2013 42nd International Conference on Parallel Processing

A Diffusion-Based Processor Reallocation Strategy
for Tracking Multiple Dynamically Varying Weather
Phenomena

Preeti Malakar*, Vijay Natarajan*T, Sathish S. Vadhiyarf, Ravi S. Nanjundiah?*
*Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India
TSupercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, India

Abstract—Many meteorological phenomena occur at different
locations simultaneously. These phenomena vary temporally and
spatially. It is essential to track these multiple phenomena for
accurate weather prediction. Efficient analysis require high-
resolution simulations which can be conducted by introducing
finer resolution nested simulations, nests at the locations of these
phenomena. Simultaneous tracking of these multiple weather
phenomena requires simultaneous execution of the nests on
different subsets of the maximum number of processors for the
main weather simulation. Dynamic variation in the number of
these nests require efficient processor reallocation strategies. In
this paper, we have developed strategies for efficient partitioning
and repartitioning of the nests among the processors. As a case
study, we consider an application of tracking multiple organized
cloud clusters in tropical weather systems. We first present
a parallel data analysis algorithm to detect such clouds. We
have developed a tree-based hierarchical diffusion method which
reallocates processors for the nests such that the redistribution
cost is less. We achieve this by a novel tree reorganization
approach. We show that our approach exhibits up to 25% lower
redistribution cost and 53% lesser hop-bytes than the processor
reallocation strategy that does not consider the existing processor
allocation.

Index Terms—redistribution; processor reallocation; data anal-
ysis; cloud tracking

I. INTRODUCTION

Accurate and timely prediction of severe weather phenom-
ena such as heavy rainfall, heat waves, and thunderstorms
enables policy makers to take quick preventive actions. Such
predictions require high-fidelity weather simulations. Multiple
similar meteorological phenomena may occur at the same time
in different regions of a geographical domain. For example,
Figure 1 illustrates the phenomena of tall clouds occurring at
multiple regions simultaneously in the Indian region.

Weather simulations need to track these clouds at higher
resolutions. Simulating and tracking these multiple regions
of interest at high resolutions is important in understanding
the weather phenomena and for accurate weather predictions.
These phenomena may vary temporally as well as spatially.
Some of the regions of interest may disappear in subsequent
time steps while new regions of interest may form. For
example, some of the cloud systems! shown in Figure 1 may

This research is partly supported by Centre for Development of Advanced Computing,
India, project ref. no. CDAC/ESE/STV/CO014.

ICloud systems are a hierarchical organization of clouds.

0190-3918/13 $26.00 © 2013 IEEE 50
DOI 10.1109/ICPP.2013.14

Fig. 1. Tall clouds over the Indian region during the 2005 monsoon season.
Image generated from WRF simulation. Darker regions correspond to regions
with higher cloud water mixing ratios.

produce severe weather conditions such as high winds, intense
localized rainfall, floods and storm surges over coastal regions,
some clouds may move to different regions and cluster with
other clouds, and some may disappear with time.

Many meteorological phenomena occur at different loca-
tions simultaneously (requiring resolution of finer scales) and
simulation methods have to efficiently handle this. Tracking
these multiple phenomena incur new challenges which are
more difficult to tackle than the simulation of a single phe-
nomenon. We list some of the challenges below.

o Simultaneously tracking the appearance, disappearance
and merging of the phenomena at various locations re-
quires dynamic representations and efficient data analysis.

o Simulating multiple events at high resolutions needs
efficient processor allocation schemes for these multiple
events.

e The dynamic nature of these events require fast data
redistribution strategies.

High-resolution nested simulations, nests, are spawned
within the main parent simulation to simultaneously track
these multiple regions of interest. Each nested simulation is
executed on disjoint subsets of the total number of processors
for high performance [1]. Therefore, with dynamic appearance
and disappearance of regions of interest, we need to modify
the processor allocation for the nests. The processors allocated
to the nests in the previous time step of simulation will have
to be freed if the nests do not exist in the current time step.
Similarly, a subset of processors needs to be allocated to the

cps™

Conference Publishing Services

new nests formed in the current time step. The removal of old
nests and addition of new nests may lead to new processor
allocation for the old nests which continue to exist from the
previous time step.

Reconfiguration of processor allocation implies data redis-
tribution for the old nests. In this work, we have developed
a tree-based hierarchical diffusion algorithm for processor
allocation that reduces data movement by considering the old
processor allocation. This algorithm results in lower redistri-
bution time as compared to a strategy that does not consider
the existing processor allocation.

We have implemented the redistribution algorithm to sup-
port resource reconfigurations in an application that detects
and tracks organized tropical convective cloud systems which
have widespread occurrence of tall cumulonimbus clouds as a
distinct signature. These clouds are associated with thunder-
storms and atmospheric instability, forming from water vapour
carried by powerful upward air currents. They can produce
heavy rain and flash flooding. Hence, it is important to track
these clouds. These clouds may form and disappear with time.
We have developed a parallel data analysis algorithm that
detects these clouds from simulation output. We spawn nests
over these regions of interest within the running simulation,
and also dynamically remove nests when the old regions of
interest no longer exist. For weather simulation, we use the
popular Weather Research and Forecast model (WRF) [2].

The key contributions of this paper are as follows:

1) A parallel data analysis algorithm to detect and track
clouds on-the-fly.

2) A framework that supports dynamic nest formation and
processor rescheduling within a running simulation.

3) A novel tree-based hierarchical diffusion algorithm for
processor allocation that minimizes data redistribution
cost.

We performed experiments on Blue Gene/L and Intel Xeon-
based clusters using both real data corresponding to Mumbai
rainfall of 2005, and synthetic nest formations and deletions
for the same period. Our results showed that we were able to
reduce the redistribution time by 25% over the scratch method
and resulted in 53% lesser hop-bytes on Blue Gene/L.

While we have used the tracking of tall clouds as a case
study, our algorithms for data analysis and processor allocation
are generic and applicable to other scenarios that involve
multiple dynamically varying nested simulations.

Section II describes related work in adaptive mesh refine-
ment and graph partitioning. Section III presents our parallel
data analysis algorithm. Section IV presents our data redistri-
bution strategies. Section V presents experimental results to
illustrate the performance improvement achieved. Section VI
concludes and enumerates our future efforts.

II. RELATED WORK

Many of the existing efforts in mesh adaptation and reparti-
tioning have been in the domain of Adaptive Mesh Refinement
(AMR) applications [3], [4], in which repartitioning and
dynamic load balancing are critical components. Schloegel

51

et al. present a multilevel diffusion scheme for repartitioning
adaptive meshes [5]. A commonly used strategy for mesh
repartitioning is to map the problem to graph partitioning and
attempt to minimize the edge-cut representing the amount of
communication between the partitions [3], [5], [6]. In our case,
the partitions are the nests and there is no communication
between the nests. Hence the graph partitioning heuristics are
not directly applicable in our case.

Moreover, existing efforts in AMR [3], [7] and irregular
mesh applications [5] perform repartitioning of adaptively
refined meshes primarily to achieve dynamic load balancing.
In our work, load balancing is implicitly achieved by parti-
tioning the processor space into multiple disjoint rectangular
grids that are assigned to the individual nested domains in
proportion to the domain workloads. The primary focus of
our work is repartitioning the rectangular processor grid into
sub-rectangles while minimizing the data redistribution cost
when nests dynamically appear and disappear. In our case,
a rectangular process grid needs to be allocated for each
nested domain and one processor executes a region of a nested
domain. The new processor allocation after the redistribution
is also a sub-rectangle of the rectangular process grid for
the parent simulation. Thus we require to reform the existing
rectangles such that there is maximum overlap between the
old and new process grids (sub-rectangles) for the same nest
in consecutive adaptation points.

Furthermore, in AMR applications, a grid is refined multiple
times and inter-grid operations between the refinement levels
are considered while repartitioning using Space Filling Curve
(SFC) strategies like Hilbert ordering [8]. In our case the
multiple high-resolution nests are formed at different locations
in the simulation domain and there is no communication
between these nests. We focus on minimizing the data re-
distribution and maximizing the overlap between the old and
new rectangular process grids for the same nest. Hence SFC
based repartitioning is not applicable for our domain.

Sinha et al. [4] presented an adaptive system sensitive
partitioning of AMR applications that tune the partitioning
parameters to improve overall performance. In these efforts,
the virtual 2D process topology is not considered to make
redistribution decisions. However, in our work we need to al-
locate a sub-rectangle of the 2D process grid to each nest. This
requires us to consider the virtual 2D process topology in our
redistribution algorithm for the selection of sub-rectangles.

III. TRACKING ORGANIZED CLOUD CLUSTERS VIA
PARALLEL DATA ANALYSIS

In this section, we describe an algorithm for parallel data
analysis of simulation output. The algorithm analyzes the
cloud water mixing ratio (QCLOUD) and outgoing long wave
radiation (OLR) in WRF simulation output to detect tall clouds
in tropical weather systems. These clouds are referred to as
cumulonimbus clouds. They extend vertically from 1 km above
the surface to more than 10 km. QCLOUD is the amount
of liquid water contained in a cloud. Generally, high values
of QCLOUD correspond to tall clouds. OLR is the infrared

radiation at the top of the atmosphere. Coherent patterns of
low OLR indicate occurrence of organized cloud systems (such
as tropical depressions and cyclones) and would contain tall
cumulonimbus clouds. A combination of OLR and QCLOUD
better identifies such systems and precludes identification of
isolated cumulonimbus (as QCLOUD alone would do) [9]. We
use 200 as the upper threshold for OLR [10].

Each process running WRF generates output for its subdo-
main and writes into a split file. These split files are analyzed
in parallel as shown in Algorithm 1. This algorithm forms
contiguous, non-overlapping, and small clusters whose sizes
do not grow uncontrollably. It is simple and fast and hence
suitable for online analysis. Let P be the number of processes
running WRF and N be the number of processes which
analyze the QCLOUD values in the split files. The algorithm
takes as input the split files { Fy, Fb, - - - , Fp}. These split files
are distributed to the N processes. Each of the N processes
analyze k files (lines 1-2). The subset S of files, where
|S| = k, is chosen as a rectangular subset of (Pz, Py), where
Pz-Py = P is the rectangular process decomposition in WREF.
Thus P is divided into N rectangular subsets.

The value of QCLOUD at each grid point in each split file is
aggregated if the outgoing long wave radiation OLR < 200
(lines 4-9). The fraction of the grid points which satisfy the
above criteria, olr fraction, is calculated (lines 7-8). The
aggregated QCLOUD values, one value per file, are then sent
by all the N processes to a root process, rank 0 in our case.
Each process will at most send % values. Note that some of the
split files may not have regions with OLR < 200, in which
case the process owning these split files will send fewer than
k values. The root process gathers the aggregated QCLOUD
values and the olr fraction values (line 11).

The rest of the algorithm is executed only on the root

process. Firstly the aggregated QCLOUD values obtained from
the split files are sorted in non-increasing order (line 13). A
contiguous region with high cloud cover can span multiple
split files processed by multiple processes. To obtain a con-
tiguous region, we perform a variant of nearest neighbour
clustering (NNC) (line 14). NNC outputs a set of clusters
with each cluster containing a contiguous region of high cloud
cover. A rectangle is formed around each cluster (lines 16—
19) and these rectangles constitute nests for fine-resolution
simulations in WRFE.
Nearest Neighbour Clustering: The pseudo code for the NNC
algorithm is shown in Algorithm 2. It takes as input the sorted
list of QCLOUD values, gcloudinfo. Each element in gcloudinfo
is a tuple of aggregate QCLOUD values for a split file and the
corresponding fraction of the split file which has OLR < 200.
The QCLOUD value of each element in the list represent the
cloud cover for a subdomain. The spatial location, i.e. the
latitude and longitude extents of a subdomain is used in this
algorithm to determine proximity between two subdomains.

The algorithm iterates over each element in the input array
gcloudinfo (lines 2-20). Line 3 checks whether the aggregate
QcLouD value and the fraction of the subdomain that has
OLR < 200 are greater than a threshold, which is 0.005 in

52

Input: Per-process simulation output of one time step from P
processes {F', Fa,--- , Fp}, Number of processes for
parallel data analysis N
Output: Rectangles: Rectangular regions with high cloud water
mixing ratio
/+* Divide P files among N processes */
1 k= P/N;
2 Let S be the set of k files assigned to each of the N processes;

/* Begin analysis of QCLOUD values in the files
in S by each of the N processes */

count = 0;

foreach file € S do
Read QCLOUD and OLR from file for each grid point;
Aggregate gcloud and increment count where
OLR|[gridpoint] < 200V gridpoint € file;

Let area be the total number of grid points in the file;
olr fraction = count/area;

B W

®w 2

9 end
/+* End analysis */

10 root = 0; /+ Assume rank 0 is the root rank =*/
11 Root collects the gcloud and olr fraction information from every
process in gcloudinfo;

/* Form rectangular regions in root process */

12 if (my rank == root) then

13 Sort gcloudinfo in decreasing order of gcloudinfo.qcloud;

14 Clusters = NNC(gcloudinfo);

15 Rectangles = 0;

16 foreach (list € Clusters) do

17 Let item = (minX, max X, minY, maxY’) be set of the
minimum and maximum of x and y coordinates of elements
of list;

18 Add item to Rectangles;

19 end

20 end

Algorithm 1: Parallel Data Analysis (PDA) algorithm

our case. This avoids analyzing smaller cloud-covered regions
with a very low QCLOUD value. Clusters are formed based on
proximity of the elements (lines 4-18). Each cluster represents
a contiguous region of strong cloud cover. An element is added
to a cluster if it is either 1-hop or 2-hop away from an existing
cluster. Initially, the list of clusters is empty. First, we check if
the current element is at 1-hop distance from any element in
an existing cluster (lines 6-9). If this does not hold true, then
we check if the element is 2 hops away from any element in
an existing cluster (lines 10-13).

In lines 6 and 10, the DISTANCE function is invoked to
calculate the proximity. If it returns true, the element is added
to list. If element is within hop distance from member, then
it is added to the cluster list iff it does not deviate the mean
of the QCLOUD values by more than a threshold (30% in our
case) (lines 23-29). This ensures that a cluster of contiguous
cloud region has low standard deviation and also helps in
controlling the size of an existing cluster.

If element is not within 2 hops from any element in any of
the existing clusters, then a new cluster newlist is formed.
element is added to newlist, which is added to the set
of clusters Clusters (lines 16-18). NNC outputs Clusters
which is the set of clusters representing different contiguous
regions of cloud cover.

Input: Sorted array gcloudinfo
Output: Clusters: List of elements, clustered by proximity

1 Clusters = 0;
2 LOOP: foreach element € gcloudinfo do

3 if (element.qcloud > threshold and
element.olr fraction > threshold) then
/% Check if this element is physically

close to any member of any list */

4 foreach list € Clusters do
5 foreach member € list do
6 if (DISTANCE (element,member,list,1)) then
7 Add element to list;
8 Continue next iteration of LOOP;
9 end
10 if (DISTANCE (element,member,list,2)) then
11 Add element to list;
12 Continue next iteration of LOOP;
13 end
14 end
15 end
/* Form a new list */
16 Initialize newlist;
17 Add element to newlist;
18 Add newlist to Clusters;
19 end
20 end

21 Return Clusters;
22 Begin Function DISTANCE (element, member, list, hop)

23 if (distance between member and element == hop) then
24 OldMean = Mean of QCLOUD values of members of list;
25 NewMean = Mean of QCLOUD values of members of list and

element.qcloud,

26 if (NewMean is within 30% of OldMean) then
27 Return True;

28 end

29 end

30 Return False;

31 End Function DISTANCE

Algorithm 2: Nearest Neighbour Clustering (NNC) algorithm

The parallel data analysis algorithm is executed simulta-
neously on a different set of processors than the processors
running the WRF simulation. Hence execution of PDA does
not affect WRF execution times. In Algorithm 1, the analysis
of QCLOUD values in each split file is done in parallel because
this is the most time-consuming step. For a maximum of
1024 split files, experiments show that the number of elements
gathered at the root process is less than 200 for most of
the time steps. The sequential NNC algorithm (Algorithm 2)
takes less than a second to cluster such few values. In this
case, parallel clustering would have been an overkill for
online analysis. However, we would like to parallelize the
NNC algorithm in future for simulations on larger number
of processors.

IV. PROCESSOR ALLOCATION

The parallel data analysis (PDA) algorithm computes a set
of regions of interest (ROI) in the domain, which in our case
are the regions with high cloud cover. Nested simulations are
spawned over the regions of interest. We simulate these nests
at high resolutions for better accuracy. The resolutions of these

53

Px

Py

(a) Huffman tree for 5 nests
with execution time ratios 0.1 :
0.1:0.2:0.25:0.35

(b) Sub-division of the
processor grid Pz x Py for
the 5 nests.

Fig. 2. TIllustration of processor allocation for nests.

nested simulations are thrice that of the parent simulation.
We modified the WRF code to spawn nests on-the-fly without
stopping the simulation. The initial data for the nested domains
are interpolated from the parent domain.

In a recent work [1], it was shown that significant perfor-
mance improvements can be achieved by executing the nests
simultaneously on different subsets of the total number of
processors, P. We use the performance modeling and Huffman
tree based algorithm in [1] to determine the size of the subset
of processors for a nest and the position of the subset in the
processor grid Pz x Py where Px-Py = P. The performance
model is used to predict the execution times of nests based on
the size and aspect ratio of the nests. The Huffman tree based
algorithm is used to determine the initial processor allocation
for each nested domain.

An example of processor allocation for 5 nests is shown in
Figure 2. Assume that the ratios of the predicted execution
times of the nests are 0.1 : 0.1 : 0.2 0.25 0.35.
These ratios are used as weights in the construction of the
Huffman tree, as shown in Figure 2(a). The corresponding
processor sub-grid for each nest is shown in Figure 2(b).
The 5 sub-rectangles correspond to the set of processors that
execute each of the nests. The start rank i.e. the rank of the
processor at the north-west corner of the sub-rectangle and
the rectangular dimensions of each processor sub-grid for this
example configuration are shown in Table I for a maximum
of 1024 cores.

TABLE I
PROCESSOR ALLOCATION ON 1024 CORES

Nest ID | Start Rank | Processor sub-grid
1 0 13 x 8
2 256 13 x 8
3 512 13 x 16
4 13 19 x 13
5 429 19 x 19

The regions of interest may persist in time or disappear in
subsequent time steps. Our regions of interest are the regions
with high cloud cover. Clouds may form and disappear over
a period of time. The PDA algorithm is invoked periodically
(every 2 minutes) to detect regions of interest (ROI) in the
output of the current simulation time step. A nest is spawned

whenever a new ROI is detected. A nest is deleted when
an existing ROI is not output by PDA. A retained nest is
one which was output by PDA in the previous invocation
as well as in the current invocation. The insertion, deletion
and retainment of nests cause changes in the Huffman tree
structure and hence in the processor allocation. Therefore
the newly allocated set of processors (receivers) executing a
retained nest may not be the same as the previously allocated
set of processors (senders) for the nest. The senders need to
distribute the nest domain data to the receivers. We modified
the WRF code to execute this redistribution. First the amount
of data to be redistributed is calculated based on the nest size,
followed by MPI_Alltoallv to redistribute data for each nest.
The processors that are neither senders nor receivers for a
nest send and receive (0 value during the MPI_Alltoallv for
that nest.

0j1/2)3 16 17
415|167
Ny
8|9 (1011 18 9
12(13|14 |15 L
Nx X

Fig. 3.
nest.

Data redistribution from old to new set of processors assigned to a

An example is shown in Figure 3 for a nest size of Nz x Ny.
A nest is equally subdivided among its allocated processors
0 — 15 as shown in the left grid. These processors distribute
the nest data to the newly allocated processors 16 — 19 as
shown in the right grid of the figure. It can be observed that
the region of the nest domain that processor 16 owns was
previously owned by 0, 1,4, 5. Hence 16 receives the domain
data from 0, 1,4, 5. Similarly, the other receivers also receive
data from 4 senders in this example.

In the above example, the senders and receivers are non-
intersecting sets. The communication cost for the data re-
distribution between the senders and the receivers can be
minimized if the senders and receivers overlap. In torus
networks, minimizing the number of hops between the senders
and receivers can minimize the redistribution cost. We describe
two strategies for data redistribution in the next section.

A. Partition from scratch

In this approach, we partition the entire process grid Px X
Py for processor allocation based on Huffman tree constructed
using the predicted execution times of the nests as weights, as
explained in the previous section. The tree construction does
not consider the current allocation of processors. Hence this
strategy can lead to completely non-overlapping senders and
receivers, which will lead to increased redistribution cost.

For example, let us consider the configuration in Figure 2.
Assume that in the next invocation, PDA outputs the nests
3,5,6 as regions of interest. So the nests 1,2, and 4 will be
deleted and new nest 6 will be formed. Let the ratios of the pre-
dicted execution times of the nests 3,5,6 be 0.27 : 0.42 : 0.31.
The corresponding Huffman tree and the processor partition

54

(a) Huffman tree for nests 3,5, 6
with execution times in ratios of
0.27:0.42:0.31.

(b) Sub-division of the pro-
cessor grid Pz x Py for 3
nests.

Fig. 4. Processor allocation for nests using partition from scratch.

are shown in Figure 4. The start rank and the rectangular
dimensions of each processor sub-grid for each nest are given
in Table II for a maximum of 1024 cores. Comparing the
previous and the new allocation for nests 3 and 5 from Tables I
and II, we can observe that there is no overlap between senders
and receivers. This can increase the redistribution cost.

TABLE 11
PROCESSOR ALLOCATION ON 1024 CORES

Nest ID | Start Rank | Processor sub-grid
3 13 19 x 13
5 0 13 x 32
6 429 19 x 19

The redistribution cost may be high in some cases in this
approach. However, the rectangular partitions based on the
Huffman tree are as square-like as possible owing to the tree
construction in the order of increasing weights. The square-
like partitions minimize the execution times of the nests.

B. Tree-based hierarchical diffusion

In this approach, we try to maximize the overlap between
senders and receivers of the retained nests. The key idea is to
shift the boundaries of rectangular partitions for the retained
nests so that the distribution of data is among neighbouring
processes and the overlap in the nest data between the old
and new set of processes is maximized. This minimizes the
redistribution cost, especially on torus networks. An example
is illustrated in Figure 5. Figure 5(a) shows the existing
processor partitioning for nests 1,2,3. When a new nest is
added, the existing partitions are shrunk. In this example, the
right boundary of rectangle for nest 1 is shifted to the left
and the left boundaries of the nests 2 and 3 are shifted to the
right, thereby leaving some processors free for inserting the
new nest, as shown in Figure 5(b). This also leads to a large
overlap between the old and new processor partitions for nests
1,2,3.

This repartitioning method is based on modifying the tree
corresponding to the current allocation, rather than building
the Huffman tree from scratch. The positions of the nodes
corresponding to the retained nests are kept intact in the tree.
Note that the weights of the old nodes, i.e. the retained nests,
may be modified because the weights represent the ratios of

(@) (b)

Fig. 5. (a) Existing and (b) new processor allocation in the hierarchical
diffusion approach.

the number of processors that will execute each nest. When
new nests are added and/or old nests are deleted, the processor
shares of the existing nests may change.

When there is no deletion, and there is only insertion of
new nodes, they are inserted near those existing nodes whose
weights are similar to those of the new nodes. By inserting
a new node near a node in the Huffman tree with similar
weight, we attempt to obtain rectangular partitions for the
nests that are more square-like. However, inserting a new
node near a node with large difference in weights will lead
to skewed rectangles. As reported in [1], square-like partitions
lead to smaller executions times for the nests, while skewed
rectangular partition increases the execution time of a nest.

(b)

Fig. 6. (a) Existing and (b) new trees in the hierarchical diffusion approach.
Predicted execution time ratios of the nests are the weights in the leaf nodes.

This is illustrated in the example shown in Figure 5. The
existing and the new trees corresponding to the processor
partitions of Figure 5 are shown in Figure 6. The new tree
in Figure 6(b) is constructed by inserting node 4 near node
1. This is because the weight of node 4 is closest to that of
the new weight of node 1. The size of a partition that each
node gets is proportional to its weight. Thus, the nodes 1 and
4 get %th and %th of the processors allocated to their parent
node. Since the difference in weights of nodes 1 and 4 is less,
so the resulting rectangles for 1 and 4 will be as square-like
as possible. Note that this would not have been the case if
node 4 was inserted near node 2 whose weight is 0.15. This
is because the corresponding shares for 4 and 2 would have

been 24 — % and %1% — % Thereby the rectangle for node

0.55 0.55

2 would not have been square-like due to the large difference
in weights. This is illustrated in Figure 7. One can note that
rectangle 2 is skewed as compared to rectangle 4.

When nests are both inserted and deleted, the nodes corre-
sponding to the deleted nests are deleted from the tree. Further,
new nodes are inserted in the positions of deleted nests so

55

Fig. 7. Skewed rectangle due to large difference in weights of the two nodes.

that the positions of the retained nests remain intact as much
as possible. This may enhance the chance of overlapping old
and new nest processor allocations for the retained nests. The
algorithm for modifying the existing tree for new processor
allocation is detailed in Algorithm 3. The inputs are the
existing tree oldtree, the list of deleted nodes deletednodes,
the modified weights of the retained nests rweights and
the weights of the new nodes nweights. The output is the
modified tree newtree.

Input: Existing tree oldtree, list of deleted nodes deletednodes,
new weights of retained nests rweights, and weights of new
nests nweights.

Output: New tree newtree

freenodes = 0, siblings = 0;
foreach node € deletednodes do
Mark node as free in the oldtree;
Add node to freenodes;
Add sibling of node to siblings;
end
foreach weight € rweights do
Update weight for the corresponding retained node;
end
Update weights of internal nodes of oldtree;

SN XTI U B W N -

[

/* Insert in the positions of deleted nodes,
near to the nodes with closest weights */
11 foreach new_weight € nweights do
12 if (|freenodes| > 1)) then
13 Add new_weight to the position of node, where
node € freenodes N sibnode is sibling of node A
d = Weight(sibnode) — new_weight A

d= argmin (Weight(s) — new_weight)
V s € siblings
14 Delete node from freenodes;
15 Delete sibnode from siblings;
16 end
17 end
18 if (|Jnweights| > |deletednodes|)) then
19 Build Huffman tree for the remaining new weights rooted at
node € freenodes;
20 else
21 Delete the remaining nodes in freenodes from oldtree;
22 end

23 Copy oldtree to newtree;

Algorithm 3: Tree-based hierarchical diffusion algorithm

Firstly, nodes from deletednodes are marked as free in
oldtree and added to the set freenodes (lines 2-6). The
siblings of these nodes are added to the set siblings (line 5).
These are used later as insertion points. The weights of the
retained nodes are modified (lines 7-9). Based on the deletion
and modification of weights of retained nodes, the weights
of the internal nodes are updated (line 10). The new weights
are added in the positions of the deleted nodes (lines 11—
17). As explained above, the new nodes should be inserted
near the ones who have closest weights. So, we inspect the

N
/L Ns /N

0.31 0.27 0.42
(a) Deleted nodes marked empty (b) Node 6 inserted near node 5
and weights of retained nests mod-
ified.

5 Py
(c) Remaining deleted nodes (d) Sub-division of the
removed processor grid based on

the modified tree.

Fig. 8. Steps of the tree-based hierarchical diffusion algorithm for deleting nests 1, 2, 4, retaining nests 3,5 and adding new nest 6.

weights of the sibling nodes of the deleted nodes. Inserting a
new node in the place of a deleted node will lead to minimum
modification of the existing tree structure. This is shown in line
13. new_weight is inserted in the position of node, which was
marked empty earlier. node is selected such that the difference
between the weight of its sibling sibnode and new_weight is
minimum. node and sibnode are deleted from their respective
sets (lines 14-15).

Note that the operation in line 13 is done only when there
are multiple nodes in the set freenodes. This is because
when the number of deletions is less than the insertions, we
build Huffman tree using the remaining unmatched weights in
nweights, and this subtree is rooted at the position of the last
element in freenodes. This is shown in lines 18-20. If there
are fewer insertions than deletions, we delete the remaining
nodes of freenodes (line 21). The updated oldtree is output
as newtree.

This approach reduces the data movement between the
senders and receivers and hence achieves significant reduction
in redistribution time as compared to the partition from scratch
method. This is because we attempt to allocate receivers such
that there is large overlap between senders and receivers and
the receivers are neighbouring processes of the senders.

The processor allocation using tree-based hierarchical dif-
fusion algorithm for the example in Figure 2 is shown in
Figure 8. To compare with the partition from scratch approach,
let us assume the same output of PDA that was considered in
Section IV-A (see Figure 4). The nests 1,2 and 4 are deleted,
nests 3 and 5 are retained and 6 is the new region of interest.
Figure 8(a) shows the tree after nodes 1,2 and 4 are marked as
deleted and weights of 3 and 5 are modified. Note that deleted
nodes 1,2 have been combined as one empty node because the
two free rectangles represented by them can be considered as
one free rectangle. Hence there are two free slots available
for inserting new node 6 - the weight of one sibling node is
0.27 and that of the other is 0.42. Node 6 is inserted in the
position of sibling of node 3 because 0.31—0.27 < 0.42—0.31
i.e., the weight of node 3 is closer to weight of node 6.
The rectangular partitioning based on this tree is shown in
Figure 8(d). Comparing this with the partitioning obtained
from the partitioning from scratch method shown in Figure
4(b), we can see that there is considerable overlap between the
old and new set of processors for nests 3 and 5, as compared

56

to no overlap in the partition from scratch approach. Also, we
observe that the rectangles for 3 and 5 expand to neighbouring
processes because we try to keep the positions of retained nests
as intact as possible.

Note that the resulting modified tree may no longer be a
Huffman tree in this approach. However, the modifications
lead to some overlap between new and old processors and
redistribution among neighbouring processes. Our techniques
are scalable for large number of processors. Also, the maxi-
mum number of hops between old and new set of processors
is likely to increase for the scratch method with larger total
processor count. Therefore the data redistribution time may
increase with increase in number of processors for the scratch
method. Processor reallocation via Huffman tree construction
or reorganization depends on the number of nests and is not
affected by increase in processor count.

C. Dynamic Strategy

The performance differences between the two methods,
namely, the partition from scratch method and our diffusion-
based method, depend on both the execution times of the
resulting partitions and the redistribution costs. The execution
time ratios of the nests and hence the percentage of total
number of processors allocated for the nests are same in
both partition from scratch method and our diffusion-based
method. However, due to integral sides of the sub-rectangles,
the rectangular grids and the aspect ratios of the rectangles for
the same nest configuration may not be exactly the same. For
example, one method may allocate 16 x 18 while the other
may allocate 17 x 17. This can lead to slight difference in
execution times of the nests for the two methods.

Similarly, while we expect the redistribution costs for our
diffusion-based method to be smaller than the partition from
scratch method, there may be cases when the redistribution
costs are almost same in both approaches. This is because
both approaches are based on tree construction using the
ratios of predicted execution times of nests as weights. The
relative order of the weights affect the construction of the
tree, and hence also affects the resulting rectangular processor
grid allocated to the nests. Similar relative order of the
weights of those nests that persist between reconfigurations
may result in similar trees for both approaches, and hence
similar redistribution costs. Therefore we propose a dynamic
strategy that selects the approach which requires minimum

redistribution time and execution time. For this, we need to
predict both these times.

1) Performance model for redistribution time: The primary
component of the redistribution time is MPI_Alltoallv between
the processors. We assume direct algorithm for MPI_Alltoallv
[11] between the processors in mesh and torus based networks.
We predict MPI_Alltoallv time as the maximum communica-
tion time between senders and receivers. First, we find the
size of the message that a sender will send to its receiver(s),
and then find the number of hops between the sender and
its receivers. Using this, we find the communication time for
every sender-receiver pair. The maximum of these communi-
cation times is predicted as the time for MPI_Alltoallv. For
non-mesh networks like switched networks, the times taken
for sender to send messages to all receivers can be added to
predict the time for MPI_Alltoallv.

2) Performance model for execution time: We profiled the
execution times of a small set (size = 13) of domains with
different domain sizes on a few (10 in our case) processor
sizes within the maximum number of processors (1024 in our
case). The actual execution times of these 13 domains are
used to interpolate the execution times of the nests formed
in our simulation using Delaunay triangulation. The details
of these steps are presented in [1]. Additionally, we predict
the execution times of the nests for the 10 processor sizes.
Using these times, we perform linear interpolation to predict
the execution time on desired number of processors. This gives
good prediction accuracies as shown later in Section V. The
prediction execution times are used for dynamic selection of
methods, and also for determining the weights of the nests
needed for processor allocation in the partition from scratch
and our tree-based methods.

Using the above predictions for redistribution and execution
times for both scratch and tree-based approaches, the dynamic
scheme selects the one which has lower sum of these times.

V. EXPERIMENTS AND RESULTS
A. Data analysis algorithm

One of the primary components in our work is the data anal-
ysis algorithm described in Section III to identify clouds and
form nests. We form clusters of contiguous regions with high
cloud cover using QCLOUD values in non-increasing order. A
QCLOUD value in this list represents the aggregated QCLOUD
over a subdomain, where OLR < 200. The contiguous regions
are clustered based on the proximity between the subdomains.

In this section, we compare our nearest neighbour clustering
algorithm described with a simple nearest neighbour clustering
approach. In Figure 9(a), we show the clustering using only
2 hop distance criteria. This strategy checks whether the list
element is within 2 hops from an existing cluster. We can
observe there are some overlapping clusters. In Figure 9(b),
we show the clusters formed by our method. It can be observed
that the clusters formed by our method are non overlapping
because we first check for 1 hop and then 2 hop distance. We
check for 2 hop distance only if the list element is not within 1
hop from an existing cluster. This ensures that the list element

57

is added to its nearest cluster. We insert into a cluster only if
the mean deviation is not more than 30% to ensure that the
cluster size does not grow uncontrollably.

(a) Nearest neighbour clustering us-
ing 2-hop distance and no mean
deviation criteria. Clusters overlap
in space.

(b) Nearest neighbour clustering us-
ing 1-hop and 2-hop distances and
mean deviation threshold of 30%.
Clusters do not overlap.

Fig. 9. Nearest neighbour clustering for our parallel data analysis algorithm.

B. Domain Configurations

We used WRF v3.3.1 [2] for all our experiments. The parent
simulation domain in WRF can have multiple child domains,
called nests. These nests were formed during the simulation
over different regions of interest. We modified the WRF source
code for dynamic insertion and deletion of nested domains. We
simulated over the Indian region from 60°E - 120°E and 5°N -
40°N for the July 2005 Mumbeai rainfall event [12]. The period
of simulation was from July 24, 2005 18:00 hours — July 27,
2005 18:00 hours. The parent simulation resolution was 12
km and the resolutions of the nested domains were 4 km. We
compared our tree-base hierarchical diffusion approach with
the partition from scratch method for both real and synthetic
test cases. For the dynamic approach, we experimented with
synthetic test cases.

Real: Nests were formed over regions with high cloud cover,
which were detected by our parallel data analysis algorithm.
The maximum number of nests formed during these runs were
7. The maximum and minimum sizes of the nests formed
were 202 x 349 and 175 x 175. There were approximately
100 reconfigurations of processor allocations for the nests.
Synthetic: The real traces for our application had fewer
configuration changes and fewer (4 — 5) nests on average.
We generated some synthetic test cases in order to test our
algorithm for higher number of nests in a time step and more
number of redistributions per adaptation point. We tested with
up to 70 random nest configuration changes, with number of
nests varying between 2 — 9. Nests were randomly inserted
and deleted. The maximum and minimum sizes of the nests
formed were 361 x 361 and 181 x 181.

C. Experimental Setup

We performed our simulations on two different kinds of
systems, a Blue Gene/L system and an Intel Xeon cluster
called fist. Table III details our experimental configurations.
For the experiments on Blue Gene/L [13], we developed a
folding-based topology-aware mapping [14] that maps the

neighbouring processes to neighbouring processors on the 3D
torus. This topology-aware mapping was used for all our
experiments so that the processes are one hop away from their
neighbours in the process grid. This also benefits the execution
times for both the partition from scratch method and diffusion
based approach. For all our experiments, visualization was
performed on a graphics workstation in Indian Institute of
Science (IISc) with a Intel(R) Pentium(R) 4 CPU 3.40 GHz
and an NVIDIA graphics card GeForce 7800 GTX.

TABLE III
SIMULATION CONFIGURATIONS

Simulation Configuration Maximum

Number of Cores
1024

Blue Gene/L: Dual-core 700 MHz PowerPC
440 processor cores with 1 GB physical mem-
ory, 3D torus network

fist: 2 Xeon quad core processors (2.66GHz, | 256
12MB L2 Cache) with 16GB memory, con-

nected by Infiniband switched network

D. Improvement in redistribution time

Our tree-based hierarchical diffusion method achieved 14%
and 12% improvements in redistribution times on 512 and
1024 Blue Gene/L cores respectively over partition from
scratch method for the real test cases.

TABLE IV
AVERAGE IMPROVEMENT IN REDISTRIBUTION TIMES FOR SYNTHETIC
TEST CASES
Simulation Configuration Improvement
BG/L 1024 cores 15%
BG/L 256 cores 25%
fist 256 cores 10%

Table IV shows the average percentage improvement in
redistribution times for our tree-based hierarchical diffusion
method over partition from scratch method for the synthetic
test cases. It can be observed that the performance improve-
ment is higher in the case of Blue Gene/L which has 3D torus
network. This is because our tree-based hierarchical approach
selects the new processor allocation based on the neighbours
in the process grid. For Blue Gene/L the neighbours in the
process grid are also neighbours in the processor topology
because of our topology-aware mapping. However, in the fist
cluster, there is no regular mesh/torus topology, hence the
gains are lower. However, it is important to note that we still
achieve 10% improvement over the scratch method because of
the overlap between the senders and receivers in our approach.
Maximum overlap ensures less data communication during the
redistribution. We also observe higher improvement for 256
cores. We assume that this may be because of larger per-core
data for redistribution in the case of smaller number of cores.

For both real and synthetic test cases, we observed an
average of 4% increase in execution times for our approach

58

over the partition from scratch method. This is because in our
approach, the Huffman tree is not constructed from scratch and
we try to maximize the overlap. Hence the resulting partitions
may not always be square-like. However, when the number of
adaptation points is high, it is more important to minimize the
redistribution cost.

E. Distance between senders and receivers

Figure 10 shows the average hop-bytes during the sender-
receiver communication for partition from scratch and our
approach for 70 synthetic test cases on 1024 Blue Gene/L
cores. The hop-bytes metric is the weighted sum of message
sizes where the weights are the number of hops (links) traveled
by the respective messages. Higher hop-bytes is an indication
of higher communication load on the network [15]. It can be
seen that the average in the case of partition from scratch
is 5.25 whereas in our approach the average is 2.44. This is
because in our strategy the receiver process grid is placed
closer to the sender process grid so that the number of hops
between a sender-receiver pair is minimized.

— Partition from scratch
— Tree-based hierarchical diffusion)

-

I
TIPS

i M‘wwu‘\w/‘w““«“ﬁJ\{s‘\mu
J LI i

Average hopbytes

50 60 70

Fig. 10. Average hop-bytes for partition from scratch method and tree-based
hierarchical approach. X-axis denotes the test case number and Y-axis denotes
the hop-bytes. Tree-based hierarchical approach incurs lesser hop-bytes than
scratch method.

Figure 11 shows the percentage of overlap of data points
between the senders and receivers for partition from scratch
and our approach for 70 synthetic test cases on 1024 Blue
Gene/L cores. It can be observed that the overlap is higher for
our method and hence it incurs lesser redistribution time.

— Partition from scratch
— Tree-based hierarchical diffusion)

@

Percentage of overlap

o
o Mgl

20 30 40 50 60
Case number

Fig. 11. Percentage overlap between senders and receivers for partition from
scratch method and tree-based hierarchical diffusion approach. X-axis denotes
the test case number and Y-axis denotes the percentage overlap. Tree-based
hierarchical approach has more overlap than scratch method.

In the case of fist cluster, we found that there was an overlap
of 27% data points between senders and receivers for our
tree-based hierarchical approach. For the scratch method, there
was 15% overlap. This is because in our method, we try to

maximize the overlap between senders and receivers so that
there is less data communication during the redistribution.

F. Dynamic Approach

In this section, we present the results for our dynamic
scheme which selects either the scratch or the tree-based
approach. We tested 12 reconfigurations for synthetic cases
on 1024 BG/L cores for a simulation period of 4 hours. The
approach with the minimum sum of predicted execution and
redistribution times was selected by the dynamic approach.
Since the efficiency of dynamic selection approach depends
on the ability to predict the execution times of different nest
configurations, we calculated the Pearson’s correlation coef-
ficient between the actual and predicted execution times. We
found that our prediction method yielded Pearson’s correlation
coefficient of 0.9. This shows linear relationship between the
two and hence also shows that our performance prediction for
execution times is nearly accurate.

Out of the 12 reconfiguration cases, scratch method was
selected two times and tree-based approach was selected ten
times. The dynamic approach made correct decisions in 10
out of the 12 cases. In terms of actual execution times, our
tree-based diffusion method gave smaller sum of execution
and redistribution times than partition from scratch method in
9 cases, while the partition from scratch method gave smaller
sum in the remaining 3 cases.

Figure 12 shows the total times including the execution
times and redistribution times for tree-based approach, parti-
tion from scratch method and dynamic approach. It can be
observed that the redistribution time is lowest in our tree-
based method, while the execution time is the lowest in
the partition from scratch method. The dynamic selection
approach combines the advantages of both the methods, with
its redistribution time similar to the tree-based approach and
its execution time similar to the partition from scratch method.
The dynamic scheme resulted in 3% improvement in overall
execution time than the next best-performing tree-based ap-
proach. It should be noted that more frequent adaptation points
seen in our real runs (about 70 adaptation points) will result
in higher performance improvement for the dynamic scheme.

B Execution time
[0 Redistribution time

111

Trée-based Scratch Dynamic

35

NN W
o o u o

Time (seconds)

-
o

Fig. 12. Execution and redistribution times.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we presented a parallel data analysis algorithm
and efficient processor reallocation algorithm to detect and

59

track tall clouds in tropical weather systems. Our data analysis
algorithm detects organized cloud systems using a variant
of nearest neighbour clustering. We performed nested high-
resolution simulations for the regions with high cloud cover.
The nested simulations were executed on a disjoint subset of
the total number of processors. Due to the dynamic nature of
the clouds, the nests may form and disappear with time. We
proposed a tree-based efficient processor allocation algorithm
that reallocates processors for the persistent nests at a low data
redistribution cost.

Our approach considers the existing processor allocation
and selects a new subset of processors with maximum overlap
with the existing rectangular subset of processors. Results
showed that we are able to reduce the redistribution times by
up to 25% as compared to partition from scratch method with
minimum increase in the execution times. We also developed
a dynamic scheme that attempts to select the best of the two
approaches, namely, partition from scratch and our approach.

Our detection and tracking algorithms are quite generic.
In future, we would like to apply these algorithms for other
applications which require simultaneous tracking of multiple
dynamic events.

REFERENCES

[1] P. Malakar, T. George, S. Kumar, R. Mittal, V. Natarajan, Y. Sabharwal,
V. Saxena, and S. S. Vadhiyar, “A Divide and Conquer Strategy for
Scaling Weather Simulations with Multiple Regions of Interest,” in
Proceedings of the 2012 ACM/IEEE conference on Supercomputing.

[2] W. C. Skamarock and et al., “A Description of the Advanced Research
WREF version 3,” NCAR Technical Note TN-475, 2008.

[3] L. Oliker and R. Biswas, “Efficient load balancing and data remapping
for adaptive grid calculations,” in Proceedings of the ninth annual ACM
Symposium on Parallel Algorithms and Architectures, 1997, pp. 33—42.

[4] S. Sinha and M. Parashar, “Adaptive System Sensitive Partitioning of
AMR Applications on Heterogeneous Clusters,” Cluster Computing,
vol. 5, 2002.

[5] K. Schloegel, G. Karypis, and V. Kumar, “Multilevel Diffusion Schemes
for Repartitioning of Adaptive Meshes,” Journal of Parallel and Dis-
tributed Computing, vol. 47, pp. 109-124, 1997.

[6] G. Karypis and V. Kumar, “Multilevel k-way Partitioning Scheme for
Irregular Graphs,” Journal of Parallel Distributed Computing, vol. 48,
no. 1, pp. 96-129, 1998.

[71 Z. Lan, V. E. Taylor, and G. Bryan, “Dynamic load balancing of
SAMR applications on distributed systems,” in Proceedings of the 2001
ACM/IEEE conference on Supercomputing.

[8] H. Sagan, Space-Filling Curves. Springer-Verlag, 1994.

[9] D. Rosenfeld. and I. M. Lensky, “Satellite-based insights into precipita-
tion formation processes in continental and maritime convective clouds,”
Bulletin of the American Meteorological Society, vol. 79, pp. 2457-2476,
1998.

[10] G. Gu and C. Zhang, “Cloud components of the Intertropical Conver-
gence Zone,” Journal of Geophysical Research: Atmospheres, vol. 107,
no. D21, pp. ACL 4-1-ACL 4-12, 2002.

[11] S. Kumar, Y. Sabharwal, R. Garg, and P. Heidelberger, “Optimization
of All-to-all Communication on the Blue Gene/L Supercomputer,” in
International Conference on Parallel Processing, 2008.

[12] S. Sahany, V. Venugopal, and R. Nanjundiah, “The 26 July 2005 heavy
rainfall event over Mumbai: numerical modeling aspects,” Meteorology
and Atmospheric Physics, vol. 109, pp. 115-128, 2010.

[13] IBM Blue Gene Team, “Overview of the Blue Gene/L system architec-
ture,” IBM Journal of Research and Development, vol. 49, 2005.

[14] H. Yu, I.-H. Chung, and J. Moreira, “Topology Mapping for Blue Gene/L
Supercomputer,” in Proceedings of the 2006 ACM/IEEE conference on
Supercomputing.

[15] A. Bhatele, G. Gupta, L. V. Kale, and I.-H. Chung, “Automated
Mapping of Regular Communication Graphs on Mesh Interconnects,”
in International Conference on High Performance Computing, 2010.

