
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 108C (2017) 2403–2407

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science
10.1016/j.procs.2017.05.199

International Conference on Computational Science, ICCS 2017, 12-14 June 2017,
Zurich, Switzerland

10.1016/j.procs.2017.05.199 1877-0509

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science

This space is reserved for the Procedia header, do not use it

High Performance and Enhanced Scalability for Parallel
Applications using MPI-3’s non-blocking Collectives

Surendra Varma Pericherla and Sathish Vadhiyar

Department of Computational and Data Sciences
Indian Institute of Science, Bangalore, India

surriennddraah@gmail.com,vss@cds.iisc.ac.in

Abstract
Collective communications occupy 20-90% of total execution times in many MPI applications. In this
paper, we propose strategies for automatically identifying the most time-consuming collective opera-
tions that also act as scalability bottlenecks. We then explore the use of MPI-3’s non-blocking collec-
tives for these communications. We also rearrange the codes to adequately overlap the independent
computations with the non-blocking collective communications. Applying these strategies for differ-
ent graph and machine learning applications, we obtained up to 33% performance improvements for
large-scale runs on a Cray supercomputer.

Keywords: MPI Collectives, non-blocking collectives, communication-computation overlap

1 Introduction

Collective communications consume significant percentage of execution times in many applications
also influence the overall scalability trend of the applications. In this paper, we explore the use of non-
blocking collective communications in improving the performance and scalability of different applica-
tions. Table 1 shows the different parallel applications considered for our study. As shown, collective
communications occupy a major percentage of time in many of these applications.

We first identify the scalability and performance bottlenecks in the applications using HPCToolkit
[12]. We use the work by Coarfa et al. [6] that uses scalability metrics in HPCToolkit for identifying
the bottlenecks. We modified the collective causing bottleneck to use MPI-3’s non-blocking collective
communication, and followed a simple approach of overlapping all non-dependent computations and
communications between the post and the complete operations. Our studies with large scale runs on
a Cray supercomputer show that applying this approach gives significant performance improvement of
upto 33% for the applications.

1

This space is reserved for the Procedia header, do not use it

High Performance and Enhanced Scalability for Parallel
Applications using MPI-3’s non-blocking Collectives

Surendra Varma Pericherla and Sathish Vadhiyar

Department of Computational and Data Sciences
Indian Institute of Science, Bangalore, India

surriennddraah@gmail.com,vss@cds.iisc.ac.in

Abstract
Collective communications occupy 20-90% of total execution times in many MPI applications. In this
paper, we propose strategies for automatically identifying the most time-consuming collective opera-
tions that also act as scalability bottlenecks. We then explore the use of MPI-3’s non-blocking collec-
tives for these communications. We also rearrange the codes to adequately overlap the independent
computations with the non-blocking collective communications. Applying these strategies for differ-
ent graph and machine learning applications, we obtained up to 33% performance improvements for
large-scale runs on a Cray supercomputer.

Keywords: MPI Collectives, non-blocking collectives, communication-computation overlap

1 Introduction

Collective communications consume significant percentage of execution times in many applications
also influence the overall scalability trend of the applications. In this paper, we explore the use of non-
blocking collective communications in improving the performance and scalability of different applica-
tions. Table 1 shows the different parallel applications considered for our study. As shown, collective
communications occupy a major percentage of time in many of these applications.

We first identify the scalability and performance bottlenecks in the applications using HPCToolkit
[12]. We use the work by Coarfa et al. [6] that uses scalability metrics in HPCToolkit for identifying
the bottlenecks. We modified the collective causing bottleneck to use MPI-3’s non-blocking collective
communication, and followed a simple approach of overlapping all non-dependent computations and
communications between the post and the complete operations. Our studies with large scale runs on
a Cray supercomputer show that applying this approach gives significant performance improvement of
upto 33% for the applications.

1

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.05.199&domain=pdf

2404	 Surendra Varma Pericherla et al. / Procedia Computer Science 108C (2017) 2403–2407Non-blocking Collectives in Graph Applications Surendra Varma and Sathish Vadhiyar

SNo. Application Most time-consuming Collective(s) % Time
consumed

1 Graph 500 [1] MPI Allreduce, MPI Isend + wait 97.38
2 Triangle counting (based on [3]) MPI Bcast 68.49
3 Traveling salesman problem [15] MPI Bsend, MPI Barrier 86.94
4 Cycle detection in graphs (based on [4]) MPI Bcast, MPI Gather 96.72
5 Degree centrality (based on [7]) MPI Allreduce, MPI Bcast 78.3
6 Diameter and radius (based on [5]) MPI Allgather, MPI Bcast 16.77
7 Quick sort [13] MPI Gather 99.64
8 K-means [10] MPI Allreduce 44.3
9 piSVM [2] MPI Bcast 85.3

Table 1: Applications and Bottleneck due to Collective Communications

2 Related Work

Non-blocking point-to-point communication calls have been widely used for overlapping computation
and communications. Bamboo [14] is a custom source-to-source translator that automatically overlaps
communication with computation by using split-phase coding. Kandalla et al. [9] proposed scalable
designs for non-blocking neighborhood collective operations based on InfiniBand’s network-offload
feature and applied in 2D BFS algorithm in CombBLAS to reduce communication overheads. Recently,
MPI-3 standards introduced non-blocking collective communication calls. The non-blocking collective
operations achieve efficient usage of CPU clock cycles by overlapping of communication and compu-
tation [8]. Our implementation performs a transformation which makes use of MPI-3 non-blocking
collective communication calls.

3 Methodology

Identifying Scalability Bottlenecks: In this work, we have used HPCToolkit to identify scalability
bottlenecks. HPCToolkit is more powerful than other tools due to its code centric and data centric capa-
bilities [11] which helps to pinpoint scalability bottlenecks with low time and space overhead. However,
HPC Toolkit does not directly help identify collective communications that act as scalability bottlenecks.
We achieve this by collecting multiple call path profiling results from the toolkit for different number of
processors.

We have used the value computed in in Equation 1, explained in [6], as a derived metric to compute
the percentage of scaling losses.

Xs(C, nq) = qC(nq)pC(Mqp(nq))/qTq (1)

where, C(n) denotes the cost incurred for a node n in a CCT (Calling Context Tree), Mqp(n) is the map-
ping between corresponding nodes nq in the CCT on q processors and np in the CCT on p processors,
and qTq is the total work performed in the experiment Rq .

By this work, experiments are performed for an application on p and q processors respectively,
p < q. Using this, we were able to find scalability bottlenecks corresponding to these two processor
profiles. However, there are cases where performing experiments on only two different number of
processors are not sufficient in order to compute all possible metrics influencing scalability. Hence, we
have have extended the work in [6] to identify all possible scalability impacting parameters for different
ranges of processor cores. We have performed our experiments on 32, 64, 128, 256, 512, 1024, 2048,
4096, 8192 cores and have considered strong scaling. We have divided these cores into small cores

2

Non-blocking Collectives in Graph Applications Surendra Varma and Sathish Vadhiyar

(sc = 32 to 256 cores) and large cores (lc = 512 to 8192 cores). Our strategy is as follows: We first
choose p and q from sc and use the above mentioned formula to find the set of scalability impacting
parameters, B. We then repeat with p from sc and r from lc to find the scalability impacting parameters
for this < p, r > pair, and union them with the set B to find all the scalability impacting parameters.

MPI-3 Non-blocking Collectives using Code Rearrangements: Similar to non-blocking point-to-
point communications, MPI-3 provides a post and completion operations for collective communications.
For example, the non-blocking version of MPI Bcast is:
MPI Ibcast(buffer, count, datatype, root, comm, request) for posting the collective, and a
MPI Wait(request, status) for completing the broadcast.

We organize program statements into five types w.r.t collective communication that results in scala-
bility bottleneck. They are as follows: 1. Pre-collective communication independent statements: These
are statements before the collective communication on which the collective is not dependent. 2. Pre-
collective communication dependent statements: These are statements before the collective communi-
cation on which the collective is dependent. 3. MPI Blocking collective communication call. 4. Post-
collective communication dependent statements: These are statements after the collective communica-
tion on which the collective is dependent. 5. Post-collective communication independent statements:
These are statements after the collective communication on which the collective is independent.

We replace the blocking collective communication with the posting of non-blocking collective call
by code rearrangements. The independent statements in 1 and 5 are considered for overlapping with the
collective communication.

4 Experiments and Results
We performed our experiments in our Institute’s Cray XC40 cluster located in and maintained by Su-
percomputer Education and Research Centre (SERC). It has three kinds of nodes. It has 1468 CPU-only
nodes with each node consisting of dual Intel Xeon E5-2680 v3 (Haswell) twelve-core processor at 2.5
GHz for a total of 35232 CPU cores. Each node has 128 GB memory with Cray Linux environment
as the OS. The nodes are connected by Cray Aries interconnect using DragonFly topology. We used
the nine applications mentioned in Table 1. In addition to measuring performance improvements due
to non-blocking collectives, we also measure the overlap of the computations with the non-blocking
communications due to our code restructuring. We find the time taken for the collective communication
from the time the non-blocking collective is posted till the time the wait completes. We denote this time
as tcomm. We also find the time for the independent computations that are overlapped with the commu-
nications, tcomp, by measuring the time from the return of the non-blocking post operation till before the
wait is called. The computation-communication overlap percentage is then calculated as tcomp/tcomm.

Graph500: Graph500 benchmark [1] includes a scalable data generator which produces edge tuples
containing the start vertex and end vertex for each edge. The first kernel constructs an undirected graph
and the second kernel performs a breadth-first search of the graph. Both kernels are timed. Graph500
uses two parameters to define the problem size, namely, SCALE and Edgefactor. The graph size is
such that the number of vertices is 2SCALE and the number of edges is Edgefactor ∗ 2SCALE . In
our experiments, we used SCALE = 20 and Edgefactor = 16 corresponding to graphs of 1 million
vertices and 16 million edges.

Using our scalability analysis, we found that MPI Allreduce is the most consuming collective, oc-
cupying 16.11-93.85% of the overall execution time. This MPI Allreduce is mainly used to test glob-
ally whether all the queues are empty for performing BFS. Non-blocking point to point communication
primitives such as MPI Isend, MPI Irecv, MPI Wait and MPI Test account for major amount
of time for larger number of cores. They occupy only 2.88-31.17% of the total time for up to 1024 cores,

3

	 Surendra Varma Pericherla et al. / Procedia Computer Science 108C (2017) 2403–2407� 2405Non-blocking Collectives in Graph Applications Surendra Varma and Sathish Vadhiyar

SNo. Application Most time-consuming Collective(s) % Time
consumed

1 Graph 500 [1] MPI Allreduce, MPI Isend + wait 97.38
2 Triangle counting (based on [3]) MPI Bcast 68.49
3 Traveling salesman problem [15] MPI Bsend, MPI Barrier 86.94
4 Cycle detection in graphs (based on [4]) MPI Bcast, MPI Gather 96.72
5 Degree centrality (based on [7]) MPI Allreduce, MPI Bcast 78.3
6 Diameter and radius (based on [5]) MPI Allgather, MPI Bcast 16.77
7 Quick sort [13] MPI Gather 99.64
8 K-means [10] MPI Allreduce 44.3
9 piSVM [2] MPI Bcast 85.3

Table 1: Applications and Bottleneck due to Collective Communications

2 Related Work

Non-blocking point-to-point communication calls have been widely used for overlapping computation
and communications. Bamboo [14] is a custom source-to-source translator that automatically overlaps
communication with computation by using split-phase coding. Kandalla et al. [9] proposed scalable
designs for non-blocking neighborhood collective operations based on InfiniBand’s network-offload
feature and applied in 2D BFS algorithm in CombBLAS to reduce communication overheads. Recently,
MPI-3 standards introduced non-blocking collective communication calls. The non-blocking collective
operations achieve efficient usage of CPU clock cycles by overlapping of communication and compu-
tation [8]. Our implementation performs a transformation which makes use of MPI-3 non-blocking
collective communication calls.

3 Methodology

Identifying Scalability Bottlenecks: In this work, we have used HPCToolkit to identify scalability
bottlenecks. HPCToolkit is more powerful than other tools due to its code centric and data centric capa-
bilities [11] which helps to pinpoint scalability bottlenecks with low time and space overhead. However,
HPC Toolkit does not directly help identify collective communications that act as scalability bottlenecks.
We achieve this by collecting multiple call path profiling results from the toolkit for different number of
processors.

We have used the value computed in in Equation 1, explained in [6], as a derived metric to compute
the percentage of scaling losses.

Xs(C, nq) = qC(nq)pC(Mqp(nq))/qTq (1)

where, C(n) denotes the cost incurred for a node n in a CCT (Calling Context Tree), Mqp(n) is the map-
ping between corresponding nodes nq in the CCT on q processors and np in the CCT on p processors,
and qTq is the total work performed in the experiment Rq .

By this work, experiments are performed for an application on p and q processors respectively,
p < q. Using this, we were able to find scalability bottlenecks corresponding to these two processor
profiles. However, there are cases where performing experiments on only two different number of
processors are not sufficient in order to compute all possible metrics influencing scalability. Hence, we
have have extended the work in [6] to identify all possible scalability impacting parameters for different
ranges of processor cores. We have performed our experiments on 32, 64, 128, 256, 512, 1024, 2048,
4096, 8192 cores and have considered strong scaling. We have divided these cores into small cores

2

Non-blocking Collectives in Graph Applications Surendra Varma and Sathish Vadhiyar

(sc = 32 to 256 cores) and large cores (lc = 512 to 8192 cores). Our strategy is as follows: We first
choose p and q from sc and use the above mentioned formula to find the set of scalability impacting
parameters, B. We then repeat with p from sc and r from lc to find the scalability impacting parameters
for this < p, r > pair, and union them with the set B to find all the scalability impacting parameters.

MPI-3 Non-blocking Collectives using Code Rearrangements: Similar to non-blocking point-to-
point communications, MPI-3 provides a post and completion operations for collective communications.
For example, the non-blocking version of MPI Bcast is:
MPI Ibcast(buffer, count, datatype, root, comm, request) for posting the collective, and a
MPI Wait(request, status) for completing the broadcast.

We organize program statements into five types w.r.t collective communication that results in scala-
bility bottleneck. They are as follows: 1. Pre-collective communication independent statements: These
are statements before the collective communication on which the collective is not dependent. 2. Pre-
collective communication dependent statements: These are statements before the collective communi-
cation on which the collective is dependent. 3. MPI Blocking collective communication call. 4. Post-
collective communication dependent statements: These are statements after the collective communica-
tion on which the collective is dependent. 5. Post-collective communication independent statements:
These are statements after the collective communication on which the collective is independent.

We replace the blocking collective communication with the posting of non-blocking collective call
by code rearrangements. The independent statements in 1 and 5 are considered for overlapping with the
collective communication.

4 Experiments and Results
We performed our experiments in our Institute’s Cray XC40 cluster located in and maintained by Su-
percomputer Education and Research Centre (SERC). It has three kinds of nodes. It has 1468 CPU-only
nodes with each node consisting of dual Intel Xeon E5-2680 v3 (Haswell) twelve-core processor at 2.5
GHz for a total of 35232 CPU cores. Each node has 128 GB memory with Cray Linux environment
as the OS. The nodes are connected by Cray Aries interconnect using DragonFly topology. We used
the nine applications mentioned in Table 1. In addition to measuring performance improvements due
to non-blocking collectives, we also measure the overlap of the computations with the non-blocking
communications due to our code restructuring. We find the time taken for the collective communication
from the time the non-blocking collective is posted till the time the wait completes. We denote this time
as tcomm. We also find the time for the independent computations that are overlapped with the commu-
nications, tcomp, by measuring the time from the return of the non-blocking post operation till before the
wait is called. The computation-communication overlap percentage is then calculated as tcomp/tcomm.

Graph500: Graph500 benchmark [1] includes a scalable data generator which produces edge tuples
containing the start vertex and end vertex for each edge. The first kernel constructs an undirected graph
and the second kernel performs a breadth-first search of the graph. Both kernels are timed. Graph500
uses two parameters to define the problem size, namely, SCALE and Edgefactor. The graph size is
such that the number of vertices is 2SCALE and the number of edges is Edgefactor ∗ 2SCALE . In
our experiments, we used SCALE = 20 and Edgefactor = 16 corresponding to graphs of 1 million
vertices and 16 million edges.

Using our scalability analysis, we found that MPI Allreduce is the most consuming collective, oc-
cupying 16.11-93.85% of the overall execution time. This MPI Allreduce is mainly used to test glob-
ally whether all the queues are empty for performing BFS. Non-blocking point to point communication
primitives such as MPI Isend, MPI Irecv, MPI Wait and MPI Test account for major amount
of time for larger number of cores. They occupy only 2.88-31.17% of the total time for up to 1024 cores,

3

2406	 Surendra Varma Pericherla et al. / Procedia Computer Science 108C (2017) 2403–2407Non-blocking Collectives in Graph Applications Surendra Varma and Sathish Vadhiyar

(a) Graph500 (b) TSP

Figure 1: Performance Improvement due to Non-Blocking Collectives

(a) Graph500 (b) TSP

Figure 2: Percentage of Communication Overlapped with Computation

but occupy 52.70-82.73% for more than 1024 cores. Interestingly, we find that MPI Allreduce or non-
blocking point-to-point communications individually does not capture the scalability trend adequately.
Our strategy for finding scalability bottlenecks identifies (MPI Allreduce+non-blocking point-to-point
communications) combination as impacting scalability.

We then applied our non-blocking collective based code rearrangement technique on
MPI Allreduce. We obtained up to 32.93% improvement as shown in Figure 1(a). In Figure 2(a),
we can observe that the average percentage overlap increases, up to 53.46%, with increasing number of
cores, resulting in increase in performance improvement with increasing number of cores.

Traveling Salesman Problem: The parallel version of TSP [15] partitions the search tree using
breadth-first search. Then each process searches its assigned subtree and reuses the deallocated tours.
Finally, the best tour structure is computed and broadcasted. The input is the number of cities, and the
cost of traveling between the cities organized as a matrix.

For our experiments, we used as input a cost matrix of size 20X20 and is randomly generated within
the code. We found using our scalability analysis that MPI Barrier is the most time consuming collec-
tive, occupying about 41.67-63.45% of the overall execution time. This barrier is used to synchronize
processes during parallel tree search. MPI Bsend occupied only 0-1.84% of the total time for up to 1024
cores, but occupies 16.59-23.52% for more than 1024 cores. Hence, our strategy for finding scalability
bottlenecks identifies (MPI Barrier+MPI Bsend) combination as impacting scalability. They ac-

4

Non-blocking Collectives in Graph Applications Surendra Varma and Sathish Vadhiyar

count for up to 86.94% of the total time. The combination also shows the same scalability trend as the
overall application, as shown in the figure.

After applying our proposed non-blocking collective based code rearrangement technique on
MPI Barrier, we obtained percentage of performance improvement up to 26.47% as depicted in Figure
1(b). The MPI Bsend is not replaced by its non-blocking collective call as there are no pre and post
independent statements for MPI Bsend. In Figure 2(b), we can observe that the average percentage
of overlap of computations with communications is high for medium and large number of cores than
the small number of cores. Hence, we obtained better performance improvement at large and medium
number of cores than at small number of cores as shown in Figure 1(b). In general, the communication-
computation overlap is 6.00-100%.

We performed similar experiments for other applications, and obtained performance improvement
of 18-33% due to our scalability analysis and use of non-blocking collectives, with 10-100% average
computation-communication overlap. In the future, we plan to explore different ways of reducing the
times due to collectives, including developing hierarchical collectives for the Cray’s Dragonfly network
topology.

References
[1] Graph500. Available at http://www.graph500.org/.
[2] piSVM. Available at http://pisvm.sourceforge.net.
[3] Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles. In European Sympo-

sium on Algorithms, pages 354–364, 1994.
[4] Noga Alon and Uri Zwick. Finding simple paths and cycles in graphs. 2002.
[5] Ishwar Baidari, Ravi Roogi, and Shridevi Shinde. Algorithmic approach to eccentricities, diameters and radii

of graphs using dfs. International Journal of Computer Applications, 54(18), 2012.
[6] Cristian Coarfa, John Mellor-Crummey, Nathan Froyd, and Yuri Dotsenko. Scalability analysis of spmd

codes using expectations. In Proceedings of the 21st annual international conference on Supercomputing,
pages 13–22, 2007.

[7] Linton C Freeman. Centrality in social networks conceptual clarification. Social networks, 1(3):215–239,
1978.

[8] Torsten Hoefler, Jeffrey M Squyres, Wolfgang Rehm, and Andrew Lumsdaine. A case for non-blocking
collective operations. In International Symposium on Parallel and Distributed Processing and Applications,
pages 155–164, 2006.

[9] K Kandalla, Aydin Buluç, Hari Subramoni, Karen Tomko, Jérôme Vienne, Leonid Oliker, and Dhabaleswar K
Panda. Can network-offload based non-blocking neighborhood mpi collectives improve communication over-
heads of irregular graph algorithms? In Cluster Computing Workshops (CLUSTER WORKSHOPS), 2012
IEEE International Conference on, pages 222–230. IEEE, 2012.

[10] Wei keng Liao. Parallel K-Means Data Clustering. Available at http://www.ece.northwestern.
edu/˜wkliao/Kmeans/index.html.

[11] Xu Liu and John Mellor-Crummey. A data-centric profiler for parallel programs. In 2013 SC-International
Conference for High Performance Computing, Networking, Storage and Analysis (SC), pages 1–12, 2013.

[12] John Mellor-Crummey. HPC Toolkit. Available at http://hpctoolkit.org/.
[13] Monismith. Parallel Quick sort Implementation. Available at http://monismith.info/cs599/

examples.html.
[14] Tan Nguyen, Pietro Cicotti, Eric Bylaska, Dan Quinlan, and Scott B Baden. Bamboo: translating mpi ap-

plications to a latency-tolerant, data-driven form. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, page 39, 2012.

[15] Peter S Pacheco. Parallel programming with MPI. 1997.

5

	 Surendra Varma Pericherla et al. / Procedia Computer Science 108C (2017) 2403–2407� 2407Non-blocking Collectives in Graph Applications Surendra Varma and Sathish Vadhiyar

(a) Graph500 (b) TSP

Figure 1: Performance Improvement due to Non-Blocking Collectives

(a) Graph500 (b) TSP

Figure 2: Percentage of Communication Overlapped with Computation

but occupy 52.70-82.73% for more than 1024 cores. Interestingly, we find that MPI Allreduce or non-
blocking point-to-point communications individually does not capture the scalability trend adequately.
Our strategy for finding scalability bottlenecks identifies (MPI Allreduce+non-blocking point-to-point
communications) combination as impacting scalability.

We then applied our non-blocking collective based code rearrangement technique on
MPI Allreduce. We obtained up to 32.93% improvement as shown in Figure 1(a). In Figure 2(a),
we can observe that the average percentage overlap increases, up to 53.46%, with increasing number of
cores, resulting in increase in performance improvement with increasing number of cores.

Traveling Salesman Problem: The parallel version of TSP [15] partitions the search tree using
breadth-first search. Then each process searches its assigned subtree and reuses the deallocated tours.
Finally, the best tour structure is computed and broadcasted. The input is the number of cities, and the
cost of traveling between the cities organized as a matrix.

For our experiments, we used as input a cost matrix of size 20X20 and is randomly generated within
the code. We found using our scalability analysis that MPI Barrier is the most time consuming collec-
tive, occupying about 41.67-63.45% of the overall execution time. This barrier is used to synchronize
processes during parallel tree search. MPI Bsend occupied only 0-1.84% of the total time for up to 1024
cores, but occupies 16.59-23.52% for more than 1024 cores. Hence, our strategy for finding scalability
bottlenecks identifies (MPI Barrier+MPI Bsend) combination as impacting scalability. They ac-

4

Non-blocking Collectives in Graph Applications Surendra Varma and Sathish Vadhiyar

count for up to 86.94% of the total time. The combination also shows the same scalability trend as the
overall application, as shown in the figure.

After applying our proposed non-blocking collective based code rearrangement technique on
MPI Barrier, we obtained percentage of performance improvement up to 26.47% as depicted in Figure
1(b). The MPI Bsend is not replaced by its non-blocking collective call as there are no pre and post
independent statements for MPI Bsend. In Figure 2(b), we can observe that the average percentage
of overlap of computations with communications is high for medium and large number of cores than
the small number of cores. Hence, we obtained better performance improvement at large and medium
number of cores than at small number of cores as shown in Figure 1(b). In general, the communication-
computation overlap is 6.00-100%.

We performed similar experiments for other applications, and obtained performance improvement
of 18-33% due to our scalability analysis and use of non-blocking collectives, with 10-100% average
computation-communication overlap. In the future, we plan to explore different ways of reducing the
times due to collectives, including developing hierarchical collectives for the Cray’s Dragonfly network
topology.

References
[1] Graph500. Available at http://www.graph500.org/.
[2] piSVM. Available at http://pisvm.sourceforge.net.
[3] Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles. In European Sympo-

sium on Algorithms, pages 354–364, 1994.
[4] Noga Alon and Uri Zwick. Finding simple paths and cycles in graphs. 2002.
[5] Ishwar Baidari, Ravi Roogi, and Shridevi Shinde. Algorithmic approach to eccentricities, diameters and radii

of graphs using dfs. International Journal of Computer Applications, 54(18), 2012.
[6] Cristian Coarfa, John Mellor-Crummey, Nathan Froyd, and Yuri Dotsenko. Scalability analysis of spmd

codes using expectations. In Proceedings of the 21st annual international conference on Supercomputing,
pages 13–22, 2007.

[7] Linton C Freeman. Centrality in social networks conceptual clarification. Social networks, 1(3):215–239,
1978.

[8] Torsten Hoefler, Jeffrey M Squyres, Wolfgang Rehm, and Andrew Lumsdaine. A case for non-blocking
collective operations. In International Symposium on Parallel and Distributed Processing and Applications,
pages 155–164, 2006.

[9] K Kandalla, Aydin Buluç, Hari Subramoni, Karen Tomko, Jérôme Vienne, Leonid Oliker, and Dhabaleswar K
Panda. Can network-offload based non-blocking neighborhood mpi collectives improve communication over-
heads of irregular graph algorithms? In Cluster Computing Workshops (CLUSTER WORKSHOPS), 2012
IEEE International Conference on, pages 222–230. IEEE, 2012.

[10] Wei keng Liao. Parallel K-Means Data Clustering. Available at http://www.ece.northwestern.
edu/˜wkliao/Kmeans/index.html.

[11] Xu Liu and John Mellor-Crummey. A data-centric profiler for parallel programs. In 2013 SC-International
Conference for High Performance Computing, Networking, Storage and Analysis (SC), pages 1–12, 2013.

[12] John Mellor-Crummey. HPC Toolkit. Available at http://hpctoolkit.org/.
[13] Monismith. Parallel Quick sort Implementation. Available at http://monismith.info/cs599/

examples.html.
[14] Tan Nguyen, Pietro Cicotti, Eric Bylaska, Dan Quinlan, and Scott B Baden. Bamboo: translating mpi ap-

plications to a latency-tolerant, data-driven form. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, page 39, 2012.

[15] Peter S Pacheco. Parallel programming with MPI. 1997.

5

