Towards an Accurate Model for Collective
Communications*

Sathish S. Vadhiyar, Graham E. Fagg, and Jack J. Dongarra

Computer Science Department
University of Tennessee, Knoxville
{vss, fagg, dongarra}@cs.utk.edu

Abstract. The performance of the MPI’s collective communications is
critical in most MPI-based applications. A general algorithm for a given
collective communication operation may not give good performance on
all systems due to the differences in architectures, network parameters
and the storage capacity of the underlying MPI implementation. Hence,
collective communications have to be tuned for the system on which they
will be executed. In order to determine the optimum parameters of col-
lective communications on a given system in a time-efficient manner, the
collective communications need to be modeled efficiently. In this paper,
we discuss various techniques for modeling collective communications .

1 Introduction

This project developed out of an attempt to build efficient collective communi-
cations for a new fault tolerant MPI implementation known as HARNESS [10]
FT-MPI [11]. At least 2 different efforts were made in the past to improve the
performance of the MPI collective communications for a given system. They
either dealt with the collective communications for a specific system or tried
to tune the collective communications for a given system based on mathemat-
ical models or both. Lars Paul Huse’s paper on collective communications [2]
studied and compared the performance of different collective algorithms on SCI
based clusters. MAGPIE by Thilo Kielman et. al. [1] optimizes collective com-
munications for clustered wide area systems. Though MAGPIE tries to find the
optimum buffer size and optimum tree shape for a given collective communi-
cation on a given system, these optimum parameters are determined using a
performance model called the parameterized LogP model. The MAGPIE model
considered only a few network parameters for modeling collective communica-
tions. For example, it did not take into account the number of previously posted
non-blocking sends, Isends, in determining the network parameters for a given
message size.

In our previous work [12], [13], we built efficient algorithms for different col-
lective communications and selected the best collective algorithm and segment

* This work was supported by the US Department of Energy through contract
numberDE-FG02-99ER25378.

size for a given {collective communication, number of processors, message size}
tuple by experimenting with all the algorithms and all possible values for mes-
sage sizes. The tuned collective communication operations were compared with
various native vendor MPI implementations. The use of the tuned collective
communications resulted in about 30%-650% improvement in performance over
the native MPI implementations.

Although efficient, conducting the actual set of experiments to determine the
optimum parameters of collective communications for a given system, was found
to be time-consuming. As a first step, the best buffer size for a given algorithm
for a given number of processors was determined by evaluating the performance
of the algorithm for different buffer sizes. In the second phase, the best algorithm
for a given message size was chosen by repeating the first phase with a known
set of algorithms and choosing the algorithm that gave the best result. In the
third phase, the first and second phase were repeated for different number of
processors. The large number of buffer sizes and the large number of processors
significantly increased the time for conducting the above experiments.

In order to reduce the time for running the actual set of experiments, the
collective communications have to be modeled effectively. In this paper, we dis-
cuss the various techniques for modeling the collective communications. The
reduction of time for actual experiments are achieved at 3 levels. In the first
level, limited number of {collective communications, number of processors, mes-
sage size} tuple combinations is explored. In the second level, the number of
{algorithm, segment size} combinations for a given {collective communication,
number of processors, message size} tuple is reduced. In the third level, the
time needed for running an experiment for a single {collective communications,
number of processors, message size, algorithm, segment size} tuple is reduced by
modeling the actual experiment.

In Sect.2, we give a brief overview of our previous work regarding the au-
tomatic tuning of the collective communications. We illustrate the automatic
tuning with the broadcast communication. The results in Sect.2 reiterate the
usefulness of the automatic tuning approach. These results were obtained by
conducting the actual experiments with all possible input parameters. In Sect.3,
we describe three techniques needed for reducing the large number of actual ex-
periments. In Sect.4, we present some conclusions. Finally in Sect.5, we outline
the future direction of the research.

2 Automatically Tuned Collective Communications

A crucial step in our effort was to develop a set of competent algorithms. Table.
1 lists the various algorithms used for different collective communications.

For algorithms that involve more than one collective communication (e.g.,
reduce followed by broadcast in allreduce), the optimized versions of the collec-
tive communications were used. The segmentation of messages was implemented
for sequential, chain, binary and binomial algorithms for all the collective com-
munication operations.

Table 1. Collective communication algorithms

|| Collective Communications ‘ Algorithms ||

Broadcast Sequential, Chain, Binary and Binomial
Scatter Sequential, Chain and Binary
Gather Sequential, Chain and Binary
Reduce Gather followed by operation, Chain, Binary, Binomial
and Rabenseifner
Allreduce Reduce followed by broadcast, Allgather followed by
operation, Chain, Binary, Binomial and Rabenseifner
Allgather Gather followed by broadcast
Allgather Circular
Barrier Extended ring, Distributed binomial and tournament

2.1 Results For Broadcast

The experiments consist of many phases.

Phase 1: Determining the best segment size for a given {collective operation,
number of processors, message size, algorithm} tuple. The segment sizes are
powers of 2, multiples of the basic data type and less than the message size.

Phase 2: Determining the best algorithm for a given {collective operation,
number of processors} for each message size. Message sizes from the size of the
basic data type to 1MB were evaluated.

Phase 3: Repeating phase 1 and phase 2 for different {number of processors,
collective operation} combinations. The number of processors will be power of
2 and less than the available number of processors.

Our current effort is in reducing the search space involved in each of the
above phases and still be able to get valid conclusions.

The experiments were conducted on four different classes of system, including
clusters of Sparc and Pentium workstations and two different types of PowerPC
based IBM SP2 nodes.

Fig. 1 shows the results for a tuned MPI broadcast on an IBM SP2 using
“thin” nodes verses the IBM optimised vendor MPI implementation. Similar
encouraging results were obtained for other systems as detailed in [12] & [13].

3 Reducing the Number of Experiments

In the experimental method described in the previous sections a large number
of individual experiments have to be conducted. Even though this only needs to
occur once, the time taken for all these experiments was considerable and was
approximately equal to 50 hours.

The experiments conducted consist of two stages, the primary set of steps is
dependent on message size, number of processors and MPI collective operation,
i.e. the tuple {message size, processors, operation}. For example 64KBytes of
data, 8 process broadcast. The secondary set of tests is an optimization at these

Fig. 1. Broadcast Results (IBM thin nodes)

thin nodes, 8 pi

65536

T T T T T
automatically tuned broadcast e
1BI

32768 - M MPI broadcast

16384
8192

4096

Time [us]

2048

1024 -

512 -

256

128

.
4 16 64 256 1K 4K 16K 64K 256K im
Message Size [bytes]

parameters for the correct method (topology-algorithm pair) and segmentation
size, i.e. the tuple {method, segment size}.

Reducing the time needed for running the actual experiments can be achieved
at three different levels:

1. reducing the primary tests
2. reducing the secondary tests and

3. reducing the time for a single experiment, i.e. for a single {message size,
processors, operation, method, segment size} instance.

3.1 Reducing the Primary Tests

Currently the primary tests are conducted on a fixed set of parameters, in effect
making a discrete 3D grid of points. For example, varying the message size in
powers of two from 8 bytes to 1 MByte, processors from 2 to 32 and the MPI
operations from Broadcast to All2All etc.

This produces an extensive set of results from which accurate decisions will be
made at run-time. This however makes the initial experiments time consuming
and also leads to large lookup tables that have to be referenced at run time,
although simple caching techniques can alleviate this particular problem.

Currently we are examining three techniques to reduce this primary set of
experimental points.

1. Reduced number of grid points with interpolation. For example reducing the
message size tests from {8, 16, 32, 64.. IMB} to {8, 1024, 8192.. IMB}.

2. Using instrumented application runs to build a table of only those collective
operations that are required, i.e. not tuning operations that will never be
called, or are called infrequently.

3. Using combinatorial optimizers with a reduced set of experiments, so that
complex non-linear relationships between points can be correctly predicted.

3.2 Reducing the Secondary Tests

The secondary set of tests for each {message size, processors, operation} are
where we have to optimize the time taken, by changing the method used (al-
gorithm /topology) and the segmentation size (used to increase the bi-sectional
bandwidth of links), i.e. {method, segment size}. Fig. 2 shows the performance
of four different methods for solving an 8 processor MPI Scatter of 128 KBytes
of data. Several important points can be observed. Firstly, all the methods have
the same basic shape that follows the form of an exponential slope followed by
a plateau. Secondly, the results have multiple local optima, and that the final
result (segment size equal to message size) is not usually the optimal but is close
in magnitude to the optimal.

Fig. 2. Segment size verse time for various communication methods

| !
sequential'——

binary —s—

100 - binary2 —e— |

10 -

Time per single iteration[seconds]

4 16 64 256 1024 096 16384 65536 262144
Segment Size [bytes]

The time taken per iteration for each method is not constant, thus many of
the commonly used optimization techniques cannot be used without modifica-
tion. For example in Fig. 2, a test near the largest segment size is in the order
of hundreds of microseconds whereas a single test near the smallest segment size
can be in the order of a 100 seconds, or two to three orders of magnitude larger.

For this reason we have developed two methods that reduce the search space
to tests close to the optimal values, and a third that runs a full set of segment-size
tests on only a partial set of nodes.

The first two methods use a number of different hill descent algorithms known
as the Modified Gradient Descent MGD and the Scanning Modified Gradient De-
scent (SMGD) that are explained in [13]. They primarily reduce the search times
by searching the least expensive (in time) search spaces first while performing
various look ahead algorithms to avoid non optimal minima. Using these two
methods the time to find the optimal segment size for the scatter show in Fig.
2 is reduced from 12613 seconds to just 39 seconds or a speed up of 318.

The third method used to reduce tests is based on the relationship between
some performance metrics of a collective that utilizes a tree topology and those
of a pipeline that is based only on the longest edge of the tree as shown in
Fig. 3. In particular the authors found that the pipeline can be used to find the

optimal segmentation size at greatly reduced time as only a few nodes need to be
tested as opposed to the whole tree structure. For the 128 KB 8 process scatter
discussed above, an optimal segment size was found in around 1.6 seconds per
class of communication method (such as tree, sequential or ring). i.e. 6.4 seconds
verses 39 for the gradient descent methods on the complete topologies or 12613
for the complete exhaustive search.

Fig. 3. The Pipeline Model

COMPLETE TREE PARTIAL TREE ASA PIPELINE

3.3 Reducing the single-experiment time

Running the actual experiments to determine the optimized parameters for col-
lective communications is time-consuming due to the overheads associated with
the startup of different processes, setting up of the actual data buffers, communi-
cation of messages between different processes etc.. We are building experimen-
tal models that simulate the collective algorithms but incur less time to execute
than the actual experiments. As part of this approach, we discuss the modeling
experiments for broadcast in the following sub sections.

General Overview All the broadcast algorithms are based on a common
methodology. The root in the broadcast tree continuously does non-blocking
sends of MPI, MPI_Isends, to send individual message buffers to its children.
The other nodes post all their non-blocking receives of MPI, MPI Irecvs, ini-
tially. The nodes between the root node and the leaf nodes in the broadcast
tree, send a segment to their children as soon as the segment is received.

After determining the times for individual Isends and the times for message
receptions, a broadcast schedule as illustrated by Fig. 4 can be used to predict
the total completion time for the broadcast.

A broadcast schedule such as the one shown in Fig. 4 can be used to accu-
rately model the overlap in communications, a feature that was lacking in the
parameterized LogP model [1].

Measurement of PointPoint Communications As observed in the previ-
ous section, accurate measurements of the time for Isends and the time for the
reception of the messages are necessary for efficient modeling of broadcast op-
erations. Previous communications models [3], [1], do not efficiently take into

Fig. 4. Illustration of Broadcast Schedule

proc. 0 | Isend to proc. 1 Isend to proc. 2‘

proc. 1 TJ ‘ \

proc. 2 ‘

T - Transmission time

Tc - Time for message copy to user buffer

account the different types of Isends. Also, these models overlook the fact that
the performance of an Isend can vary depending on the number of Isends posted
previously. Thus the parameters, the send overhead, os(m), the receive overhead,
or(m), the gap value, g(m), for a given message size m, that were discussed in
the parameterized LogP model can vary from a particular point in execution to
another depending on the number of pending Isends and the type of the Isend.

MPI implementations employ different types of Isends depending on the size
of the message transmitted. The popular modes of Isends are blocking, immediate
and randezevous and are illustrated by Fig. 5

Fig. 5. Different modes for Isends
os(m)

Sender os(m)

os(m)

_—

or(m) :

P\ g(m) }

Receiver

Isend Completion
-

1send Completion _ {send Completion _
_————

BLOCKING IMMEDIATE RANDEZEVOUS

The parameters associated with the different modes of Isends can vary de-
pending the number of Isends posted earlier. Hence, for example, in the case of
immediate mode, the Isends can lead to overflow of buffer space in the receive
end, which will eventually result in larger g(m) and os(m).

A simple model In this section, we describe a simple model that we have built
to calculate the performance of collective communications. At this point, the
model is not expected to give good predictions of the performance. A study of
the results of this primitive model is useful in understanding the complexities

of Isends and developing some insights on building a better model for collective
communications.

The model uses the data for sender overhead, os(m), receiver overhead, or(m)
and gap value, g(m) for the different types of Isends show in Fig. 5.But the model
does not use the value of g(m) effectively and it assumes that multiple messages
to a node can be sent continuously. The model also does not take into account
the number of Isends previously posted.

The send overhead, os(m) is determined for different message sizes by ob-
serving the time taken for the corresponding Isends. The time for Isends, os(m),
increases as the message size is increased upto a certain message size beyond
which, os(m), falls to a small value. At this message size, the Isend switches
from the blocking to immediate mode. or(m) for blocking mode is determined
by allowing the receiver to post a blocking receive after making sure the message
has been transmitted over the network to the receiver end and determining the
time taken for the blocking receive. In the immediate mode, the sender has to
wait for g(m) before transmitting the next message. This time is determined by
posting an Isend and determining the time taken for the subsequent Wait. In
the immediate mode, or(m)+g(m), is calculated by determining the time for a
ping-pong transmission between a sender and a receiver and subtracting 2*os(m)
from the ping-pong time. For each of the above experiments, 10 different runs
were made and averages were calculated. The experiments were repeated at dif-
ferent points in time on shared machines and the standard deviation was found
to be as low as 40.

With these simplifying assumptions, the model builds a broadcast schedule
for flat, chain, binary and binomial broadcast trees for 2, 4, 8 and 16 processors.
Fig. 6 compares the actual and predicted broadcast times for a flat tree broadcast
sending a 128K byte message using 8 processors on a Solaris workstation.

Fig. 6. Flat Tree broadcast

broadcast model (Solaris workstation, 128K byte message, 8 procs)

"measured tine ——
predicted time broadcast =t

Time [secs.]
-

0.25

0.0625 -

0.015625 L L L L L L L
4 16 64 256 1024 4096 16384 65536 262144

Segment Size [bytes]

While the model gives good predictions for smaller segment sizes or larger
number of segments, it underestimates for smaller number of segments. Also, the
performance is poor if the message between the nodes is transmitted as only one

segment. For a segment size of 128K, the Isend switches to immediate mode.
Since the system has to buffer the messages for immediate Isends, the buffer
capacity acts as a bottleneck as the number of posted Isends increase. Since the
model does not take into account the number of Isends posted, it gives poor
performance for 128K byte messages.

Fig. 7 compares the actual and predicted broadcast times for a chain tree
broadcast sending a 128K byte message using 8 processors on the same system.

Fig. 7. Chain tree broadcast

broadcast model (Solaris workstation, 128K byte message, 8 procs)

256 T T T
measured time —+—
predicted time broadcast e

64 -
16 -

s

Time [secs.]

0.25 -

0.0625 -

0.015625 L L L L L .
4 16 64 256 1024 4096 16384 65536 262144

Segment Size [bytes]

Since the model assumes that messages to a single node can be sent contin-
uously, and since in a chain broadcast tree, the segments are sent continuously
to a single node, the model gives much smaller times than the actual times for
smaller segment size or for large number of segments.

From the above experiments, we recognize that good models for predicting
collective communications have to take into account all the possible scenarios
for sends and receives in order to build a good broadcast schedule. While our
simplified model did not give good predictions for the results shown, it helped
to identify some of the important factors that have to be taken into account for
efficient modeling.

4 Conclusion

Modeling the collective communications to determine the optimum parameters
of the collective communications is a challenging task, involving complex scenar-
ios. A single simplified model will not be able to take into account the complexi-
ties associated with the communications. A multi-dimensional approach towards
modeling, where various tools for modeling are provided to the user to accurately
model the collective communications on his system, is necessary. Our techniques
regarding the reduction of number of experiments are steps towards constructing
the tools for modeling. These techniques have given promising results and have
helped identify the inherent complexities associated with the collective commu-
nications.

5

Future Work

While our initial results are promising and provide us some valuable insights
regarding collective communications, much work still has to be done to provide
comprehensive set of techniques for modeling collective communications. Select-
ing the right set of techniques for modeling based on the system dynamics is an
interesting task and will be explored further.

References

10.

11.

12.

13.

. Thilo Kielmann, Henri E. Bal and Segei Gorlatch. Bandwidth-efficient Collective

Communication for Clustered Wide Area Systems./PDPS 2000, Cancun , Mexico.
(May 1-5, 2000)

Lars Paul Huse. Collective Communication on Dedicated Clusters of Worksta-
tions. Proceedings of the 6th European PVM/MPI Users’ Group Meeting, Barcelona,
Spain, Spetmeber 1999. p(469-476).

. David Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos , R. Sub-

ramonian and T. von Eicken. LogP: Towards a Realistic Model of Parallel Com-
putation. In Proc. Symposium on Principles and Practice of Parallel Programming
(PpoPP), pages 1-12, San Diego, CA (May 1993).

R. Rabenseifner. A new optimized MPI reduce al-
gorithm. http://www.hlrs.de/structure /support/ paral-
lel_computing/models/mpi/myreduce.html (1997).

Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker and Jack Dongarra.
MPI- The Complete Reference. Volume 1, The MPI Core, second edition (1998).
M. Frigo. FFTW: An Adaptive Software Architecture for the FFT. Proceedings of
the ICASSP Conference, page 1381, Vol. 3. (1998).

R. Clint Whaley and Jack Dongarra. Automatically Tuned Linear Al-
gebra Software. SC98: High Performance Networking and Computing.
http://www.cs.utk.edu/ rwhaley/ATL/INDEX.HTM. (1998)

L. Prylli and B. Tourancheau. "BIP: a new protocol designed for high performance
networking on myrinet”. In the PC-NOW workshop, IPPS/SPDP 1998, Orlando,
USA, 1998.

Debra Hensgen, Raphael Finkel and Udi Manber. Two algorithms for Barrier Syn-
chroniztion. International Journal of Parallel Programming, Vol. 17, No. 1, 1988.
M. Beck, J. Dongarra, G. Fagg, A. Geist, P. Gray, J.Kohl, M. Migliardi, K. Moore,
T. Moore, P. Papadopoulous, S. Scott, V. Sunderam,” HARNESS: a next generation
distributed virtual machine””, Journal of Future Generation Computer Systems,
(15), Elsevier Science B.V., 1999.

Graham E. Fagg and Jack J. Dongarra, “FT-MPI: Fault Tolerant MPI, Support-
ing Dynamic Applications in a Dynamic World”, Proc. of FuroPVM-MPI 2000,
Lecture notes in Computer Science, Vol. 1908, pp346-353, Springer Verlag, 2000.
Graham E. Fagg, Sathish S. Vadhiyar, Jack J. Dongarra, “ACCT: Automatic Col-
lective Communications Tuning”, Proc of FuroPVM-MPI 2000, Lecture Notes in
Computer Science, Vol. 1908, pp354-361, Springer Verlag, 2000.

Sathish S. Vadhiyar, Graham E. Fagg, Jack J. Dongarra, “Automatically Tuned
Collective Communications”, Proceedings of SuperComputing2000, Dallas, Texas,
Nov. 2000.

