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The mathematical model for diffuse fluorescence spectroscopy/imaging is represented by coupled partial
differential equations (PDEs), which describe the excitation and emission light propagation in soft biological
tissues. The generic closed-form solutions for these coupled PDEs are derived in this work for the case of regular
geometries using the Green’s function approach using both zero and extrapolated boundary conditions. The
specific solutions along with the typical data types, such as integrated intensity and the mean time of flight,
for various regular geometries were also derived for both time- and frequency-domain cases. © 2013 Optical
Society of America
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1. INTRODUCTION
Fluorescence diffuse optical spectroscopy/imaging requires
an exogenous drug to be injected into the tissue under inves-
tigation, which is excited by a near-infrared laser to emit the
fluorescence light. The emitted fluorescence light is typically
dependent on the lifetime and concentration of the exogenous
drug coupled with physiology associated with the tissue under
investigation [1,2]. The preferential uptake by the tumor vas-
culature leads to high contrast, making this modality one of
the biggest contenders in small-animal and soft-tissue molecu-
lar imaging modalities [2].

As there is an excitation and emission of the light, the un-
derlying physics of the problem is described by coupled diffu-
sion equations [3]. These coupled diffusion equations are
typically solved by advanced numerical methods, which tend
to be computationally demanding. Similar to diffuse optical
imaging [4–6], the aim of this work is to derive the analytical
solution for these coupled partial differential equations
(PDEs) for the simple geometries of both time-domain and
frequency-domain cases. The existing literature [3,7–9] has
not dealt with all simple geometries (more in the discussion
section) and has derived analytical solutions for only a couple
of geometries. Here a comprehensive discussion of all possi-
ble regular geometries and the corresponding time- and
frequency-domain solutions are derived. These solutions
can play an important role in determining the bulk fluores-
cence properties of the tissue, which could act as good initial
guesses for the advanced image-reconstruction techniques
and/or could also facilitate the calibration of experimental
fluorescence data by removing biases and source-detector
variations.

These solutions along with a detailed derivation of explicit
forms for both zero and extrapolated boundary conditions are

presented here. Importantly, this is the first time extrapolated
boundary conditions (EBCs) are used in deriving analytical
solutions for the fluorescence imaging. The existing closed-
form solutions [3,7–9] have used only zero boundary condi-
tions (ZBCs). A numerical comparison of these closed forms
as well as a comparison with a well-established numerical
model are taken up in the next part of this work [10]. This
comparison not only validates the analytical expressions de-
rived in this work, but also shows that the obtained results are
in good agreement with the established numerical models.

2. DERIVATION OF ANALYTICAL
SOLUTIONS FOR FLOURESCENCE
OPTICAL SPECTROSCOPY/IMAGING
A. Coupled Diffusion Equations in Fluorescence Optical
Spectroscopy/Imaging
We consider the basic equation of light transport in an
isotropic medium and extend the principle equation of diffuse
optical imaging to fluorescence optical spectroscopy/imaging
as a two-stage system of excitation and emission. This leads
to coupled differential equations in time-dependent and
frequency-dependent cases as shown below.

Time-domain case:

�
γ2x∇

2 − μaxc −
∂
∂t

�
Φx�r; t� � −q0�r; t�; (1)

�
γ2m∇

2 − μamc −
∂
∂t

�
Φm�r; t� � −qfl�r; t�: (2)
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Frequency-domain case:

−�k2γ2x � μaxc� jω�Φx�k;ω� � −Q0�k;ω�; (3)

−�k2γ2m � μamc� jω�Φm�k;ω� � −Qfl�k;ω�: (4)

Please refer to Table 1 for a complete description of the
symbols used in this work. The underlying physics of fluores-
cent diffuse photon density waves is discussed in detail in
[3,7–9]. The source terms in the time-domain and frequency-
domain cases are given by

�
1� τ

∂
∂t

�
qfl�r; t� � ημaf N�r�Φx�r; t�; (5)

Qfl�r;ω� �
ημaf N�r�
1� jωτ

Φx�r;ω� �
n�r�

1� jωτ
Φx�r;ω�: (6)

The main aim of this work is to find analytical solutions to
the coupled differential equations, Eqs. (1)–(4) for the regular

geometries. We use the Green’s function approach in obtain-
ing the analytical solution for these coupled PDEs. The regular
geometries that are considered in this work are infinite, semi-
infinite, infinite slab, infinite cylinder, circle, and sphere. For
completeness, both transmission and reflection cases of
data-collection strategies were considered. The derivation
of analytical forms in this work is divided into two sections,
the first one being the usage of the ZBC [4,5] and the second
one dealing with the EBC [6]. The EBC is more applicable for
the real-time scenarios by taking into account the refractive-
index mismatch at the tissue boundary [6]. However, deploy-
ment of the ZBC leads to the generic closed-form solutions
seamlessly, which could be extended for other scenarios
as well.

3. ZERO BOUNDARY CONDITION
We assume that the photon density (Φfl) in the interior part of
the domain is a continuous function of x, y, z, and t; and the
same also holds for the first differential coefficient with regard
to t and for the first and second differential coefficients with
regard to x, y, and z—subjected to the Dirichlet boundary
condition

Φfl�r; r0; t; t0�j∂Ω � 0; (7)

where Φfl is contained in the volume Ω bounded by a surface
∂Ω, and n̂ is the outward surface normal. The dependency of
Φfl on the boundary condition and its generalization using the
Green’s function have been discussed in detail in [9]. To sum-
marize, the ZBC assumes there is no mismatch in the refrac-
tive index at the boundary of the tissue.

A. Case 1: Infinite Geometry
We derive the analytical solution for the infinite geometry
from first principles [5] as indicated below. From Eqs. (1),
(2), and (5), we have

�
1� τ

∂
∂t

��
γ2m∇

2 − μamc −
∂
∂t

��
γ2x∇

2 − μaxc −
∂
∂t

�
Φm�r; t�

� nq0�r; t�: (8)

Let gϕfl
inf�r; r0; t; t0� represent the Green’s function of Φm,

which is the response of a delta function [i.e., q0�r; t� �
δ�r − r0; t − t0� an impulse source place at r0 at time instant t0].

Taking the four-dimensional Fourier transform, where
t → ω, r → k, leads to

�1� jτω��−�k2γ2m � μamc� jω���−�k2γ2x � μaxc� jω��Gϕfl
inf�k; r0;ω; t0� � nF �δ�r − r0; t − t0�� � ne−j�k:r

0�ωt0� (9)

with usage of inverse Fourier transform, and simplifying gives

gϕfl
inf�r; r0; t; t0� �

1
�2π�4

Z �Z
∞

−∞

nej�k:�r−r
0��ω�t−t0��dω

�1� jτω��k2γ2m � μamc� jω��k2γ2x � μaxc� jω�

�
d3k; (10)

Table 1. Glossary of Notation of Symbols in the

Equations Used in This Work

Symbol
Description (x Stands for Excitation, m Stands for
Emission)

μax;am�r� Absorption coefficient
μ0sx;sm�r� Reduced scattering coefficient
r Spatial position
κx;m�r� Diffusion coefficient 1

3�μax;am�r��3�μ0sx;sm�r��
c Velocity of light
γ2x;m cκx;m�r�
Φx;m�r; t� Photon density
k Spatial frequency
k Magnitude of k
q0�r; t�,
Q0�k;ω�

Isotropic continuous-wave source term (excitation)

qfl�r; t�,
Qfl�k;ω�

Isotropic continuous-wave source term (emission)

τ Fluorescence lifetime of the fluorophore
η Fluorescence quantum yield (ratio of photons emitted to

photons absorbed)
μaf Absorption extinction coefficient
N�r� Concentration of fluorophore
n�r� ημaf N�r�
ZBC Zero boundary condition
EBC Extrapolated boundary condition
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which is the Green’s function for the infinite domain. The Fourier transform of the above Green’s function gives a frequency-
domain Green’s function of Φm, written as

Gϕfl
inf�r; r0;ω; t0� �

1������
2π

p
Z

∞

−∞
gϕfl
inf�r; r0; t; t0�e−jωtdt �

1

�2π�7∕2
Z

nej�k:�r−r
0�−ωt0 �d3k

�1� jτω��k2γ2m � μamc� jω��k2γ2x � μaxc� jω� : (11)

The above integration is achieved by converting the Cartesian coordinate system to a spherical polar coordinate system, i.e., d3k →
k2 sin θdkdθdϕ; with ranges of ϕ → �0; 2π�, θ → �0; π�, k → �0;∞�, respectively.

Evaluating the simple integration with respect to (w.r.t.) ϕ leads to

Gϕfl
inf�r; r0;ω; t0� �

ne−jωt
0

�2π�5∕2
Z

π

0

�Z
∞

0

k2ejkρ cos θ sin θ

�1� jτω��k2γ2m � μamc� jω��k2γ2x � μaxc� jω� dk
�
dθ; (12)

where ρ � jr − r0j. Now integrating w.r.t. θ gives rise to

Gϕfl
inf�r; r0;ω; t0� �

ne−jωt
0

�2π�5∕2jρ

Z
∞

0

k�e−jkρ − ejkρ�
�1� jτω��k2γ2m � μamc� jω��k2γ2x � μaxc� jω� dk: (13)

As the numerators and denominators of the above equation are even functions in k, one can extend the limits of integration from
�0;∞� to �−∞;∞�, resulting in

Gϕfl
inf�r; r0;ω; t0� �

ne−jωt
0

�2π�5∕2jρ
1
2

Z
∞

−∞

k�e−jkρ − ejkρ�
�1� jτω��k2γ2m � μamc� jω��k2γ2x � μaxc� jω� dk: (14)

As both the exponents contribute same to the integral, making k � −k leads to

Gϕfl
inf�r; r0;ω; t0� � −

ne−jωt
0

�2π�5∕2jρ�1� jτω�

Z
∞

−∞

kejkρ

�k2γ2m � μamc� jω��k2γ2x � μaxc� jω� dk: (15)

Factorizing the denominator gives rise to

Gϕfl
inf�r; r0;ω; t0� � A

Z
∞

−∞

ejkρ

2γ2mγ2x

�
1

k� jαm�
� 1

k� jαm−

��
1

k� jαx−
−

1
k� jαx�

�
dk

j�αx� − αx−�
; (16)

where

A � −
ne−jωt

0

�2π�5∕2jρ�1� jτω� ; α2x � μaxc� jω
γ2x

� A2
xejβx ;

Ax � �μ2axc2 � ω2�14
γx

; tan βx � ω

μaxc
; αx� � Axej

βx
2 ; and αx− � Axe

j
�
βx
2 �π
�
;

α2m � μamc� jω

γ2m
� A2

mejβm ; Am � �μ2amc2 � ω2�14
γm

; tan βm � ω

μamc
;

αm� � Amej
βm
2 ; and αm− � Ame

j
�
βm
2 �π

�
:

The right-hand side (RHS) of Eq. (16) has four poles at k � jαx�, k � jαx−, k � jαm�, and k � jαm− (graphically shown in Fig. 1),
making Eq. (16) equivalent to

Gϕfl
inf�r; r0;ω; t0� � −

e−jωt
0

jργ2xγ2m�2π�5∕2
n

1� jτω

Z
∞

−∞

kejkρdk
�k� jαm���k� jαm−��k� jαx���k� jαx−�

: (17)
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Representing the numerators and denominators by P�k�ejkρ and Q�k�, respectively, leads to

Gϕfl
inf�r; r0;ω; t0� � −

e−jωt
0

jργ2xγ2m�2π�5∕2
n

1� jτω

Z
∞

−∞

P�k�
Q�k� e

jkρdk; with deg�Q�k�� ≥ deg�P�k�� � 1: (18)

Applying Jordan’s lemma [11] for the integral alone gives rise to

Z
∞

−∞

P�k�
Q�k� e

jkρdk � 2πj
X
I�k�>0

Res
�
P�k�
Q�k� e

jkρ

�
: (19)

� 2πj
�
e−αx�ρ

2jαx�

jαx�
j2�αx� � αm���αx� � αm−�

� e−αm�ρ

2jαm�

jαm�
j2�αm� � αx���αm� � αx−�

�

� 2πj
2

�
−

e−αx�ρ

�αx� � αm���αx� � αm−�
� e−αm�ρ

�αm� � αx���αx� � αm−�

�
as αx�;m� � −αx−;m−

� −
2πj
2

�
e−αx�ρ − e−αm�ρ

α2x − α2m

�
as α2x�;m� � α2x;m (20)

Substituting Eq. (20) in Eq. (18) results in

Gϕfl
inf�r; r0;ω; t0� �

�
−

e−jωt
0

ργ2xγ
2
m�2π�3∕22πj

n
�1� jτω�

��
−
2πj
2

�e−αx�ρ − e−αm�ρ�
α2x − α2m

�
; ω > 0; (21)

Gϕfl
inf�r; r0;ω; t0� �

ne−jωt
0

2�2π�3∕2ργ2xγ2m
1

�1� jτω�
�e−αxρ − e−αmρ�

α2x − α2m
where αx;m �

���������������������������
μax;amc� jω

p
γx;m

: (22)

Expansion of terms gives

Gϕfl
inf�r; r0;ω; t0� �

ne−jωt
0

2�2π�3∕2ρ �e
−αxρ − e−αmρ� 1

�1� jτω��γ2m�γ2xα2x� − γ2x�γ2mα2m��

� ne−jωt
0

2�2π�3∕2ρ
�e−αxρ − e−αmρ�

�1� jτω��γ2m�μaxc� jω� − γ2x�μamc� jω��

� ne−jωt
0

2�2π�3∕2ρ
�e−αxρ − e−αmρ�

�1� jτω��γ2mμaxc − γ2xμamc� j�γ2m − γ2x�ω�

� ne−jωt
0

2�2π�3∕2ρ
�e−αxρ − e−αmρ�

�1� jτω��γ2mμaxc − γ2xμamc�
�
1� j �γ2m−γ2x�

�γ2mμaxc−γ2xμamc�ω
�

� ne−jωt
0

2�2π�3∕2ρ
�e−αxρ − e−αmρ�

γ2m − γ2x
ζ2
�

1
1� jτω

1

1� jζ2ω

�
where ζ2 � �γ2m − γ2x�

�γ2mμaxc − γ2xμamc�

� ne−jωt
0

2�2π�3∕2ρ
�e−αxρ − e−αmρ�

γ2m − γ2x
ζ2
�

1

τ − ζ2

�
τ

1� jτω
−

ζ2

1� jζ2ω

	�
: (23)

Gϕfl
inf�r; r0;ω; t0� can be rearranged to give the analytical Green’s function solution for the infinite domain case in the frequency

domain as

Gϕfl
inf�r; r0;ω; t0� �

nζ2e−jωt
0

�γ2m − γ2x�

�
e−αxρ

2ρ�2π�3∕2 −
e−αmρ

2ρ�2π�3∕2
�
·
�

1

τ − ζ2

�
1

1
τ � jω

−
1

1
ζ2
� jω

	�
: (24)

Multiplication in the frequency domain means convolution in the time domain, so the time-domain counterpart of the Green’s
function solution becomes
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∴ gϕfl
inf�r; r0; t; t0� �

nζ2

�γ2m − γ2x�
�γ2xgϕx

inf�r; r0; t; t0� − γ2mg
ϕm
inf �r; r0; t; t0��

�
�

1

τ − ζ2

�

e−

t
τ − e

− t
ζ2

�
u�t�

��
; (25)

where

gϕx;m

inf �r; r0; t; t0� � 1

�4πγ2x;m�t − t0��3∕2 e
−

h
μax;amc�t−t0�� jr−r0 j2

4γ2x;m�t−t0 �

i
: (26)

u�t� is the Heaviside step function.

B. Case 2: Semi-Infinite Geometry
Figure 2 shows an illustration of the imaging geometry used
for derivation of the Green’s function of ϕ�ρ; z; t� for a semi-
infinite and infinite slab homogeneous medium. The incident
pencil beam is assumed to create an isotropic photon source
at a depth z0 � 1∕�μ0sx�, indicated by the filled circle. The
boundary condition ϕ�ρ; 0; t� � 0 can be achieved by adding
a negative source indicated by the open circle [4], as shown
in Fig. 2. Assuming an impulse source as in the earlier case
results in [5,12],

gϕhalf�r; r0; t; t0� �
1

�4πγ2�t − t0��3∕2 e
−

h
μac�t−t0�� jr−r0 j2

4γ2�t−t0 �

i
|���������������������������{z���������������������������}

gϕinf �r;r0 ;t;t0�

×
�
e
−

�z−z0�2
4γ2 �t−t0 � − e

−
�z�z0 �2
4γ2 �t−t0 �

�
: (27)

We observe that gϕhalf�r; r0; t; t0� � gϕinf�r; r0; t; t0�
�e−�z−z0�2∕�4γ2�t−t0�� − e−��z�z0�2∕�4γ2�t−t0����; in other words, the
Green’s function solution of semi-infinite geometry is the
Green’s function solution of infinite geometry with two
sources located at �z0 and −z0.

We make the following observations in the Green’s function
for the infinite case [9]:

gϕfl
inf�r; r0; t; t0� � C

�
γ2xg

ϕx
inf�r; r0; t; t0�|����������{z����������}
SOURCE-1

− γ2mg
ϕm
inf �r; r0; t; t0�|�����������{z�����������}
SOURCE-2

�

�
�

1
τ − ζ2

��
e−

t
τ − e

− t
ζ2

�
u�t�

��
|�����������������������{z�����������������������}

SYSTEM

; (28)

where C � �nζ2�∕�γ2m − γ2x�.
The principle of superposition, which is valid for the linear

system theory, can be extended to the semi-infinite case by
considering the Green’s function for the infinite geometry
as a response to the system 1∕�τ − ζ2���e−�t∕τ� − e−�t∕ζ

2��u�t��
with inputs as γ2xg

ϕx
inf�r; r0; t; t0� and γ2mg

ϕm
inf �r; r0; t; t0�. Now to ar-

rive at an expression for the semi-infinite case these two
source terms can be altered w.r.t. the spatial vector variable
as shown in Eq. (27), leading to

∴ gϕfl
half�r; r0; t; t0� �

nζ2

�γ2m − γ2x�
�γ2xgϕx

half�r; r0; t; t0�

− γ2mg
ϕm
half�r; r0; t; t0��

�
�

1
τ − ζ2

�

e−

t
τ − e

− t
ζ2

�
u�t�

��
; (29)

where

Fig. 1. (Color online) Plots indicating the position of poles with
varying frequency for ω > 0, ω < 0, and ω � 0 for the case of infinite
geometry.

Fig. 2. Geometry indicating the source and detector distribution for
semi-infinite domain (left) and infinite slab (right).
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gϕx;m

half �r; r0; t; t0� �
1

�4πγ2x;m�t − t0��3∕2 e
−

h
μax;amc�t−t0�� jr−r0 j2

4γ2x;m�t−t0 �

i

×
�
e
−

�z−z0 �2
4γ2x;m �t−t0 �

− e
−

�z�z0�2
4γ2x;m�t−t0 �

�
: (30)

By similar argument we can deduce the Green’s function
for the infinite slab case as [5,12]

gϕfl
slab�r; r0; t; t0� �

nζ2

�γ2m − γ2x�
�γ2xgϕx

slab�r; r0; t; t0� − γ2mg
ϕm
slab�r; r0; t; t0��

�
�

1
τ − ζ2

�

e−

t
τ − e

− t
ζ2

�
u�t�

��
; (31)

where

gϕx;m

slab �r; r0; t; t0� �
1

�4πγ2x;m�t − t0��3∕2 e
−

h
μax;amc�t−t0�� jr−r0 j2

4γ2x;m�t−t0 �

i

×
� X∞
n�−∞

�
e
−
�z−2nd−z0�2
4γ2x;m �t−t0 �

− e
−
�z−2nd�z0�2
4γ2x;m�t−t0 �

��
: (32)

The Green’s function solutions for the infinite and semi-
infinite geometries discussed until now have similar structure,
inspiring us to attempt to write a generic expression for the
remaining geometries considered in this work.

C. Generic Expression for Green’s Function Solution
Equation (8) can be seen as a cascaded effect of three
linear operators acting on Φm�r; t� for an impulse input
δ�r − r0; t − t0�, which results in the Green’s function
gflgeo�r; r0; t; t0� for a geometry.

Rewriting an operator equivalence of Eq. (8) as

LτLmLxgflgeo�r; r0; t; t0� � nδ�r − r0; t − t0� (33)

with

Lτ �
�
1� τ

∂
∂t

�
; Lm �

�
γ2m∇

2 − μamc −
∂
∂t

�
;

Lx �
�
γ2x∇

2 − μaxc −
∂
∂t

�
: (34)

Irrespective of the rectangular Cartesian, cylindrical, or
spherical polar coordinate systems in which the Laplacian
operator is expressed, we generalize Eq. (25) and propose

gϕfl
geo�r; r0; t; t0� � C�γ2xgϕx

geo�r; r0; t; t0� − γ2mg
ϕm
geo�r; r0; t; t0��

�
�

1

τ − ζ2

h

e−

t
τ − e

− t
ζ2

�
u�t�

i�
(35)

as the general form of the Green’s function [3] for any geome-
try; i.e., gϕfl

geo�r; r0; t; t0� as specified by Eq. (35) must satisfy
Eq. (33), leading to finding an expression for C. The proof
is as shown below.

Substituting Eq. (35) into Eq. (33),

CLτ



Lm



Lx



�γ2xgϕx

geo�r; r0; t; t0� − γ2mg
ϕm
geo�r; r0; t; t0��

�
h 1

τ − ζ2

n

e−

t
τ − e

− t
ζ2

�
u�t�

oi���
� nδ�r − r0; t − t0�: (36)

Neglecting the constant C for now, the left-hand side (LHS)
of the above equation can be written as

Lτfγ2xLm�Lx�gϕx
geo�r; r0; t; t0��� − γ2mLm�Lx�gϕm

geo�r; r0; t; t0���g

�
�

1

τ − ζ2

n

e−

t
τ − e

− t
ζ2

�
u�t�

o�
: (37)

As the operators Lτ, Lm, Lx and convolution are linear
operators, rewriting the second term of above expression
leads to

Lτfγ2xLm�Lx�gϕx
geo�r; r0; t; t0��� − γ2mLx�Lm�gϕm

geo�r; r0; t; t0���g

�
�

1
τ − ζ2

n

e−

t
τ − e

− t
ζ2

�
u�t�

o�
: (38)

As per the definition of the Green’s function, we have

Lx�gϕx
geo�r; r0; t; t0�� � δ�r − r0; t − t0�;

Lm�gϕm
geo�r; r0; t; t0�� � δ�r − r0; t − t0�: (39)

Substituting Eq. (39) into Eq. (38) gives rise to

Lτfγ2xLm�δ�r − r0; t − t0�� − γ2mLx�δ�r − r0; t − t0��g

�
�

1

τ − ζ2

��
e−

t
τ − e

− t
ζ2

�
u�t�

	�
; (40)

which can be equivalently written as

Lτfγ2xLm − γ2mLxg�δ�r − r0; t − t0�� �
�

1
τ − ζ2

n

e−

t
τ − e

− t
ζ2

�
u�t�

o�
(41)

� Lτ

�
�γ2mμaxc − γ2xμamc� � �γ2m − γ2x�

∂
∂t

	
�δ�r − r0; t − t0��

�
�

1
τ − ζ2

�

e−

t
τ − e

− t
ζ2

�
u�t�

	�
(42)

�
�
1� τ

∂
∂t

��
A� B

∂
∂t

�
�δ�r − r0; t − t0��

�
�

1
τ − ζ2

n

e−

t
τ − e

− t
ζ2

�
u�t�

o�
: (43)

where A � �γ2mμaxc − γ2xμamc�, B � �γ2m − γ2x�.
We may write δ�r − r0; t − t0� � δ�r − r0�δ�t − t0�, and using

the time shift property of the Dirac delta function, the LHS
given by Eq. (43) can be simplified and substituted in
Eq. (36) leading to
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C
1

τ − ζ2

�
1� τ

∂
∂t

��
A� B

∂
∂t

�n

e−

t−t0
τ − e

−t−t
ζ2

�
u�t − t0�

o
� nδ�t − t0�: (44)

Once again, neglecting the constants for now, the LHS of
the above equation can be written as

�
A� �Aτ� B� ∂

∂t
� Bτ

∂2

∂t2

���
e−

t−t0
τ − e

−t−t0
ζ2

�
u�t − t0�

	
: �45�

As the above expression has an exponent in t and t0, we
consider the following two cases to show that the above
expression is equivalent to the Dirac delta function (δ�t − t0�).

Case 1: t > t0

Writing an equivalent expression of Eq. (45),

A
�
e−

t−t0
τ − e

−t−t0
ζ2

�
� �Aτ� B�

�
1
ζ2

e
−t−t0

ζ2 −
1
τ
e−

t−t0
τ

�

� Bτ
�
1
τ2

e−
t−t0
τ −

1
ζ4

e
−t−t0

ζ2

�
: (46)

Upon simplifying and collecting like terms together, we have

�
1 −

τ

ζ2

��
B
ζ2

− A
�
e
−t−t0

ζ2 : (47)

But by definition, �B∕ζ2� − A � 0, making Eq. (45) identically
equal to zero ∀ t ≠ t0 (as u�t − t0� � 0 ∀ t < t0).

Case 2: t � t0�
Using the chain rule of differentiation in the expression

given by Eq. (45) leads to

��
A��Aτ�B� ∂

∂t
�Bτ

∂2

∂t2

��
e−

t−t0
τ −e

−t−t0
ζ2

�	
u�t−t0�

�
�
e−

t−t0
τ −e

−t−t0
ζ2

���
Au�t−t0���Aτ�B�δ�t−t0��Bτ

∂
∂t
δ�t−t0�

�	
:

(48)

The first term is identically zero as per Case 1, leaving us
with the second term, which is simplified as

�
e−

t−t0
τ − e

−t−t0
ζ2

���
Au�t − t0� � �Aτ�B�δ�t− t0� �Bτ

∂
∂t
δ�t− t0�

�	

� A
�
e−

t−t0
τ − e

−t−t0
ζ2

�




t�t0

� �Aτ�B�
�
e−

t−t0
τ − e

−t−t0
ζ2

�
δ�t− t0�






t�t0

�Bτ
∂
∂t
δ�t − t0�

�
e−

t−t0
τ − e

−t−t0
ζ2

�




t�t0

: (49)

The first two terms on the RHS are zero; using the property
of distributional derivatives given by δ0ϕ � −δϕ0 for functions
such as the Dirac delta will lead to

Bτ
∂
∂t
δ�t−t0�

�
e−

t−t0
τ −e

−t−t0
ζ2

�




t�t0

�Bτδ�t−t0�
�
1

ζ2
e
−t−t0

ζ2 −
1
τ
e−

t−t0
τ

�




t�t0

�B�τ−ζ2�
ζ2

δ�t−t0�: (50)

Substituting in Eq. (44) and explicit writing of the terms
leads to

C
1

τ − ζ2

�
1� τ

∂
∂t

��
A� B

∂
∂t

���
e−

t−t0
τ − e

−t−t0
ζ2

�
u�t − t0�

	

� C
B
ζ2

δ�t − t0� � nδ�t − t0�: (51)

Comparing the coefficients, we have

C
B
ζ2

� n or C � nζ2

γ2m − γ2x
: (52)

This leads to the conclusion that irrespective of the geome-
try under consideration the Green’s function solution for the
coupled differential equations given by Eqs. (1) and (2) can be
expressed as

gϕfl
geo�r; r0; t; t0� �

nζ2

γ2m − γ2x
�γ2xgϕx

geo�r; r0; t; t0� − γ2mg
ϕm
geo�r; r0; t; t0��

�
�

1
τ − ζ2

h

e−

t
τ − e

− t
ζ2

�
u�t�

i�
; (53)

where gϕx;m
geo �r; r0; t; t0� are the Green’s function evaluated by

substituting μax and μam, respectively, in the diffusion equa-
tion with the Laplacian operator defined specifically to the
relevant geometry under consideration.

The main derived quantity in the mathematical model for
diffuse fluorescence spectroscopy/imaging is the photon flux,
which can be calculated from the continuity equation (CE) for
the photon density [from Eqs. (1) and (2)], where CE is
defined as

∂Φfl

∂t
�∇ · Γfl�ξ; t� � −μamcΦfl; (54)

where Γfl�ξ; t� is the photon flux. This, combined with the
diffusion equation and the fact that Φfl can be written as
the difference between the photon densities Φx, Φm

by Eq. (53), leads to the following expression for the photon
flux:

Γfl�ξ; t� � −γ2m∇ ·Φm�r; t� � γ2x∇ ·Φx�r; t�; (55)

where Φfl�r; t� is the diffuse photon density corresponding
to gϕfl

geo�r; r0; t; t0�. We have a difference between the two
fluxes in Eq. (53); by the above definition one can rewrite
it as

∴ gΓfl
geo�r; r0; t; t0� �

nζ2γ2m
γ2m − γ2x

�gΓx
geo�r; r0; t; t0� − gΓm

geo�r; r0; t; t0��

�
�

1
τ − ζ2

h

e−

t
τ − e

− t
ζ2

�
u�t�

i�
; (56)

where gΓx
geo�r; r0; t; t0� � −γ2x∇ · gϕx

geo�r; r0; t; t0� and gΓm
geo�r; r0; t;

t0� � −γ2m∇ · gϕm
geo�r; r0; t; t0�.

For the frequency-domain case, the expression becomes
(Fourier transform of the above equation)
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∴ GΓfl
geo�r; r0;ω; t0� �

nζ2

γ2m − γ2x
�GΓx

geo�r; r0;ω; t0� − GΓm
geo�r; r0;ω; t0��

·
�

1
τ − ζ2

�
1

1
τ � jω

−
1

1
ζ2
� jω

	�
: (57)

Note that similar to the diffusion equation solutions as
given in [5], we have also listed the expressions for
gΓfl
geo�r; r0; t; t0� and GΓfl

geo�r; r0;ω; t0� in case of various geometries
in Tables 2 and 3 and Tables 4 and 5, respectively, for this case
of ZBC. These expressions are derived from the Green’s func-
tion solution for the heat equation as given in [12]. Note that
the data types, which are typically measured in a typical ex-
periment, will use these forms to arrive at closed-form expres-
sions, and the same is given in Section 5.

4. EXTRAPOLATED BOUNDARY
CONDITION
A useful simplifying assumption for solving the coupled diffu-
sion equations is that all the incident photons are initially
scattered isotropically at a depth z0 � 1∕μ0sx below the

surface. The geometry for calculation of the time-resolved
transmittance for a homogeneous slab for the ZBC or Dirichlet
boundary condition is shown in Fig. 2. The average diffuse
intensity is set to zero at the surface of the slab at z � 0.
As stated above, the source is assumed to be located a dis-
tance z0 into the medium. Thus a negative image source must
be located at the distance z � −z0 to meet the boundary
condition. The boundary condition for the surface located
at z � d is satisfied by the dipole centered about z � 2d,
but then the boundary condition at z � 0 is violated. Both
boundary conditions can only be met simultaneously by add-
ing an infinite number of dipoles. In practice, the number of
dipoles required depends on the background optical proper-
ties of the slab and the maximum time for which the transmit-
tance is calculated.

However, ZBC is not sufficient when there is a mismatch
between the refractive index of the diffusing and the sur-
rounding medium resulting in ZBC on an extrapolated bound-
ary at a distance ze � 2Aμ0sx from the true boundary [6]. Here
defining n as the ratio of refractive indices between the free
space (air) and tissue and representing μ0sx as the reduced
scattering coefficient [6] defines A as

A �
1� 3

2

�
8�1−n2�3∕2
105n3 −

�n−1�2�8�32n�52n2�13n3�
105n3�1�n�2 � r1�n� � r2�n� � r3�n�

�
1 − −3�7n�13n2�9n3−7n4�3n5�n6�n7

3�n−1��n�1�2�n2�1�2 − r4�n�
;

r1�n� �
−4� n − 4n2 � 25n3 − 40n4 − 6n5 � 8n6 � 30n7 − 12n8 � n9 � n11

3n�n2 − 1�2�n2 � 1�3 ;

r2�n� �
2n3�3� 2n4�

�n2 − 1�2�n2 � 1�7∕2 log
�
n2�n − �1� n2�1∕2��2� n2 � 2�1� n2�1∕2�
�n� �1� n2�1∕2��−2� n4 − 2�1 − n4�1∕2�

	
; (58)

Table 2. Green’s Function Solution in the Time-Domain Case for Planar Type Geometries, where

p � x or m

Geometry g
Γp
geo (Time Domain)

Infinite
d

2
��������������������������������
�4πγ2p�3�t − t0�5

q e
−



μapc�t−t0 �� d2

4γ2p �t−t0 �

�
�g01�

Semi-infinite half-space 1

2
��������������������������������
�4πγ2p�3�t − t0�5

q
2
4d1e−



μapc�t−t0 ��

ρ2
1

4γ2p �t−t0 �

�
� d2e

−



μapc�t−t0 ��

ρ2
2

4γ2p �t−t0 �

�3
5 �g02�

ZBC d1 � d2 � z0, ρ1 � ρ2 � ρ
EBC d1 � z0, d2 � �z0 � 2ze�, ρ1 � ρ, ρ2 � ρ̀

Infinite slab (at z � d) −
e−μapc�t−t

0 ���������������������������������
�4πγ2p�3�t − t0�5

q X∞
n�0

�
d1e

−
ρ2
1

4γ2p �t×− t0 �
− d2e

−
ρ2
2

4γ2p �t×− t0 �
�

(g03)

ZBC d1 � z�n, d2 � z−n, ρ1 � ρ�n, ρ2 � ρ−n
EBC d1 � z̀�n, d2 � z̀−n, ρ1 � ρ̀�n, ρ2 � ρ̀−n

Infinite slab (at z � 0)
e−μapc�t−t

0 ���������������������������������
�4πγ2p�3�t − t0�5

q �
z0e

−
ρ2

4γ2p �t×− t0 � �
X∞
n�1

�
d1e

−
ρ2
1

4γ2p �t×− t0 �
− d2e

−
ρ2
2

4γ2p �t×− t0 �
�	

�g04�

ZBC d1 � z�n0 , d2 � z−n0 , ρ1 � ρ�n0 , ρ2 � ρ−n0

EBC d1 � z̀�n0 , d2 � z̀−n0 , ρ1 � ρ̀�n0 , ρ2 � ρ̀−n0
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r3�n� �
4�1−n2�1∕2�1� 12n4� 2n8�

3n�n2 − 1�2�n2� 1�3 ;

r4�n� �
�1� 6n4�n8� log



1−n
1�n

�
� 4�n2�n6� log

h
1�n

n2�1−n�

i
�n2 − 1�2�n2� 1�3 : (59)

Note that typical tissue refractive index is considered to be
1.33, and the free space is considered to be 1, resulting
in n < 1.

The extrapolated boundaries for infinite slab and circular
geometries are depicted in Figs. 3 and 4, respectively. In

the following derivations we would determine the Green’s
function for the equation

Time-domain case:�
γ2∇2 − μac −

∂
∂t

�
Φ�r; t� � −q0�r; t�: (60)

Frequency-domain case:

−�k2γ2 � μac� jω�Φ�k;ω� � −Q0�k;ω�: (61)

by using suitable suffixes to the Green’s function solu-
tions of the above equations combining with the result of

Table 3. Green’s Function Solution in the Time-Domain Case for Circular Type Geometries,

where p � x or m

Geometry g
Γp
geo (Time Domain)

2D circle, radius a
γ2pe−μapc�t−t

0 �

πq2
X∞
n�−∞

�
cos�nθ�

X
βn

e−γ
2
pβ

2
n�t−t0 �βnf n�βnr0; βnq�

�
�g05�

Finite cylinder, radius a, length l 2γ2pe−μapc�t−t
0 �

πq2l

X∞
k�1;odd

e−
γ2pk

2π2 �t×− t0 �
l2

X∞
n�−∞

�
cos�nθ�

X
βn

e− γ2pβ
2
n�t−t0 �βnf n�βnr0; βnq�

�
(g06)

Infinite cylinder, radius a, z � z0 γpe−μapc�t−t
0 �

2πq2
�����������������
π�t − t0�

p X∞
n�−∞

cos�nθ�
X
βn

e−γ
2
pβ

2
n�t−t0 �βnf n�βnr0; βnq� (g07)

Sphere, radius a γ2pe−μapc�t−t
0 �

2πq2
�������
ar0

p
X∞
n�0

X
β
n�1

2

e
−γ2pβ

2
n�1

2

�t−t0 �
βn�1

2
f n�1

2
�βn�1

2
r0; βn�1

2
q��2n� 1�Pn�cos θ� (g08)

Note: For all the circular geometries, such as the 2D circle, cylinder, and sphere, we have

ZBC q � a, f n�βnr0; βnq� � Jn�βnr0 �
Jn�1�βnq�

EBC q � b, f n�βnr0; βnq� � J 0
n�βna�Jn�βnr0 �
�Jn�1�βnq��2

Table 4. Green’s Function Solution in the Frequency-Domain Case for Planar Type Geometries,

where p � x or m

Geometry G
Γp
geo (Frequency Domain)

Infinite e−jωt
0 �1� αpd�

e−αpd

2
������������
�2π�3

p
d2

(G01)

Semi-infinite half-space e−jωt
0

2�2π�3∕2
�
�1� αpρ1�

d1e−αpρ1

ρ31
� �1� αpρ2�

d2e−αpρ2

ρ32

�
�G02�

ZBC d1 � d2 � z0, ρ1 � ρ2 � ρ
EBC d1 � z0, d2 � �z0 � 2ze�, ρ1 � ρ, ρ2 � ρ̀

Infinite slab (at z � d) −
e−jωt

0������������
�2π�3

p �X∞
n�0

�
�1� αpρ1�

d1
ρ31

e−αpρ1 − �1� αpρ2�
d2
ρ32

e−αpρ2
��

�G03�

ZBC d1 � z�n, d2 � z−n, ρ1 � ρ�n, ρ2 � ρ−n
EBC d1 � z̀�n, d2 � z̀−n, ρ1 � ρ̀�n, ρ2 � ρ̀−n

Infinite slab (at z � 0) e−jωt
0������������

�2π�3
p �

�1� αpρ�
z0
ρ3

e−αpρ �
X∞
n�1

�
�1� αpρ1�

d1
ρ31

e−αpρ1 − �1� αpρ2�
d2
ρ32

e−αpρ2
��

�G04�

ZBC d1 � z�n0 , d2 � z−n0 , ρ1 � ρ�n0 , ρ2 � ρ−n0

EBC d1 � z̀�n0 , d2 � z̀−n0 , ρ1 � ρ̀�n0 , ρ2 � ρ̀−n0
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Eq. (53) using the EBC for arriving at a more generic
form. The Green’s functions for the EBC, which is a more
realistic condition compared to ZBC, in the time domain
and the frequency domain are given by g̀ϕgeo�r; r0; t; t0� and
G̀ϕ

geo�r; r0;ω; t0�, respectively, for each relevant geometry drop-
ping suffixes x, m.

Figure 3 shows the dipole arrangement necessary to
achieve zero flux on the extrapolated boundary. Initially,
we derive the expression for g̀ϕgeo�r; r0; t; t0� and
G̀ϕ

geo�r; r0;ω; t0� in planar geometries such as semi-infinite
and infinite slabs when subjected to EBC. Note that the
infinite geometry solution is not affected by the boundary
condition, as the boundary does not exist. So for infinite

geometry, the Green’s function solutions are the same for both
ZBC and EBC (Section 3.A gives these expressions).

A. Case 1: Semi-Infinite Geometry
Figure 2 shows the ZBC for the semi-infinite geometry; now
assume an extrapolated boundary exists at a distance −ze.
In order to satisfy the ZBC on the extended boundary,
Eq. (30) needs to be modified as

g̀ϕhalf�r; r0; t; t0� �
e
−

h
μac�t−t0�� ξ2

4γ2�t−t0 �

i
�4πγ2�t − t0��3∕2

�
e
−

�z−z0�2
4γ2�t−t0 � − e

−
�z�z0�2ze �2

4γ2 �t−t0 �

�
:

(62)

Taking the Fourier transform we have

G̀ϕ
half�r; r0;ω; t0� �

e−jωt
0

2�2π�3∕2γ2
�

e−α�ξ
2��z−z0�2�1∕2

�ξ2 � �z − z0�2�1∕2

−
e−α�ξ

2��z�z0�2ze�2�1∕2

�ξ2 � �z� z0 � 2ze�2�1∕2
	
: (63)

B. Case 2: Infinite Slab Geometry
Figure 3 shows the extended boundary for the infinite slab
geometry. In order to satisfy the ZBC on the extended bound-
ary, Eq. (31) needs to be modified as

g̀ϕslab�r;r0; t; t0��
e
−

h
μac�t−t0�� ξ2

4γ2�t−t0 �

i
�4πγ2�t− t0��3∕2

" X∞
n�−∞

�
e
−

�z−z̀�n�2
4γ2 �t−t0 � −e

−
�z−z̀−n �2
4γ2 �t−t0 �

	#
:

(64)

Taking the Fourier transform we have the Green’s function
in the frequency domain

Table 5. Green’s Function Solution in the Frequency-Domain Case for Circular Type Geometries, where

p � x or m

Geometry G
Γp
geo (Frequency Domain)

2D circle, radius a e−jωt
0������������

�2π�3
p X∞

n�−∞
cos�nθ�f n�αpr0� (G05)

Finite cylinder, radius a, length l e−jωt
0

π
������
2π

p
l

X∞
k�1;odd

X∞
n�−∞

cos�nθ�f n�αpkr0� (G06)

Infinite cylinder, radius a, z � z0 e−jωt
0������������

�2π�3
p X∞

n�−∞
cos�nθ�

X
βn

1�����������������
α2p � β2n

q βngn�βnr0� (G07)

Sphere, radius a e−jωt
0

2
������������������
�2π�3qr0

p X∞
n�0

�2n� 1�Pn�cos θ�f n�1∕2�r0αp� (G08)

Note: For all the circular geometries, such as the 2D circle, cylinder, and sphere, we have

ZBC q � a, f n�εr0� � 1
a
In�r0ε�
In�aε�, gn�εr

0� � 1
a2

Jn�r0ε�
Jn�1�aε�

EBC q � b, f n�εr0� � εIn�r0ε�
In�bε� F

0
n�aε; bε�, gn�εr0� � 1

b2
J 0
n�aε�Jn�r0ε�
�Jn�1�bε��2

F 0
n�aε; bε� � −n

aε Fn�aε; bε� − �In−1�aε�Kn�bε� � Kn−1�aε�In�bε��
Fn�aε; bε� � Kn�aε�In�bε� − In�aε�Kn�bε�

Fig. 3. (Color online) Illustration of the extrapolated boundary for
infinite slab geometry with source dipoles. The actual domain is
the shaded region.
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G̀ϕ
slab�r; r0;ω; t0� �

e−jωt
0

2�2π�3∕2
� X∞
n�−∞

�
e−α�ξ

2��z−z̀�n�2�1∕2

�ξ2 � �z − z̀�n�2�1∕2

−
e−α�ξ

2��z−z̀−n�2�1∕2

�ξ2 � �z − z̀−n�2�1∕2
	�

: (65)

C. Case 3: Circle
Figure 4 shows the source-detector placement in a circular
geometry with the extrapolated boundary. In this section,
we derive the expression for gΓfl

geo�r; r0; t; t0� and GΓfl
geo�r;

r0;ω; t0� for the circle initially and extend it to other circular
geometries, such as a cylinder and a sphere when subjected
to EBC.

We consider the circle as a cross section along a plane per-
pendicular to the axis of an infinite cylinder with an infinite
source along its axis. We will derive this form in detail, as it
will act as a precursor to determine the analytical solution for
other circular domains. Starting with the two-dimensional
form of the Green’s function for an infinite medium [5] as
the plausible solution for the circular geometry,

gϕcir�r; r0; t; t0� �
1

4πγ2�t − t0� e
−



μac�t−t0�� jr−r0 j2

4πγ2 �t−t0 �

�
;

Gϕ
cir�r; r0;ω; t0� �

e−jωt
0

�2π�3∕2γ2 K0�αjr − r0j�:

The auxiliary equation for circular geometry in the Fourier
domain is

�
∂2

∂r2
� 1

r
∂
∂r

� 1
r2

∂2

∂θ2
− α2

�
Hϕ�r;ω� � 0; (66)

which has a general solution of the form Hϕ�r;ω� �P∞
n�−∞�anIn�rα� � bnKn�rα�� cos�nθ�, where In and Kn are

modified Bessel functions of the first and second kind of order
n, respectively.

We make use of the addition theorem for the Bessel func-
tion K0�αjr − r0j� as given in Section 11.4 in [13],

K0�αjr− r0j� �
�P∞

n�−∞ cos�nθ�In�r0α�� bnKn�rα�; r > r0P∞
n�−∞ cos�nθ�In�rα�� bnKn�r0α�; r < r0

;

(67)

and find an, bn such that Gϕ
cir �Hϕ � 0 on the extrapolated

boundary r � b. This leads to bn � 0 and an �
−�Kn�bα�In�r0α��∕In�bα� resulting in

G̀ϕ
cir�r; r0;ω; t0� �

e−jωt
0

�2π�3∕2γ2
X∞
n�−∞

�
cos�nθ� In�r

0α�
In�bα�

Fn�rα; bα�
�
;

(68)

where Fn�rα; bα� � Kn�rα�In�bα� − In�rα�Kn�bα� for r > r0.
In the case of r < r0, we interchange r and r0 in the above
expression. Taking the inverse Fourier transform results in
the time-domain form as

g̀ϕcir�r; r0; t; t0� �
1
2π

X∞
n�−∞

�
cos�nθ�

×
Z

∞

0
ejω�t−t

0� In�r0α�
In�bα�

Fn�rα; bα�dω
�
: (69)

This can be evaluated by considering a closed contour con-
sisting of the real axis and a large semicircle in the upper half-
plane for t > t0. This contour cannot pass through any poles on
the imaginary axis at the zeros of Jn�bα�. This can be realized
by using the identity In�ze�j�π∕2�� � e�j�nπ∕2�Jn�z�, where Jn is
the Bessel function of order n, and the fact that the equation
Jn�z� � 0 has an infinite number of distinct real roots [14].
Evaluating the residues over all these poles gives the final
expression as

g̀ϕcir�r; r0; t; t0� �
e−μac�t−t

0�

2πa

X∞
n�−∞

�
cos�nθ�

×
X
βn

e−γ
2β2n�t−t0� Jn�βnr�Jn�βnr0�

�J 0
n�βnb��2

�
: (70)

D. Case 4: Finite Cylinder
In this case the auxiliary equation in the Fourier domain
becomes

�
1

r2
∂2

∂θ2
� ∂2

∂r2
� 1

r
∂
∂r

� ∂2

∂z2
− α2

�
Hϕ�r;ω� � 0; (71)

which has a general solution of the form

Hϕ�r;ω� �
X∞
m;n

⟦am;nIn

�
r
�
α2 �

�
mπ

l

�
2
�
1∕2
�

� bm;nKn

�
r
�
α2 �

�
mπ

l

�
2
�
1∕2�

⟧

× cos�nθ� sin
�
mπz
l

�
:

We make use of the addition theorem for the Bessel
function K0�αjr − r0j� similar to the above case leading to
bm;n � 0 and

Fig. 4. (Color online) Illustration of the extrapolated boundary
(dashed line) for circular geometry; the solid line shows the actual
boundary.

K. Ayyalasomayajula and P. Yalavarthy Vol. 30, No. 3 / March 2013 / J. Opt. Soc. Am. A 547



am;n � −

In


r0
h
α2 � �

mπ
l

�
2
i
1∕2�

Kn



b
h
α2 � �

mπ
l

�
2
i
1∕2�

In


r0
h
α2 � �

mπ
l

�
2
i
1∕2�

with m being an odd number or otherwise 0. We proceed as
in the previous case and arrive at the following expressions
for the Green’s functions in time and frequency domains,
respectively:

g̀ϕfcyl�r; r0; z; z0; t; t0�

� e
−



μac�t−t0�� �z−z0 �2

4γ2 �t−t0 �

�
πal

X∞
m�1;odd

e−γ
2m2π2

l2
�t−t0�

×
X∞
n�−∞

�
cos�nθ�

X
βn

e−γ
2β2n�t−t0� Jn�βnr�Jn�βnr0�

�J 0
n�βnb��2

�
; (72)

G̀ϕ
fcyl�r;r0;ω; t0�jz�z0

� e−jωt
0

�2π�3∕2l
X∞

m�1;odd

X∞
n�−∞

×
�
cos�nθ� In�αmr

0�
In�αmb�

Fn�αmr;αmb�
�
: (73)

E. Case 5: Infinite Cylinder
The limiting case of the finite cylinder with the limit l → ∞will
yield expressions for the infinite cylinder case; we consider

G̀ϕ
cyl�r; r0; z;ω; t0� �

e−jωt
0

�2π�3∕2b
X∞
n�−∞

cos�nθ�

×
Z

∞

0

In


r0

����������������
α2 � z2

p �
In


b

����������������
α2 � z2

p �
× Fn

�
r

����������������
α2 � z2

p
; b

����������������
α2 � z2

p �
dz: (74)

Taking the inverse Fourier transform leads to (time-domain
case)

g̀ϕcyl�r; r0; z; z0; t; t0� �
e
−



μac�t−t0�� �z−z0 �2

4γ2 �t−t0 �

�
2πb2γ

�����������������
π�t − t0�

p X∞
n�−∞

cos�nθ�

×
X
βn

e−γ
2β2n�t−t0� Jn�βnr�Jn�βnr0�

�J 0
n�βnb��2

: (75)

F. Case 6: Sphere
The auxiliary equation for a spherical geometry in the Fourier
domain is defined as

�
∂2

∂r2
� 2∂

r∂r
� 1

r2
1

sin θ

∂
∂θ

sin θ
∂
∂θ

− α2
�
Hϕ�r;ω� � 0: (76)

Considering solutions that are finite at the origin, the
general solution to the auxiliary equation will be Hϕ�r;ω� ��������������
π∕2αr

p P∞
n anIn��1∕2��rα�Pn�cos θ�, where Pn is Legendre

polynomial of order n.

Table 6. Closed-form Expressions for Planar Type Geometries for Integrated Intensity

Efl
geo�ξ� � �nζ2γ2m∕�γ2m − γ2x��Wfl

geo�ξ�
Geometry W fl

geo�ξ�

Infinite �1� σxd�e−σxd − �1� σmd�e−σmd

4πd2
�I01�

Semi-infinite half-space 1
4π

�
d1��1� σxρ1�e−σxρ1 − �1� σmρ1�e−σmρ1 �

ρ31
� d2��1� σxρ2�e−σxρ2 − �1� σmρ2�e−σmρ2 �

ρ32

�
(I02)

ZBC d1 � d2 � z0, ρ1 � ρ2 � ρ
EBC d1 � z0, d2 � �z0 � 2ze�, ρ1 � ρ, ρ2 � ρ̀

Infinite slab 0 < z < d (at z � d) −
1
2π

�X∞
n�0

�
d1��1� σxρ1�e−σxρ1 − �1� σmρ1�e−σmρ1 �

ρ31

	
−
X∞
n�0

�
d2��1� σxρ2�e−σxρ2 − �1� σmρ2�e−σmρ2 �

ρ32

	�
�I03�

ZBC d1 � z�n, d2 � z−n, ρ1 � ρ�n, ρ2 � ρ−n
EBC d1 � z̀�n, d2 � z̀−n, ρ1 � ρ̀�n, ρ2 � ρ̀−n

Infinite slab (at z � 0) 1
2π

z0��1� σxρ�e−σxρ − �1� σmρ�e−σmρ�
ρ3

� 1
2π

X∞
n�1

�
d1��1� σxρ1�e−σxρ1 − �1� σmρ1�e−σmρ1 �

ρ31

�

−
1
2π

X∞
n�1

�
d2��1� σxρ2�e−σxρ2 − �1� σmρ2�e−σmρ2 �

ρ32

�
(I04)

ZBC d1 � z�n0 , d2 � z−n0 , ρ1 � ρ�n0 , ρ2 � ρ−n0

EBC d1 � z̀�n0 , d2 � z̀−n0 , ρ1 � ρ̀�n0 , ρ2 � ρ̀−n0
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The Green’s function for the infinite medium in spherical
coordinates can be written as [12]

gϕinf�r; r0; t; t0� �
e
−



μac�t−t0�� R2

4γ2�t−t0 �

�
8γ

�����������������
π�t − t0�

p ;

Gϕ
inf�r; r0;ω; t0� �

e−jω�t−t
0�e−αR

2�2π�3∕2γ2R ;

where R2 � r2 � r02 − 2rr0 cos θ, in the time domain and the
frequency domain, respectively.

By using an addition theorem in the Bessel function
similar to earlier cases, Gϕ

inf may be expressed as a form
more suitable for spherical coordinates as Gϕ

inf�r;r0;ω; t0��
�1∕4πγ2

������
rr0

p
�P∞

n�0�2n�1�In��1∕2� �αr0�Kn��1∕2��αr�Pn�cos θ�

with r > r0. In case of r < r0, we interchange r and r0 in the
above expression. Imposing the condition Gϕ

inf�r;r0;ω; t0��
Hϕ�r;ω� � 0, we have an � −�2n� 1���Kn��1∕2��αb�
In��1∕2��αr0��∕�4πγ2

����
r0

p
In��1∕2��αb���.

We proceed as in 2D circle case and arrive the following
expressions for the Green’s functions in the time and
frequency domains, respectively:

g̀ϕsph�r; r0; t; t0� �
e−μac�t−t

0�

2πb2
������
rr0

p
X∞
n�−∞

X
β
n�1

2

e
−γ2β2

n�1
2

�t−t0�

×
Jn�1

2

�
βn�1

2
r
�
Jn�1

2

�
βn�1

2
r0
�


J 0
n�1

2

�
βn�1

2
b
��2

× �2n� 1�Pn�cos θ�; (77)

Table 7. Closed-form Expressions for Circular Type Geometries for Integrated Intensity

Efl
geo�ξ� � �nζ2γ2m∕�γ2m − γ2x��Wfl

geo�ξ�
Geometry W fl

geo�ξ�

2D circle, radius a 1
2π

X∞
n�−∞

cos�nθ��f n�σxr0� − f n�σmr0�� (I05)

Finite cylinder, radius a, length l 1
πl

X∞
k�1;odd

X∞
n�−∞

cos�nθ��f n�σxkr0� − f n�σmkr0�� (I06)

Infinite cylinder, radius a, z � z0 1
2π

X∞
n�−∞

cos�nθ�
X
βn

gn�βnr0�
 

1�����������������
σ2x � β2n

p −
1������������������

σ2m � β2n
p

!
(I07)

Sphere, radius a 1

4π
�������
qr0

p
X∞
n�0



f n�1

2
�σxr0� − f n�1

2
�σmr0�

�
�2n� 1�Pn�cos θ� (I08)

Note: For all circular type geometries, such as the circle, cylinder, and sphere

ZBC q � a, f n�εr0� � 1
a
In�r0ε�
In�aε�, gn�εr0� �

1
a2

Jn�r0ε�
Jn�1�aε�

EBC q � b, f n�εr0� � εIn�r0ε�
In�bε� F

0
n�aε; bε�, gn�εr0� � 1

b2
J 0n�aε�Jn�r0ε�
�Jn�1�bε��2

F 0
n�aε; bε� � −n

aε Fn�aε; bε� − �In−1�aε�Kn�bε� � Kn−1�aε�In�bε��
Fn�aε; bε� � Kn�aε�In�bε� − In�aε�Kn�bε�

Table 8. Closed-form Expressions for Planar Type Geometries for Mean Time of Flight htflgeoi�ξ� � haflgeoi�ξ� � �τ � ζ2�
Geometry haflgeoi�ξ�

Infinite
1
2

d2


e−σxd

γ2x
− e−σmd

γ2m

�
��1� σxd�e−σxd − �1� σmd�e−σmd� �t01�

Semi-infinite half-space 1
2

d1
ρ1



e−σxρ1
υx

− e−σmρ1

υm

�
� d2

ρ2



e−σxρ2
υx

− e−σmρ2

υm

�
�
d1
ρ31
��1� σxρ1�e−σxρ1 − �1� σmρ1�e−σmρ1 � � d2

ρ32
��1� σxρ2�e−σxρ2 − �1� σmρ2�e−σmρ2 �

� �t02�

ZBC d1 � d2 � z0, ρ1 � ρ2 � ρ
EBC d1 � z0, d2 � �z0 � 2ze�, ρ1 � ρ, ρ2 � ρ̀

Infinite slab 0 < z < d (at z � d)
1
2

�P∞
n�0

�
d1
ρ1



e−σxρ1
υx

− e−σmρ1

υm

�	
−
P∞

n�0

�
d2
ρ2



e−σxρ2
υx

− e−σmρ2

υm

�	�
�P∞

n�0

�
d1
ρ31
��1� σxρ1�e−σxρ1 − �1� σmρ1�e−σmρ1 �

	
−
P∞

n�0

�
d2
ρ32
��1� σxρ2�e−σxρ2 − �1� σmρ2�e−σmρ2 �

	� �t03�

ZBC d1 � z�n, d2 � z−n, ρ1 � ρ�n, ρ2 � ρ−n
EBC d1 � z̀�n, d2 � z̀−n, ρ1 � ρ̀�n, ρ2 � ρ̀−n

Note: t0 is implicitly assumed to be zero. It is easily verified that the correct result for t0 ≠ 0 is obtained
by adding t0 to htfli�ξ�.
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Table 9. Closed-form Expressions for Various Geometries for Mean Time of Flight htflgeoi�ξ� � haflgeo�ξ�i � �τ � ζ2�
Geometry haflgeoi�ξ�
Infinite slab (at z � 0) 1

2
N
D

N � z0
ρ

�
e−σxρ

υx
−
e−σmρ

υm

�
�
�X∞
n�0

�
d1
ρ1

�
e−σxρ1

υx
−
e−σmρ1

υm

�	
−
X∞
n�0

�
d2
ρ2

�
e−σxρ2

υx
−
e−σmρ2

υm

�	�

D � z0
ρ3

��1� σxρ�e−σxρ − �1� σmρ�e−σmρ� �
X∞
n�1

d1
ρ31

��1� σxρ1�e−σxρ1 − �1� σmρ1�e−σmρ1 �

−
X∞
n�1

d2
ρ32

��1� σxρ2�e−σxρ2 − �1� σmρ2�e−σmρ2 � (t04)

ZBC d1 � z�n0 , d2 � z−n0 , ρ1 � ρ�n0 , ρ2 � ρ−n0

EBC d1 � z̀�n0 , d2 � z̀−n0 , ρ1 � ρ̀�n0 , ρ2 � ρ̀−n0

2D circle, radius a 1
2

P∞
n�−∞ cos�nθ�



1
υx
f 0n�σxr0� − 1

υm
f 0n�σmr0�

�
P∞

n�−∞ cos�nθ�� f n�σxr0� − f n�σmr0��
�t05�

Finite cylinder, radius a, length l

P∞
k�1;odd

P∞
n�−∞ cos�nθ�



1
υxk

f 0n�σxkr0� − 1
υmk

f 0n�σmkr0�
�

P∞
k�1;odd

P∞
n�−∞ cos�nθ�� f n�σxkr0� − f n�σmkr0��

�t06�

Infinite cylinder, radius a,
z � z0

1
2

P∞
n�−∞ cos�nθ�Pβn

gn�βnr0�
�

1
γ2x

���������������
�σ2x�β2n�3

p − 1
γ2m

����������������
�σ2m�β2n�3

p
�

P∞
n�−∞ cos�nθ�P

βn

gn�βnr0�
�

1�����������
σ2x�β2n

p − 1������������
σ2m�β2n

p
� �t07�

Note: t0 is implicitly assumed to be zero. It is easily verified that the correct result for t0 ≠ 0 is obtained
by adding t0 to htfli�ξ�.

Table 10. Closed-form Expressions for Circular Type Geometries for Mean Time of Flight

htflgeoi�ξ� � haflgeoi�ξ� � �τ � ζ2�
Geometry haflgeoi�ξ�

Sphere, radius a 1
2

P∞
n�0



1
υx
f 0
n�1

2
�σxr0� − 1

υm
f 0
n�1

2
�σmr0�

�
�2n� 1�Pn�cos θ�P∞

n�0



f n�1

2
�σxr0� − f n�1

2
�σmr0�

�
�2n� 1�Pn�cos θ�

�t08�

Note: t0 is implicitly assumed to be zero. It is easily verified that the correct result
for t0 ≠ 0 is obtained by adding t0 to htfli�ξ�.

Note: For all circular type geometries, such as the circle, cylinder, and sphere

ZBC q � a, f n�εr0� � 1
a
In�r0ε�
In�aε�, gn�εr0� �

1
a2

Jn�r0ε�
Jn�1�aε�, f

0
n�r0ε� � 1

aUn�εr0; a�
EBC q � b, f n�εr0� � εIn�r0ε�

In�bε� F
0
n�aε; bε�, gn�εr0� � 1

b2
J 0n�aε�Jn�r0ε�
�Jn�1�bε��2 ,

f 0n�r0ε� � �In�r0ε�In�bε� � εUn�εr0; b��F 0
n�aε; bε� � εIn�r0ε�

In�bε� Vn�εa; εb�

Un�r0ε; q� � r0In�qε�I 0n−1�r0ε�−qI 0n−1�qε�In�r0ε�
�In�qε��2 ,

F 0
n�aε; bε� � −n

aϵ Fn�aε; bε� − �In−1�aε�Kn�bε� � Kn−1�aε�In�bε��

Vn�aε; bε� �
�
n�2n� 1�

aε2
− a
�
Fn�aε; bε� � bFn−1�aε; bε� �

n − 1
ε

�In−1�aε�Kn�bε�

� Kn−1�aε�In�bε�� −
bn
aε

�In�aε�Kn−1�bε� � Kn�aε�In−1�bε��
Fn�aε; bε� � Kn�aε�In�bε� − In�aε�Kn�bε�
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G̀ϕ
sph�r; r0;ω; t0� �

e−jωt
0

2�2π�3∕2γ2
������
rr0

p

×
X∞
n�0

In�1
2�r0α�

In�1
2�bα�

Fn�1
2
�rα; bα�Pn�cos θ�: (78)

5. EXPRESSIONS FOR DIFFERENT DATA
TYPES
The important measured quantities (data types) [5], which are
of significance in the diffuse fluorescence spectroscopy/
imaging, need to be evaluated, and the expressions for the
same are listed as below.

(i) Integrated intensity (units: energy per unit area):

Efl�ξ� �
Z

∞

−∞
Γfl�ξ; t�dt; (79)

where Γfl�ξ; t� is the temporal point-spread function (TSPF).
(ii) Mean time of flight (MTOF):

htfli�ξ� �
R∞
−∞ tΓfl�ξ; t�dtR
∞
−∞ Γfl�ξ; t�dt

: (80)

The expressions for Efl�ξ� and htfli�ξ� for various geome-
tries are derived as follows using the solutions listed in
Tables 6–10. For any function g�t� with G�ω� as its Fourier
transform, one can write

Z
∞

−∞
g�t�dt �

������
2π

p
G�ω�jω�0 and;

∂
∂ω

G�ω� � 1������
2π

p ∂
∂ω

Z
∞

−∞
g�t�e−jωtdt

� −
j������
2π

p
Z

∞

−∞
tg�t�dt (81)

and thus

Efl
geo�ξ� �

������
2π

p
GΓfl�ω�jω�0

�
������
2π

p
nζ2γ2m

γ2m − γ2x

h
GΓx

geo�r; r0;ω; t0� − GΓm
geo�r; r0;ω; t0�

i
·
�

1
τ − ζ2

�
1

1
τ � jω

−
1

1
ζ2
� jω

	�




ω�0

�
������
2π

p
nζ2γ2m

γ2m − γ2x

h
GΓx

geo�r; r0;ω; t0� − GΓm
geo�r; r0;ω; t0�

i



ω�0

(82)

Table 11. Glossary of Notation of Symbols Used in Tables 2–10

Symbol Formula Symbol Formula

ξ �
�����������������
x2 � y2

p
σx;m �

�����������
μax;amc

p
γx;m

ρ �
����������������
ξ2 � z20

q
αx;m �

������������������
μax;amc�jω

p
γx;m

z�n � �2n� 1�d� z0 αxk;mk �
� �����������������������

α2x;m � k2π2

l2

q �
z−n � �2n� 1�d − z0 r0 Radial position of the source.

z�n0 � 2nd� z0 βj Positive root of Jj�βja� � 0, where j � n, n� 1
2.

z−n0 � 2nd − z0 ζ2 � γ2m−γ2x
c�γ2mμax−γ

2
xμam�

z̀�n � �2n� 1��d� 2ze� � z0 z̀−n � �2n� 1��d� 2ze� − z0

z̀�n0 � 2n�d� 2ze� � z0 z̀−n0 � 2n�d� 2ze� − z0

Table 12. Glossary of Notation of Symbols Used in Tables 2–10

Symbol Formula Symbol Formula

ρ�n �
�������������������
ξ2 � z2�n

q
υx;m � γx;m

����������������
μax;amc

p

ρ−n �
������������������
ξ2 � z2−n

p
γx;m � c

3�μax;am�μ0sx;sm�

ρ�n0 �
��������������������
ξ2 � z2�n0

q
σxk;mk �

� �������������������������
μax;amc
γ2x;m

� k2π2

l2

q �

ρ−n0 �
�������������������
ξ2 � z2

−n0

q
υxk;mk �

� �����������������������������������
μax;amc� γ2x;mk2π2

l2

q �
Bessel function — Jν�x� �P∞

r�0
�−1�r �12x�ν�2r

r!Γ�ν�r�1�

Modified Bessel function — Iν�x� �P∞
r�0

�12x�ν�2r

r!Γ�ν�r�1�

Legendre polynomial — Pn�x� � 1
2nn!

dn
dxn ��x2 − 1�n�
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htflgeoi�ξ� � j
∂
∂ωG

Γfl �ω�



ω�0

GΓfl �ω�



ω�0

� j

����
2π

p
nζ2γ2m

γ2m−γ
2
x

∂
∂ω

�

GΓx

geo�r; r0;ω; t0� − GΓm
geo�r; r0;ω; t0�

�
·
�

1
τ−ζ2

�
1

1
τ�jω

− 1
1
ζ2
�jω

��	




ω�0����

2π
p

nζ2γ2m
γ2m−γ

2
x

h
GΓx

geo�r; r0;ω; t0� − GΓm
geo�r; r0;ω; t0�

i



ω�0

� j

h
∂
∂ωG

Γx
geo�r; r0;ω; t0� − ∂

∂ωG
Γm
geo�r; r0;ω; t0�

i


ω�0h

GΓx
geo�r; r0;ω; t0� − GΓm

geo�r; r0;ω; t0�
i



ω�0

� �τ� ζ2�: (83)

Note that the above equations are generic in nature; the spe-
cific solutions for various geometries are listed in Tables 6–10
with Tables 11 and 12 giving the glossary of terms used.

6. DISCUSSION AND CONCLUSIONS
Many closed-form Green’s function solutions were proposed
in the past for diffuse fluorescence spectroscopy/imaging in
biological tissues, but they were dealing mostly with the infi-
nite and semi-infinite geometries along with ZBCs [3,7–9].
Here, the usage of the EBC for various regular geometries
(other than the infinite geometry) to derive generic Green’s
function solutions was attempted. A generic closed-form solu-
tion that could be used for any given geometry was derived,
giving immense flexibility to obtain a solution for any kind of
regular geometry. For example, the solution for the cube geo-
metry, which is not discussed here, could easily be written
using the heat equation solution as given in [12] (also shown
in Section 2 of this work [10]).

Patterson and Pogue [3] have suggested (through Eq. (3) of
[3]) that the general form of photon flux could be derived in
the case of fluorescence imaging; here a formal derivation
for various regular geometries using the first principles and
Fourier transform techniques has been provided.

Assuming the fluorophore lifetime is negligibly small, i.e.,
τ � 0 in Eqs. (5) and (6), leads to

qfl�r; t� � ημaf N�r�Φx�r; t�; (84)

Qfl�r;ω� � ημaf N�r�Φx�r;ω�: (85)

This case was extensively discussed by Sadoqi et al. [9], mak-
ing the solution provided in [9] a special case of the closed-
form solutions derived here.

Moreover, for the case of an EBC that closely mimics the
real scenario, more than six geometries of closed-form expres-
sions were derived in detail here. All expressions were de-
rived using first principles without losing the generality.
The comparison of the solutions obtained using zero and ex-
trapolated boundary conditions and their validation has been
taken up in the next part of the work [10]. Extension of the
methods deployed here for irregular geometries and usage
of these closed-form solutions to provide estimates of bulk
(homogenous) fluorescence properties using the experimen-
tal data has also been discussed in the companion paper [10].

In summary, generic closed-form Green’s function solu-
tions for time- and frequency-domain diffuse fluorescence
spectroscopy/imaging in biological tissues for the zero and ex-
trapolated boundary cases have been derived in this work,
and the expressions for various regular geometries have been
provided for easy reference. The expressions for the derived

data types, integrated intensity, and MTOF have been also
been presented in this work.
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