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The analytical solutions for the coupled diffusion equations that are encountered in diffuse fluorescence spectro-
scopy/imaging for regular geometries were compared with the well-established numerical models, which are
based on the finite element method. Comparison among the analytical solutions obtained using zero boundary
conditions and extrapolated boundary conditions (EBCs) was also performed. The results reveal that the analytical
solutions are in close agreement with the numerical solutions, and solutions obtained using EBCs are more ac-
curate in obtaining the mean time of flight data compared to their counterpart. The analytical solutions were also
shown to be capable of providing bulk optical properties through a numerical experiment using a realistic breast
model. © 2013 Optical Society of America
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1. INTRODUCTION
In first part of this work [1], we have developed analytical so-
lutions for the coupled diffusion equations of diffuse fluores-
cence spectroscopy/imaging of biological tissues in regular
geometries using Green’s function approach. These regular
geometries include infinite, semi-infinite space, infinite slab,
circle, finite/infinite cylinder, and sphere. Both zero and extra-
polated boundary conditions (EBCs) were deployed to arrive
at the analytical solutions for various regular geometries. The
expressions for the derived quantities, such as integrated in-
tensity and mean time of flight (MTOF), from these analytical
solutions were also provided in the companion paper [1].

In this part, validation of these analytical expressions for
regular geometries was performed through comparison with
the solutions obtained using established numerical models [2].
Moreover, a comparison of solutions using zero boundary
conditions (ZBCs) and EBCs was also included to know
the effect of boundary conditions on the accuracy of the de-
rived solutions. Note that in earlier works [3,4], this validation
has been achieved through Monte Carlo Simulation, which is
equivalent of solving Radiative Transfer Equation. As the ana-
lytical solutions are derived for a diffusion equation, the
equivalent of solving it through established finite element so-
lution is taken up in this work. The numerical solutions were
obtained using NIRFAST Package [2], which is an established
numerical model that uses finite element method (FEM) for
diffuse fluorescence spectroscopy/imaging. The FEM has
the ability to handle irregular geometries and provide more
stable solutions compared to other numerical models [2].

As earlier part [1] derived generic closed form solution for
any given regular geometry, the derivation of the solution for
the regular geometry that is not discussed in part I [1] can be
easily written. One such example involving cube geometry is
extensively discussed here. The other aspect that has been

considered in this part of the work is the usage of analytical
expressions in terms of providing bulk fluorescence proper-
ties, such as lifetime, for the measurements made on realistic
tissues, breast being an example.

Initially we consider solutions obtained using ZBCs and
compare them with numerical solutions that are obtained
in the frequency domain for both reflectance and transmit-
tance source/detector arrangement. Later we compare the so-
lutions obtained using ZBCs and EBCs with the numerical
results compiled for time-domain case to prove that EBC
solutions are more accurate compared to their counterpart.
Finally, a real breast mesh that had typical three regions of
breast, namely adipose, fibroglandular, and tumor, has been
utilized to numerically generate the data with different life-
time values for each region. Using this data, the bulk lifetime
values have been estimated using the analytical solutions to
show the utility in real-time.

2. COMPARISON OF ANALYTICAL AND
NUMERICAL SOLUTIONS FOR THE
FREQUENCY DOMAIN CASE
For simplicity, initially analytical solutions using ZBC in the
frequency domain case was compared with the numerical so-
lutions obtained using FEM. The geometry of the infinite slab
was approximated to a finite slab with length (l) and breadth
(b) being larger compared to thickness (t). The exact specifi-
cations of the finite element meshes considered are provided
in Table 1, for the relevant geometries shown in Fig. 1. The
optical properties that are used in both analytical and numer-
ical values are given in Table 2. The numerical solutions were
computed with utilization of Robin-type (Type-III) boundary
conditions, which accommodate the refractive index mis-
match at the tissue boundary [2]. The comparison of the mag-
nitude and phase plots of the photon densities for the
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geometries discussed in part I [1] subjected to ZBC are given
in Fig. 2, with operating frequency fixed at 100 MHz. A quan-
titative comparison of solutions via plot of the error percen-
tage (taking numerical solution as reference) is given in
Figs. 3(a) and 3(b) for logarithm of the amplitude and phase,
respectively. The solutions (Fig. 2) show that both numerical
and analytical models with in-close agreement (average error
being around 10%).

The magnitude and phase plots of the photon densities
when subjected to EBC for infinite slab geometry are shown
in Figs. 3(c) and 3(d). A close comparison of results between
ZBC [Figs. 2(a) and 2(b)] and EBC [Figs. 3(c) and 3(d)] show
that the difference in logarithm of amplitude data is less than

1% and phase has a difference of less than 4 deg (reflectance
case), asserting that usage of EBC for the frequency-domain
case may not yield more accurate results when compared to
the ones obtained using ZBC. In addition, the computing of
solutions that use EBC involves more computational complex-
ity as the terms involved in infinite summations in the expres-
sions of the Green’s function require significantly more terms
to be included for the Bessel functions to settle.

3. COMPARISON OF ANALYTICAL AND
NUMERICAL SOLUTIONS FOR THE TIME
DOMAIN CASE
As the amplitude data is equivalent of the time domain inte-
grated intensity, the same trend of matching values of EBC
and ZBC with numerical solutions was observed as earlier.
Thus, this comparison was not taken up in this case. The
MTOF was considered as the data type for comparison and
validation of analytical models. Tables 8–10 of part I [1] gives
the analytical solutions. The temporal point spread function
(TPSF) of a given mesh geometry can be time resolved over
a given time interval in NIRFAST. This capability helps us to
determine the MTOF for a source detector pair in the given
distribution. The peak value of TPSF measured over the time
duration gives the MTOF. The MTOF of analytical and the
FEM solutions have been compared using the same values

Table 1. Specification of the Finite Element Meshes that were Used in this Worka

Geometry Dimensions (mm) Nodal Distance (mm) No. of Nodes No. of Elements Source Position

Infinite slab l � 130, b � 130, t � 30 ∼2 24,505 114,335 (0, 0, 15.0)
Circle r � 40 ∼0.4 31,780 62,929 (40.0, 0)
Cylinder r � 40, h � 60 ∼3 12,695 63,810 (41.2, −8.2, 0)
Sphere r � 40 ∼2 20,817 109,335 (41.2, −8.2, 0)
Cube a � 40 ∼2 39,968 204,993 (0, 0, −49.0)
Breast — ∼4 20,800 109,115 (18.2, −49.1, 37.5)
aThe appropriate geometries were given in Fig. 1 (slab, circle, sphere, and cylinder) and Fig. 5 (cube and breast), later in the paper.

Fig. 1. (Color online) Geometries indicating the source detectors arrangement used in the numerical models. (a) Slab (transmittance), (b) slab
(reflectance), (c) circle, (d) sphere, and (e) cylinder.

Table 2. Optical Property Values for

all Cases that were Discussed in this

Work

Parameter Values

μax 0.0090 mm−1

μam 0.0060 mm−1

μsx 1.3140 mm−1

μsm 1.2730 mm−1

τ 0.1 ns
ημafl 5.0 × 10−10
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as given in Table 2 are given in Fig. 4. The analytical solutions
obtained using ZBC are given in Figs. 4(a) and 4(c); corre-
sponding EBC solutions are in Figs. 4(b) and 4(d). It can
be easily observed that the analytical solutions that were ob-
tained using EBC are in close agreement with FEM solution,
especially near the source (source-detector distance being
less than 40 mm) for circle and cylinder. Note that there is
lot of ringing for the EBC at far away source/detector loca-
tions for the circle case, as the modified Bessel’s functions
require infinite summation (here used only 130 terms) to have
more accuracy, which is not possible in computation. The dis-
crepancy near the source for the infinite slab cases, especially
in the reflectance case, is due to source term modeling, where
the diffusion equation is not valid. Specifically, the diffusion

equation assumes that the source is isotropic, which is only
true when the detector is far away from the source (atleast
10 μ0s with reduced scattering coefficient represented by
μ0s) [5].

For all cases considered here, the computation was per-
formed on a workstation with an Intel Xeon 5410 Dual
Quad-core processor 2.33 GHz having 64 GB memory. The
comparison of computation time among the analytical and
numerical models for the geometries considered are given
in Table 3. This table also shows that analytical solutions
are highly efficient compared to the numerical solutions.
The computational complexity of solutions obtained using
EBC is higher compared to its counterpart solutions (obtained
using ZBC).
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Fig. 2. Comparison of numerical (FEM) and analytical solutions subjected to ZBC for the geometries shown in Fig. 1. (a) and (c) Give the loga-
rithm of amplitude. (b) and (d) Shows comparison of computed phase as a function of source/detector distance.
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Fig. 3. (a) Shows % difference (or error) between numerical and analytical solutions given in Figs. 2(a) and 2(c) for the case of amplitude data.
(b) Same effort as (a) except for phase data. (c) and (d) Same effort as Figs. 2(a) and 2(b) except the boundary condition is changed to EBC for the
case of infinite slab [Figs. 1(a) and 1(b)].
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A. Note on Analytical Solutions Computation
The infinite sum in the analytical solution as given in Fig. 3 for
the frequency domain in infinite slab case (Table 3 of [1]) has
been truncated to the first fifty terms, as the accuracy of the
solution does not improves much upon including further
terms. The calculation of amplitude and MTOF involving
infinite summation of term containing ratio of Bessel
functions in Circular, Cylindrical, and Spherical geometries
as given in Tables 9–10 of [1] have been continued until the
values are nondegenerate, to subside the oscillatory nature
of the Bessel functions when subjected to ZBC. However,
in case of EBC, the infinite summations have been suitably
truncated as the evaluation of expressions involving EBC
are six times more computationally expensive. The outer sum-
mation running over odd roots of Bessel function for Cylind-
rical geometry (Table 5 of [1]) has been limited to a maximum
of three roots for accurate approximation of the flux without
resulting in any degenerate values during computation
when subjected to ZBC. However, in case of EBC, the
summation over roots of Bessel functions was increased to
9/11 as an upper threshold was put on number of terms to
be included for the inner loops to reduce the computational
complexity.

As all computations were performed as a function of the
source–detector distance, an average value of the data having
the same source–detector distance was used in here to

remove the asymmetry in mesh discretization in the FEM-
based solutions.

4. USAGE/EXTENSION OF GENERIC
SOLUTION TO OTHER REGULAR
GEOMETRIES
We discuss the usage/extension of the generic formulation of
the Green’s function solution (Eq. (53) of part I [1]) for any
other regular geometry by writing down the analytical solu-
tion for cube. The discussion is limited to the time-domain
case, as the frequency-domain solution could be written by
taking Fourier transform. The cube geometry is as shown
in Fig. 5(a). If the solution has to be derived from first prin-
ciples, as discussed in the companion part [1] for other
geometries, first it needs suitable rewriting of the infinite geo-
metry solution and determining the coefficients for the gener-
al solution by making the sum total of the Green’s function and
the auxiliary solutions equal to zero on the boundaries. How-
ever, to demonstrate that Eq. (53) in [1] makes this task effort-
less, we make use of the Green’s function solution for the
rectangular parallelepiped available in [6], when subjected
to change of origin to the center of the parallelepiped to sa-
tisfy the ZBC on x � −a∕2, x � a∕2; y � −b∕2, y � b∕2; z � −c∕2,
z � c∕2 (a, b, c represents the length, breadth, and thickness of
the rectangle) is given by
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Fig. 4. (a) and (c) Same effort as Figs. 2(a) and 2(c) with ZBC in the case of analytical solution for the MTOF data. (b) and (d) Same effort as (a)
and (c) except analytical solution is computed using EBC.

Table 3. Comparison of Computational Time Required for Computing Amplitude Using Numerical (FEM) and

Analytical Models Using ZBC and EBCa

Geometry FEM (ZBC) Analytical (ZBC) MTOF (ZBC) MTOF (EBC)

Slab (Transmittance� Reflectance) 28.145729 0.001700 0.0191 0.0191
Circle 5.972411 4.253466 17.690 54.037
Cylinder 29.308491 8.445070 46.07 94.122
Sphere 41.751525 9.469508 14.07 26.51
aThe last two columns give the MTOF computation time. The computation time is measured in seconds.
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So the generic solution by applying Eq. (53) in [1] is
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The terms/symbols are defined in the companion paper [1].
The FEM solution is computed using cube geometry as shown
in Fig. 5(a), with a � 40 mm. The details of the mesh are given
in Table 1. The optical properties that were used for both ana-
lytical and numerical computations are same as the ones given
in Table 2. The comparison of the logarithm of the amplitude
data as a function of source detector distance is given in
Fig. 5(b). Note that this analytical solution is computed with
ZBC; even the general trends in the solutions are matching.
The large discrepancy at the boundary of the imaging domain

is primarily due to the boundary condition deployed. In the
numerical solution, Type III was deployed and Type I was
for the analytical solution.

5. EXTENSION OF THE DEVELOPED
ANALYTICAL SOLUTIONS TO
INHOMOGENEOUS MEDIUM AND
IRREGULAR GEOMETRIES
Human tissue can be approximated with an inhomogeneous
composite medium having homogeneous tissues layered on
top of one another [7]. We may consider two discretization
processes that have advantages in terms of computational
complexity or numerical accuracy where the general form
of the proposed solution holds true.

A. Case 1: Rectangular Discretization
We can consider any irregular geometry Ω surrounded by ∂Ω
as the surface consisting of composite volumes of homoge-
neous medium [6]. We proceed by discretizing the volume into
contiguous cuboids. Consider two adjacent cuboids sur-
rounded by x0 ≤ x ≤ x1, y0 ≤ y ≤ y1, z0 ≤ z ≤ z1 and
x1 ≤ x ≤ x2, y0 ≤ y ≤ y1, z0 ≤ z ≤ z1, respectively. Suppose
the properties of the medium are in the region x ≤ x1 are
χ0, Φfl0, and for x > x1, χ2, Φfl2. Within the voxels described,
the medium is homogeneous and the analytical form of the
coupled diffusion equations hold good; with care being taken
to meet the boundary conditions at the plane of separation
x � x1 being

Φfl0 � Φfl2; x � x1; t > 0;
∂Φfl0

∂x
� ∂Φfl2

∂x
;

x � x1; t > 0;
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Fig. 5. (Color online) (a) Cube geometry showing the source/detector arrangement that was used for numerical solution (FEM) computation.
(b) Comparison of analytical solution [Eq. (3)] and FEM solution as a function of source/detector distance. (c) Breast geometry that was used for
generating numerical experimental data. (d) The comparison of computed data that were obtained using the best fits obtained using the analytical
models (given in the legend).
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where Φfl2 is the flux in the region x ≥ x1, and Φfl0 in the
region x ≤ x1.

This procedure is independent of the nature of the medium
and the geometry of consideration. The discretization has
been considered with cuboids as it is convenient to calculate
of n̂, the unit normal perpendicular to the surface of separa-
tion. However such a scheme is an imitation of the finite dif-
ference scheme for solving differential equations and hence
are limited by speed–accuracy tradeoff encountered when
choosing the step length to be used for discretization.

B. Case 2: Contour Discretization
In this case of contour discretization, a concentric layered
structure can be followed with the suitable geometry that
approximates the tissue closely needs to be selected [6].
The assumption being that the volume Ω can be thus discre-
tized into concentric layers separated by series of ∂Ω surfaces,
where the tissue is homogeneous between any two bound-
aries. In general the equations for discretization should satisfy
the following conditions:

Φfl0j∂Ω �Φfl2j∂Ω; t > 0;
∂Φfl0

∂n

����
∂Ω

� ∂Φfl2

∂n

����
∂Ω
; t > 0;

where Φfl0, Φfl2 denote the flux on the inside and outside of
the surface ∂Ω.

However given the computational complexity (Table 3),
such a discretization procedure will prove to be inefficient
compared to FEM calculation for more than 4–8 layered
discretization of the entire volume. A detailed description
of the these methods as applied to heat diffusion equations
can be found in [6].

6. DETERMINING BULK FLUORESCENCE
PROPERTIES FROM EXPERIMENTAL DATA
One important usage of analytical solutions is its ability to de-
termine the bulk fluorescence properties of the inhomoge-
neous and irregular media, such as breast. In here, we
show such a usage via considering a breast mesh that is truly
inhomogeneous, having typical breast tissue types, such as
fatty, fibroglandular, and tumor. The breast mesh geometry
along with source/detector positions are given in Fig. 5(c).
The fatty tissue properties are same as in Table 2 except
τ � 0.1 ns, typically a large part of the breast. The fibrogland-
ular region had the same properties as fatty tissue except for
the region τ � 0.5 ns and the tumor region, which occupies
only 5% of the total volume, had a value of 0.8 ns. The rest
of the properties were homogeneous in the breast volume.
The source/detector arrangement was same as Dartmouth-
NIR system [8] with 16 fibre optical bundles, when one acts
as source rest act as detectors. The diameter of data-
collection ring was 106 mm and the arrangement was given
in Fig. 5(c). Note that only the continuous-wave case, where
the data becomes the logarithm of amplitude, is considered in
this case. The data obtained was plotted in Fig. 5(d).

Three geometries were considered to fit for the numerical
experiment solutions, cylinder, sphere, and cube having dia-
meter/thickness same as 106 mm. In case of cylinder, the
height was considered as 60 mm. The same meshes that were
specified in Table 1 were utilized by appropriately changing
the dimensions, which also changes the nodal distance. For

the same source/detector distance as considered in the
numerical case, a series of values for τ starting from 0.001
to 1 ns in 1 ps was used. The ℓ2-norm difference between
the data vector values was considered as the metric for giving
the best fit. For the cylinder, the homogeneous value of τ
being 0.189 ns gave the best fit and the corresponding com-
puted analytical solution is given in Fig. 5(d). The sphere
homogenous value that gave the best fit was at 0.001 ns
and for cube, it was 0.001 ns. All corresponding solutions
are plotted in Fig. 5(d). As is evident from this exercise,
the analytical solutions are capable of finding the bulk optical
properties, if they are approximated by appropriate regular
geometry (in here it is cylinder). If inappropriate regular geo-
metry approximation is chosen, the bulk optical properties es-
timation might be erroneous, sometimes resulting in τ being 0.

7. CONCLUSIONS
In the first part of the work [1], we derived the analytical solu-
tions along with the widely used data type for various regular
geometries that are encountered in diffuse fluorescence
imaging spectroscopy using both ZBCs and EBCs. In this part,
we have validated these analytical solutions with the results
obtained using established (finite element based) numerical
models. The obtained results using analytical expressions
and finite element based solutions were in close agreement
for the frequency-domain case irrespective of the boundary
condition deployed in analytical case. For the time-domain
case, especially for calculation of MTOF, the EBC seems to
be better suited, especially near the source, with a caveat that
EBC analytical solutions are computationally complex com-
pared to their counterpart. Note that this is also first time
the solutions obtained by ZBCs and EBCs were compared
in the same setup. The finite element models considered here
were rather large in size (fine meshes with submillimeter no-
dal distances) to take care of numerical accuracy. Even
though solutions for a couple of geometries were validated
in here, the observed trend will be true for other geometries.

Moreover, an extension of the generic solutions that were
derived in part I [1] for other geometries that were not dis-
cussed was shown via an example case of cube. Similarly,
a discussion of usage of these analytical solutions for finding
bulk optical properties was also performed through an exam-
ple case, showing the utility of these solutions.

As fluorescence imaging is the biggest molecular imaging
contender for small animal imaging [9], and most modern ima-
ging systems involve usage of optical coupling medium be-
tween the animal and detector, making the imaging domain
more regular [10], the solutions that were derived and
validated here will have larger utility in these scenarios.
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