrollably.

(a) Nearest neighbour clustering us-
ing 2-hop distance and no mean
deviation criteria. Clusters overlap
in space.

(b) Nearest neighbour clustering us-
ing 1-hop and 2-hop distances and
mean deviation threshold of 30%.
Clusters do not overlap.

Fig. 9. Nearest neighbour clustering for our parallel data analysis algorithm.

B. Domain Configurations

We used WRF v3.3.1 [2] for all our experiments. The parent

simulation domain in WRF can have multiple child domains,

called nests. These nests were formed during the simulation

over different regions of interest. We modified the WRF source

code for dynamic insertion and deletion of nested domains. We

simulated over the Indian region from 60◦E - 120◦E and 5◦N -

40◦N for the July 2005 Mumbai rainfall event [12]. The period

of simulation was from July 24, 2005 18:00 hours – July 27,

2005 18:00 hours. The parent simulation resolution was 12

km and the resolutions of the nested domains were 4 km. We

compared our tree-base hierarchical diffusion approach with

the partition from scratch method for both real and synthetic

test cases. For the dynamic approach, we experimented with

synthetic test cases.

Real: Nests were formed over regions with high cloud cover,

which were detected by our parallel data analysis algorithm.

The maximum number of nests formed during these runs were

7. The maximum and minimum sizes of the nests formed

were 202 × 349 and 175 × 175. There were approximately

100 reconfigurations of processor allocations for the nests.

Synthetic: The real traces for our application had fewer

configuration changes and fewer (4 – 5) nests on average.

We generated some synthetic test cases in order to test our

algorithm for higher number of nests in a time step and more

number of redistributions per adaptation point. We tested with

up to 70 random nest configuration changes, with number of

nests varying between 2 – 9. Nests were randomly inserted

and deleted. The maximum and minimum sizes of the nests

formed were 361× 361 and 181× 181.

C. Experimental Setup

We performed our simulations on two different kinds of

systems, a Blue Gene/L system and an Intel Xeon cluster

called fist. Table III details our experimental configurations.

For the experiments on Blue Gene/L [13], we developed a

folding-based topology-aware mapping [14] that maps the

575757575757

neighbouring processes to neighbouring processors on the 3D

torus. This topology-aware mapping was used for all our

experiments so that the processes are one hop away from their

neighbours in the process grid. This also benefits the execution

times for both the partition from scratch method and diffusion

based approach. For all our experiments, visualization was

performed on a graphics workstation in Indian Institute of

Science (IISc) with a Intel(R) Pentium(R) 4 CPU 3.40 GHz

and an NVIDIA graphics card GeForce 7800 GTX.

TABLE III
SIMULATION CONFIGURATIONS

Simulation Configuration Maximum
Number of Cores

Blue Gene/L: Dual-core 700 MHz PowerPC

440 processor cores with 1 GB physical mem-

ory, 3D torus network

1024

fist: 2 Xeon quad core processors (2.66GHz,

12MB L2 Cache) with 16GB memory, con-

nected by Infiniband switched network

256

D. Improvement in redistribution time

Our tree-based hierarchical diffusion method achieved 14%

and 12% improvements in redistribution times on 512 and

1024 Blue Gene/L cores respectively over partition from

scratch method for the real test cases.

TABLE IV
AVERAGE IMPROVEMENT IN REDISTRIBUTION TIMES FOR SYNTHETIC

TEST CASES

Simulation Configuration Improvement

BG/L 1024 cores 15%

BG/L 256 cores 25%

fist 256 cores 10%

Table IV shows the average percentage improvement in

redistribution times for our tree-based hierarchical diffusion

method over partition from scratch method for the synthetic

test cases. It can be observed that the performance improve-

ment is higher in the case of Blue Gene/L which has 3D torus

network. This is because our tree-based hierarchical approach

selects the new processor allocation based on the neighbours

in the process grid. For Blue Gene/L the neighbours in the

process grid are also neighbours in the processor topology

because of our topology-aware mapping. However, in the fist
cluster, there is no regular mesh/torus topology, hence the

gains are lower. However, it is important to note that we still

achieve 10% improvement over the scratch method because of

the overlap between the senders and receivers in our approach.

Maximum overlap ensures less data communication during the

redistribution. We also observe higher improvement for 256

cores. We assume that this may be because of larger per-core

data for redistribution in the case of smaller number of cores.

For both real and synthetic test cases, we observed an

average of 4% increase in execution times for our approach

over the partition from scratch method. This is because in our

approach, the Huffman tree is not constructed from scratch and

we try to maximize the overlap. Hence the resulting partitions

may not always be square-like. However, when the number of

adaptation points is high, it is more important to minimize the

redistribution cost.

E. Distance between senders and receivers

Figure 10 shows the average hop-bytes during the sender-

receiver communication for partition from scratch and our

approach for 70 synthetic test cases on 1024 Blue Gene/L

cores. The hop-bytes metric is the weighted sum of message

sizes where the weights are the number of hops (links) traveled

by the respective messages. Higher hop-bytes is an indication

of higher communication load on the network [15]. It can be

seen that the average in the case of partition from scratch

is 5.25 whereas in our approach the average is 2.44. This is

because in our strategy the receiver process grid is placed

closer to the sender process grid so that the number of hops

between a sender-receiver pair is minimized.

0 10 20 30 40 50 60 70
Case number

0

2

4

6

8

10

12

A
v
e
ra
g
e
h
o
p
b
y
te
s

Partition from scratch

Tree-based hierarchical diffusion

Fig. 10. Average hop-bytes for partition from scratch method and tree-based
hierarchical approach. X-axis denotes the test case number and Y-axis denotes
the hop-bytes. Tree-based hierarchical approach incurs lesser hop-bytes than
scratch method.

Figure 11 shows the percentage of overlap of data points

between the senders and receivers for partition from scratch

and our approach for 70 synthetic test cases on 1024 Blue

Gene/L cores. It can be observed that the overlap is higher for

our method and hence it incurs lesser redistribution time.

0 10 20 30 40 50 60 70
Case number

0

10

20

30

40

50

60

70

P
e
rc
e
n
ta
g
e
o
f
o
v
e
rl
a
p

Partition from scratch

Tree-based hierarchical diffusion

Fig. 11. Percentage overlap between senders and receivers for partition from
scratch method and tree-based hierarchical diffusion approach. X-axis denotes
the test case number and Y-axis denotes the percentage overlap. Tree-based
hierarchical approach has more overlap than scratch method.

In the case of fist cluster, we found that there was an overlap

of 27% data points between senders and receivers for our

tree-based hierarchical approach. For the scratch method, there

was 15% overlap. This is because in our method, we try to

585858585858

maximize the overlap between senders and receivers so that

there is less data communication during the redistribution.

F. Dynamic Approach

In this section, we present the results for our dynamic

scheme which selects either the scratch or the tree-based

approach. We tested 12 reconfigurations for synthetic cases

on 1024 BG/L cores for a simulation period of 4 hours. The

approach with the minimum sum of predicted execution and

redistribution times was selected by the dynamic approach.

Since the efficiency of dynamic selection approach depends

on the ability to predict the execution times of different nest

configurations, we calculated the Pearson’s correlation coef-

ficient between the actual and predicted execution times. We

found that our prediction method yielded Pearson’s correlation

coefficient of 0.9. This shows linear relationship between the

two and hence also shows that our performance prediction for

execution times is nearly accurate.

Out of the 12 reconfiguration cases, scratch method was

selected two times and tree-based approach was selected ten

times. The dynamic approach made correct decisions in 10

out of the 12 cases. In terms of actual execution times, our

tree-based diffusion method gave smaller sum of execution

and redistribution times than partition from scratch method in

9 cases, while the partition from scratch method gave smaller

sum in the remaining 3 cases.

Figure 12 shows the total times including the execution

times and redistribution times for tree-based approach, parti-

tion from scratch method and dynamic approach. It can be

observed that the redistribution time is lowest in our tree-

based method, while the execution time is the lowest in

the partition from scratch method. The dynamic selection

approach combines the advantages of both the methods, with

its redistribution time similar to the tree-based approach and

its execution time similar to the partition from scratch method.

The dynamic scheme resulted in 3% improvement in overall

execution time than the next best-performing tree-based ap-

proach. It should be noted that more frequent adaptation points

seen in our real runs (about 70 adaptation points) will result

in higher performance improvement for the dynamic scheme.

Tree-based Scratch Dynamic
0

50

100

150

200

250

300

350

T
im

e
(s
e
c
o
n
d
s
)

Execution time

Redistribution time

Fig. 12. Execution and redistribution times.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we presented a parallel data analysis algorithm

and efficient processor reallocation algorithm to detect and

track tall clouds in tropical weather systems. Our data analysis

algorithm detects organized cloud systems using a variant

of nearest neighbour clustering. We performed nested high-

resolution simulations for the regions with high cloud cover.

The nested simulations were executed on a disjoint subset of

the total number of processors. Due to the dynamic nature of

the clouds, the nests may form and disappear with time. We

proposed a tree-based efficient processor allocation algorithm

that reallocates processors for the persistent nests at a low data

redistribution cost.
Our approach considers the existing processor allocation

and selects a new subset of processors with maximum overlap

with the existing rectangular subset of processors. Results

showed that we are able to reduce the redistribution times by

up to 25% as compared to partition from scratch method with

minimum increase in the execution times. We also developed

a dynamic scheme that attempts to select the best of the two

approaches, namely, partition from scratch and our approach.
Our detection and tracking algorithms are quite generic.

In future, we would like to apply these algorithms for other

applications which require simultaneous tracking of multiple

dynamic events.

REFERENCES

[1] P. Malakar, T. George, S. Kumar, R. Mittal, V. Natarajan, Y. Sabharwal,
V. Saxena, and S. S. Vadhiyar, “A Divide and Conquer Strategy for
Scaling Weather Simulations with Multiple Regions of Interest,” in
Proceedings of the 2012 ACM/IEEE conference on Supercomputing.

[2] W. C. Skamarock and et al., “A Description of the Advanced Research
WRF version 3,” NCAR Technical Note TN-475, 2008.

[3] L. Oliker and R. Biswas, “Efficient load balancing and data remapping
for adaptive grid calculations,” in Proceedings of the ninth annual ACM
Symposium on Parallel Algorithms and Architectures, 1997, pp. 33–42.

[4] S. Sinha and M. Parashar, “Adaptive System Sensitive Partitioning of
AMR Applications on Heterogeneous Clusters,” Cluster Computing,
vol. 5, 2002.

[5] K. Schloegel, G. Karypis, and V. Kumar, “Multilevel Diffusion Schemes
for Repartitioning of Adaptive Meshes,” Journal of Parallel and Dis-
tributed Computing, vol. 47, pp. 109–124, 1997.

[6] G. Karypis and V. Kumar, “Multilevel k-way Partitioning Scheme for
Irregular Graphs,” Journal of Parallel Distributed Computing, vol. 48,
no. 1, pp. 96–129, 1998.

[7] Z. Lan, V. E. Taylor, and G. Bryan, “Dynamic load balancing of
SAMR applications on distributed systems,” in Proceedings of the 2001
ACM/IEEE conference on Supercomputing.

[8] H. Sagan, Space-Filling Curves. Springer-Verlag, 1994.
[9] D. Rosenfeld. and I. M. Lensky, “Satellite-based insights into precipita-

tion formation processes in continental and maritime convective clouds,”
Bulletin of the American Meteorological Society, vol. 79, pp. 2457–2476,
1998.

[10] G. Gu and C. Zhang, “Cloud components of the Intertropical Conver-
gence Zone,” Journal of Geophysical Research: Atmospheres, vol. 107,
no. D21, pp. ACL 4–1–ACL 4–12, 2002.

[11] S. Kumar, Y. Sabharwal, R. Garg, and P. Heidelberger, “Optimization
of All-to-all Communication on the Blue Gene/L Supercomputer,” in
International Conference on Parallel Processing, 2008.

[12] S. Sahany, V. Venugopal, and R. Nanjundiah, “The 26 July 2005 heavy
rainfall event over Mumbai: numerical modeling aspects,” Meteorology
and Atmospheric Physics, vol. 109, pp. 115–128, 2010.

[13] IBM Blue Gene Team, “Overview of the Blue Gene/L system architec-
ture,” IBM Journal of Research and Development, vol. 49, 2005.

[14] H. Yu, I.-H. Chung, and J. Moreira, “Topology Mapping for Blue Gene/L
Supercomputer,” in Proceedings of the 2006 ACM/IEEE conference on
Supercomputing.

[15] A. Bhatele, G. Gupta, L. V. Kale, and I.-H. Chung, “Automated
Mapping of Regular Communication Graphs on Mesh Interconnects,”
in International Conference on High Performance Computing, 2010.

595959595959

