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The mathematical model for diffuse fluorescence spectroscopy/imaging is represented by coupled partial
differential equations (PDEs), which describe the excitation and emission light propagation in soft biological
tissues. The generic closed-form solutions for these coupled PDEs are derived in this work for the case of regular
geometries using the Green’s function approach using both zero and extrapolated boundary conditions. The
specific solutions along with the typical data types, such as integrated intensity and the mean time of flight,
for various regular geometries were also derived for both time- and frequency-domain cases. © 2013 Optical

Society of America
OCIS codes:

1. INTRODUCTION

Fluorescence diffuse optical spectroscopy/imaging requires
an exogenous drug to be injected into the tissue under inves-
tigation, which is excited by a near-infrared laser to emit the
fluorescence light. The emitted fluorescence light is typically
dependent on the lifetime and concentration of the exogenous
drug coupled with physiology associated with the tissue under
investigation [1,2]. The preferential uptake by the tumor vas-
culature leads to high contrast, making this modality one of
the biggest contenders in small-animal and soft-tissue molecu-
lar imaging modalities [2].

As there is an excitation and emission of the light, the un-
derlying physics of the problem is described by coupled diffu-
sion equations [3]. These coupled diffusion equations are
typically solved by advanced numerical methods, which tend
to be computationally demanding. Similar to diffuse optical
imaging [4-6], the aim of this work is to derive the analytical
solution for these coupled partial differential equations
(PDEs) for the simple geometries of both time-domain and
frequency-domain cases. The existing literature [3,7-9] has
not dealt with all simple geometries (more in the discussion
section) and has derived analytical solutions for only a couple
of geometries. Here a comprehensive discussion of all possi-
ble regular geometries and the corresponding time- and
frequency-domain solutions are derived. These solutions
can play an important role in determining the bulk fluores-
cence properties of the tissue, which could act as good initial
guesses for the advanced image-reconstruction techniques
and/or could also facilitate the calibration of experimental
fluorescence data by removing biases and source-detector
variations.

These solutions along with a detailed derivation of explicit
forms for both zero and extrapolated boundary conditions are
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presented here. Importantly, this is the first time extrapolated
boundary conditions (EBCs) are used in deriving analytical
solutions for the fluorescence imaging. The existing closed-
form solutions [3,7-9] have used only zero boundary condi-
tions (ZBCs). A numerical comparison of these closed forms
as well as a comparison with a well-established numerical
model are taken up in the next part of this work [10]. This
comparison not only validates the analytical expressions de-
rived in this work, but also shows that the obtained results are
in good agreement with the established numerical models.

2. DERIVATION OF ANALYTICAL
SOLUTIONS FOR FLOURESCENCE
OPTICAL SPECTROSCOPY/IMAGING

A. Coupled Diffusion Equations in Fluorescence Optical
Spectroscopy/Imaging

We consider the basic equation of light transport in an
isotropic medium and extend the principle equation of diffuse
optical imaging to fluorescence optical spectroscopy/imaging
as a two-stage system of excitation and emission. This leads
to coupled differential equations in time-dependent and
frequency-dependent cases as shown below.

Time-domain case:

- d
[Vévz = HaxC — &] q)x(r» t) = _qO(r~ t)» (1)
0
[V%nvg — HamC — Ei| (Dm (l', t) = —Qn (I’, t)~ (2)
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Table 1. Glossary of Notation of Symbols in the
Equations Used in This Work

Description (x Stands for Excitation, m Stands for

Symbol Emission)

Haz.am () Absorption coefficient

Moz sm (T) Reduced scattering coefficient

r Spatial position

Kym (1) Diffusion coefficient m

c Velocity of light

Yem Ky (T)

D, (r, 1) Photon density

k Spatial frequency

k Magnitude of k

qo(r,t), Isotropic continuous-wave source term (excitation)

Qo(k, w)

qq(r, 0), Isotropic continuous-wave source term (emission)

@k, )

T Fluorescence lifetime of the fluorophore

n Fluorescence quantum yield (ratio of photons emitted to
photons absorbed)

Haf Absorption extinction coefficient

N(r) Concentration of fluorophore

n(r) NptarN (r)

ZBC Zero boundary condition

EBC Extrapolated boundary condition

Frequency-domain case:

_[k27§£ + UaxC +jw]q)x(ks CU) = _QO(ks w), (8)

_[ka%n + UamC +jw]q)m(k‘ o) = -Qnu(k, ®). @

Please refer to Table 1 for a complete description of the
symbols used in this work. The underlying physics of fluores-
cent diffuse photon density waves is discussed in detail in
[3,7-9]. The source terms in the time-domain and frequency-
domain cases are given by

(1 4 r%)qﬂ(r, ) = Mg NO®,(x. 1), ®)
N
Qu(r.w) = ”{“j{—ﬁ@(n W =1 ﬁ(;in ®,(r.w). (6)

The main aim of this work is to find analytical solutions to
the coupled differential equations, Egs. (1)—(4) for the regular

[1 +j7w][_(k27%n + HamC +jw)][_(k27326 + HaaC +]a))]G

with usage of inverse Fourier transform, and simplifying gives
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geometries. We use the Green’s function approach in obtain-
ing the analytical solution for these coupled PDEs. The regular
geometries that are considered in this work are infinite, semi-
infinite, infinite slab, infinite cylinder, circle, and sphere. For
completeness, both transmission and reflection cases of
data-collection strategies were considered. The derivation
of analytical forms in this work is divided into two sections,
the first one being the usage of the ZBC [4,5] and the second
one dealing with the EBC [6]. The EBC is more applicable for
the real-time scenarios by taking into account the refractive-
index mismatch at the tissue boundary [6]. However, deploy-
ment of the ZBC leads to the generic closed-form solutions
seamlessly, which could be extended for other scenarios
as well.

3. ZERO BOUNDARY CONDITION

We assume that the photon density (®y) in the interior part of
the domain is a continuous function of x, y, 2, and ¢; and the
same also holds for the first differential coefficient with regard
to ¢t and for the first and second differential coefficients with
regard to x, y, and z—subjected to the Dirichlet boundary
condition

G (r,r',1,1)]9o = 0, Q)

where @y is contained in the volume Q bounded by a surface
0Q, and 7 is the outward surface normal. The dependency of
®;; on the boundary condition and its generalization using the
Green’s function have been discussed in detail in [9]. To sum-
marize, the ZBC assumes there is no mismatch in the refrac-
tive index at the boundary of the tissue.

A. Case 1: Infinite Geometry

We derive the analytical solution for the infinite geometry
from first principles [5] as indicated below. From Eqgs. (1),
(2), and (5), we have

7} ; d 7}
|:1 + T&] [V%nvz ~ HamC — 5] |:7.%V2 ~ HaaC — Ej| q)m(n t)

= nqo(r.1). ®

Let gﬁ‘}(r, r',t,t') represent the Green's function of ®,,,
which is the response of a delta function [i.e., qq(r,?) =
S(r—r',t - t') an impulse source place at r’ at time instant ¢'].

Taking the four-dimensional Fourier transform, where
t - w, r — K, leads to

Mk, @,) = nF[5(r — 1.t - )] = ne Ik +o) ©

inf

nej[k.(r—t“)+(u(t—t’)]dw

gf;ﬂf (r,r',1,1) =

- ® : : — |k,
@ﬂ4/[[mﬂﬂﬂu®@%%+uwﬁ+ﬁwm%%+uw0+ﬂ®]

(10)
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which is the Green’s function for the infinite domain. The Fourier transform of the above Green’s function gives a frequency-
domain Green’s function of ®,,, written as

1 /- ne;’[k.(r—r’)—wt’]dSk
@Cm)"2 ] (1 + 1) (K73, + pan€ + Jo) (K*V2 + tapC + jo)

G;’;ﬂf(r, r,mt) = gﬁﬂf(r, r,t t)ed”ldt = (11)

1 f 0
v 27[ —00
The above integration is achieved by converting the Cartesian coordinate system to a spherical polar coordinate system, i.e., d°k —

k? sin Odkdfd¢, with ranges of ¢ — [0,2x],  — [0, 7], k — [0, 00), respectively.
Evaluating the simple integration with respect to (w.r.t.) ¢ leads to

~Jot' ) K2lkp cos 0 gin @
Gﬁlﬂf(r’ v o.t) = e 5/2 /ﬂ |:/ : 2.2 .s1n 2.2 ; dk]de’ 12)
(2r) 0 0 (1 +.]Tw)(k Vi T HamC + J0) (K75 + paxC —I—](D)
where p = |r - r'|. Now integrating w.r.t. 8 gives rise to

,ne—jmt’ k(e—jk/) _ eik/))

G r.r',owltl) = /m dk.
i )= @ p . W o) 272 T pame + J) R+ o + J0)

(13)

As the numerators and denominators of the above equation are even functions in &, one can extend the limits of integration from
(0, ) to (-o0, ), resulting in

ot {1 foo k(e ke — gikp
Gl r . t) = o —/ M~ ) — —dk. (14)
(2n) J/’Z —o0 (L +J10) (K*Yip, + HamC + Jo) (K75 + peoC + Jo)
As both the exponents contribute same to the integral, making k = -k leads to
~jot 0 keike
(e v w.1) = e (15)

- o - - —dk.
Cn)Pjp(1 + jrw) J-co (K15, + Ham€ +J0) K*13 + pauC + jo)
Factorizing the denominator gives rise to

o ko 1 1 1 1 dk
Gf/’[l r, I", , tr — A/ |: - —+ - ] |: - - B :| N ) 16
int (1,1, . F) o0 27272 Lk + Jamy k. [k +Fa, ko | (e - ay) 1o

where

neJe! c+j j
SR A A S
27)%jp(1 + jrw) e
2 2 o
c w-s w b j(Le
A, = = ]/+ ] > tan g, = u c’ Oy = Axe]/%v and aq,._ :Axd(2+”)’
x ax
. 2 .2 214
C [0) . C w4 [0)
@2, =HC IO _ pp g, BT FOT =2
Yim Ym HamC

i

i Pm
s =A™, and a,_ = A, %)

The right-hand side (RHS) of Eq. (16) has four poles at k = ja,., , k = ja,_, k = ja,,, and k = ja,,_ (graphically shown in Fig. 1),
making Eq. (16) equivalent to

Gi

inf ( 1 7)

) , e—jwt’ n 0o keﬂc/} dk
(r.rolt)=-

IprErm o) 1+ jro ) o (k + joty, ) (k + joun ) (k + o) (k + jo )
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Representing the numerators and denominators by P(k)e¢’” and Q(k), respectively, leads to

e ot n w P(k)

G¢ﬂ i
Jprera, (2n)¥% 1 + jro J_o Q(K)

inf

(r,r, o) = - ——~dkrdk, with deg(Q(k)) > deg(P(k)) + 1. (18)

Applying Jordan’s lemma [11] for the integral alone gives rise to

« P(k) ) (k)
T dkrdk = 2;1-] Res |: ek | (19)
= Q(k) %0 Q)
|: “Hp j(lx+ e“’m+/’ ]am+ :|
2]at+J (ax+ + am+)(ax+ + o) 2]am+] (am+ + ax+)(am+ +a,)
j |: e~ %+P n e~ %m+P ] as
T2 Q. = —Qy_
2 (O + A )@y + ) (g + Ay ) (Up + ) whmt rmm
2 ] e %+l — e~ %m+P
-T2 [W] as Gy i = Ao 20)
x 'm

Substituting Eq. (20) in Eq. (18) results in

e—jwt’ n 2ﬂ'j (e—ulur/) _ 6_“””/))
Gl(r.r w.t) = |- _ -= . >0, 21
teron = | 5 i @b
~jool’ 1 ~Cep _ o= tmp / c+J
Gl (r,¥, w,1) = n(;/z o . (e 5 62 ) where a,,,, = VHaram® T IO (22)
2(2”) PYxVm (l +.]Ta)) Ay — Ay, : Yam

Expansion of terms gives

‘/’“ (r.,r,ot) = ﬂ(@““ — e anp) 1
G 22m)*p (1 +jro)rn (3 - 72 (rnas)]
_ ne—]wt (e_“x/’ _ e—am/))
2217 2p (1 + jro) 75 (HaeC + J0) = 12 (Ham + jo)]
_ mel (e %P — g~tmP)
" 2@n)2p (1 + Jro)[VabarC = VaptamC + 3 (Vi - 12)0)
B neJot (€% — g=anP)
32
2(2m) / ’ (l +j7(0) (J’%LHM;C - yz;ﬂamc) |:1 +J%w]
neJol (e %P — ¢ am/’) [ 1 1 ] where ¢2 = 72, -72)
2(27[)3/2 ym 71‘ 1+jrw1l —|—]'CZCU (7%;.“11‘766 - yguuamc)
_ medl (e —emowr) [ T ;2
g P e T T @

Gf;{lf(r, r,w,t) can be rearranged to give the analytical Green’s function solution for the infinite domain case in the frequency

domain as

2 p~jot’ ~0tp ~0 1 1 1
N [N :
G500 =2 =35 200 2] 1= T+jo I+ jo @b

Multiplication in the frequency domain means convolution in the time domain, so the time-domain counterpart of the Green’s
function solution becomes
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Fig. 1. (Color online) Plots indicating the position of poles with
varying frequency for o > 0, w < 0, and @ = 0 for the case of infinite
geometry.

nCZ J !’ )
e [r2gl(x,x' t,t) - y2gln (e, v 1, 1)]
m x

. [ﬁ [(e—ﬁ _ e‘?z)u(t)]], (25)

.'.gf;‘}(r, r,tt) =

where

r-v'?

mH] (26)

Do 1 —[ummc(z—r'H

N l‘,r/,t,t' = ——F"55;€
I (0100 = (s e

u(?) is the Heaviside step function.

B. Case 2: Semi-Infinite Geometry

Figure 2 shows an illustration of the imaging geometry used
for derivation of the Green’s function of ¢(p, 2,t) for a semi-
infinite and infinite slab homogeneous medium. The incident
pencil beam is assumed to create an isotropic photon source
at a depth 2y, = 1/(uy,), indicated by the filled circle. The
boundary condition ¢(p,0,f) = 0 can be achieved by adding
a negative source indicated by the open circle [4], as shown
in Fig. 2. Assuming an impulse source as in the earlier case
results in [5,12],

5 l‘fl" 2
1 o [uac(z-z )+4L2(¢Jﬂ)]
[Ary*(t - )P

g?;f(r.r’.t,t’)

gﬁalf(r, rtt)=

e2)? (@42
x | e et — e 1P | @7
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Incident| Light ¢
z=-d

Fig. 2. Geometry indicating the source and detector distribution for
semi-infinite domain (left) and infinite slab (right).

We  observe that - gﬁalf(r, r,tt) =g;f;f(r, r,tt)
[e—(z—zo)‘/(@*(t—l')) _e—((z+zo)z/(4yz(l—l’)))]; in other words, the
Green’s function solution of semi-infinite geometry is the
Green’s function solution of infinite geometry with two
sources located at +z; and —z.

We make the following observations in the Green’s function
for the infinite case [9]:

gi‘iﬂf(r, r,tt) = C[y%gﬁ{f(r, r,tt) - y%ng;ﬁ}" (r,r,t, t’)]
SOURCE-1 SOURCE-2
1 R
[Zell-)o]l e
SYSTEM

where C = (ng?)/ (v, - 73)-

The principle of superposition, which is valid for the linear
system theory, can be extended to the semi-infinite case by
considering the Green’s function for the infinite geometry
as a response to the system 1/(z - 2)[(e" ¥ — e~ U)yy(1)]
with inputs as y2¢”: (r, v, t, ¢') and y2,g7% (r,r', 1, ). Now to ar-
rive at an expression for the semi-infinite case these two
source terms can be altered w.r.t. the spatial vector variable

as shown in Eq. (27), leading to

2
o 4P ') = ng 2 Px i
S Ghar (0, L) = 5 5 [nghalf(rvr7 )
(7m_7x)

- 73ngﬁ;{if (r,r',t,1)]

* [ﬁ [(6’5 - e_s’%)u(t)]], 29)

where
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, [r-r'|2
Do (0 0oy 1 —[umn,c(t—t ) ([_,,)]
ghalf (l‘, r.t t) - m e Tem
xrm

_ez)? _+z)?
x |:€ 172,,00) _ e 4y§‘m(zft’):|. (30)

By similar argument we can deduce the Green’s function
for the infinite slab case as [5,12]

ne?
03 -713)

el o

g ) = 290, (. ¥ . 1) = y2g0m (r. v 6, 1))

where

Drm (r r/ t tr) _ 1 e
N TP = I 5T

0 (z-2nd-20)? (2-2nd+29)*
j : 2 T
x |: (e A5 -0 _ e 473 (=1 ):| (32)

N=-00

| ottty ==L
az.am PGS

The Green’s function solutions for the infinite and semi-
infinite geometries discussed until now have similar structure,
inspiring us to attempt to write a generic expression for the
remaining geometries considered in this work.

C. Generic Expression for Green’s Function Solution
Equation (8) can be seen as a cascaded effect of three
linear operators acting on ®,, (r,f) for an impulse input
S(r-r',t-t), which results in the Green’s function
gho(r. ¥ 1.1 for a geometry.

Rewriting an operator equivalence of Eq. (8) as

L.Ly, Lg% (r. v t.0) =né(r - vt - 1) (33)

with

7} .
LT = |:1 + T&]’ Lm = |:3’an2 _."‘amc_*]y

L, = |:y.;zcv2 — HaxC — %] . (€2))

Irrespective of the rectangular Cartesian, cylindrical, or
spherical polar coordinate systems in which the Laplacian
operator is expressed, we generalize Eq. (25) and propose

9o (¥ 1. 1) = Clr2gheo(r. v 4. 8) -y gk (v, 1, 1)]

[ al(e- o] 3)

as the general form of the Green’s function [3] for any geome-
try; i.e., gg’go(r, r',t,t) as specified by Eq. (35) must satisfy
Eq. (33), leading to finding an expression for C. The proof

is as shown below.
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Substituting Eq. (35) into Eq. (33),

CLe (Lo (L (13080 (r. ¥, £.1) - gl (.. 1.0)]
[Zalle-eal]))
=né(r-r,t-t). (36)

Neglecting the constant C for now, the left-hand side (LHS)
of the above equation can be written as

LAy 2Ly, (L (90 (XY £,6))) = 72 L (L (g (.7 £.8)))}
1 -
% [3{@ Lo )u(t)}:|. 37

As the operators L., L,,, L, and convolution are linear
operators, rewriting the second term of above expression
leads to

Le{y2 Ly (Lo (G0 (. 1,0))) = 7L (L (9580 (1. F', 1, 1)))})
1 I
* [m{(e i—e )u(t)}]. 38
As per the definition of the Green’s function, we have

Lo (g (r,v' £, 1)) = 8(r -1, t = 1),
L (gl (r,v' 6, 0)) = 8(r -, t - ). (39)

Substituting Eq. (39) into Eq. (38) gives rise to
LyiLn (5(r ¥t = 1)) ~ i Ly (8(r = ¥t = 1))}

Pl @

which can be equivalently written as

Ll = Aol 0 =110« | =5 (e = ¥ Jut]
(an

[ ‘ . .0 ,
= Lr{(y'fn/’laxc = Vitam©) + (3 = V%) &} (S(r-r,t-1))

* [ﬁ {(e‘ﬁ - e_ci‘z)u(t)}] 42)

= (1 + 1%) (A +B%) b-r,t-t))
% [ﬁ {(e’f - e‘?)u(t)}]. (43)

where A = (/3,ftaeC = Vitam®), B = (r5 = 13).

We may write 6(r-r',t-t) =6(r-r)5(t-t), and using
the time shift property of the Dirac delta function, the LHS
given by Eq. (43) can be simplified and substituted in
Eq. (36) leading to
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CT_1C2 (1+T%) (A +B§t){(e-% )u(t—t)}

=nd(t-1). 44)

NI“

Once again, neglecting the constants for now, the LHS of
the above equation can be written as

(A + (A7 + B)— + Brg;) {(e* - %)u(t - t)} (45)

As the above expression has an exponent in ¢ and ¢, we
consider the following two cases to show that the above
expression is equivalent to the Dirac delta function (6(¢ - t')).

Case 1: ¢t > ¢

Writing an equivalent expression of Eq. (45),

=t et 1 = 1 =t
A(e*T—e 42) +(A1+B)(?e & - 76 )

1 =t 1 et
+Br(T—2e‘T——e :Z). (46)

Upon simplifying and collecting like terms together, we have

FHCA @

But by definition, (B/¢?) - A = 0, making Eq. (45) identically
equal to zero Vi#1¢ (asu(t-t)=0Vt<?).

Case 2: { =1/,

Using the chain rule of differentiation in the expression
given by Eq. (45) leads to

{(A+(Ar+B) +B‘r§z)(e 2 e ;”)}u(t t)

=t e 0
+ (e*T -e & ) { (Au(t— 1)+ (Ar+B)s(t-t) +BT&5(t— t’)) } .
(48)
The first term is identically zero as per Case 1, leaving us

with the second term, which is simplified as

(e% - e_) { (Au(t ~t)+ A+ B)3(t-1) + BT%é(t - t’)) }

=t et
=Ale 7 —-e &
t -t

+Br—6(t t)( e )

+(A1+B)(e e ¢ )5(t t)

t=t' t=t'

(49)

t=t'

The first two terms on the RHS are zero; using the property
of distributional derivatives given by §'¢p = -6¢’ for functions
such as the Dirac delta will lead to

B a6(t ) et 67%
ot

=Bré(t- t)(g“ e Jt’—%e [,)
_B(-8%)
&

t=t t=t'

s(t-1). (50)

Substituting in Eq. (44) and explicit writing of the terms
leads to
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CT—1C2 (1+1%)(A+B§t){(e Toe E')u(t—t)}

= cc2 S(t-1) =nd(t-1). (51)

iy

Comparing the coefficients, we have

B 2
Cz=n or C= 2n§ 5 -
KJ Ym — Y

(52)

This leads to the conclusion that irrespective of the geome-
try under consideration the Green'’s function solution for the
coupled differential equations given by Egs. (1) and (2) can be
expressed as

QP q ’ né‘Z ) J m ! ’
9o (.Y b t) = e [r29%e0 (0, ¥ 1.1) — 72,950 (x. ¥ 1. 1))
%

% [ﬁ [(e - e‘?)u(t)]], (53)
D

where ggeo' (r, 1,1, 1) are the Green’s function evaluated by
substituting u,, and u,,,, respectively, in the diffusion equa-
tion with the Laplacian operator defined specifically to the
relevant geometry under consideration.

The main derived quantity in the mathematical model for
diffuse fluorescence spectroscopy/imaging is the photon flux,
which can be calculated from the continuity equation (CE) for
the photon density [from Egs. (1) and (2)], where CE is
defined as

oD
TV Ta 1) = ~Hane®n, (54)
where I'y(&,t) is the photon flux. This, combined with the
diffusion equation and the fact that ®; can be written as
the difference between the photon densities ®,, D,
by Eq. (563), leads to the following expression for the photon
flux:

IpE ) = -V - @ (r.0) + 72V - D,(r, ), (55)

where @y (r,t) is the diffuse photon density corresponding
to gggo(r, r,t,t). We have a difference between the two
fluxes in Eq. (63); by the above definition one can rewrite
it as

. T N iy,
gl (Y 1) = 5 2

m_x

[ e - e’f‘z)u(t)ﬂ, (56)

[.ggeo(r v, 1, 0) - gl (r, ¥, 1, 1)

where ggeo(r r,tt)=-y2V ggo(r r,t,t) and gg o (r, ', t,

t,) - _}'mv ggé’i)(r I‘ t t/)
For the frequency-domain case, the expression becomes
(Fourier transform of the above equation)



544 J. Opt. Soc. Am. A / Vol. 30, No. 3 / March 2013

K. Ayyalasomayajula and P. Yalavarthy

Table 2. Green’s Function Solution in the Time-Domain Case for Planar Type Geometries, where
p=xorm

Geometry

gito (Time Domain)

Infinite

Semi-infinite half-space

7ZBC
EBC

Infinite slab (at z = d)

ZBC
EBC

e*}lnpﬂ(f*f')

V @y’ -1)°

Infinite slab (at z = 0)

7ZBC
EBC

2,/ -ty

a2

d —(ﬂnpo(t‘t )+W)

— X
2,/@r)P(t -ty

2 2
—(uapc(t—z'>+4;—‘,) f(papcwmz’%—’,)
dye 70+ dye 200 | (g02)

dy=dy =2, pr=p2=p
dy =2y, dy = (R0 + 22,), pr =p, p2 =P

(g01)

2

>
e Hapc(t=t) o - R
dle 4yplr><fl) _ dze 4y[,1r><71) (gOS)

v/ (471}’5)3 (t - t’)'G n=0

di =24y, Ao =24, P1 = Piny P2 =Pn
dy =2 do =20, p1 =Py P2 =P

2

P ® A __A
20 T 7 2 ix_ 1
{zoe a7 /)+§ [dle dx-0) d2€ G z;]} (g04)

n=1

dl = 24w dz =2y P1 = P> P2 = P-w
dy =2y, da =2, p1 = Piws P2 = Pw

2
N
LG t) = S Gla(r. ¥ 0.0 - Gt 0.)]
x

1 1 1
e {%+jw}%+jw”' e0

Note that similar to the diffusion equation solutions as
given in [5], we have also listed the expressions for
ggfgo (r,r',t,t') and Gggo (r,r', w, ) in case of various geometries
in Tables 2 and 3 and Tables 4 and 5, respectively, for this case
of ZBC. These expressions are derived from the Green’s func-
tion solution for the heat equation as given in [12]. Note that
the data types, which are typically measured in a typical ex-
periment, will use these forms to arrive at closed-form expres-
sions, and the same is given in Section 5.

4. EXTRAPOLATED BOUNDARY
CONDITION

A useful simplifying assumption for solving the coupled diffu-
sion equations is that all the incident photons are initially
scattered isotropically at a depth z, = 1/u;, below the

surface. The geometry for calculation of the time-resolved
transmittance for a homogeneous slab for the ZBC or Dirichlet
boundary condition is shown in Fig. 2. The average diffuse
intensity is set to zero at the surface of the slab at z = 0.
As stated above, the source is assumed to be located a dis-
tance z; into the medium. Thus a negative image source must
be located at the distance z = -z, to meet the boundary
condition. The boundary condition for the surface located
at 2z = d is satisfied by the dipole centered about z = 2d,
but then the boundary condition at z = 0 is violated. Both
boundary conditions can only be met simultaneously by add-
ing an infinite number of dipoles. In practice, the number of
dipoles required depends on the background optical proper-
ties of the slab and the maximum time for which the transmit-
tance is calculated.

However, ZBC is not sufficient when there is a mismatch
between the refractive index of the diffusing and the sur-
rounding medium resulting in ZBC on an extrapolated bound-
ary at a distance z, = 2Auj, from the true boundary [6]. Here
defining n as the ratio of refractive indices between the free
space (air) and tissue and representing y;, as the reduced
scattering coefficient [6] defines A as

2

1+3 8(1-n?%? _ (n-1)*(8+32n+52n>+13n
105n° 10573 (1+n)?

) 4y (n) + rym) + m(n)]

A=

s

1 — =3+Tn+130*+9n° ~Tn' +3n° +n +0"
3(n-1)(n+1)>(n?+1)*

44 n-4n* + 2517 - 40n* - 6n° + 8n° + 3017 — 12n° 4 n? + n!!

—14(n)

3nm? - 1)°(n? 4+ 1)3 ’

- (nz _ 1)2(’ﬂ2 + 1)7/2

2n°(3 + 2n*) niln - (14 1) 22 + 0 + 2(1 + n?) V2]
{ [n+ (1 +nH)Y2]-2 + n* - 2(1 - n*) /7]

}, 58)
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Table 3. Green’s Function Solution in the Time-Domain Case for Circular Type Geometries,
where p =x or m

Geometry

gito (Time Domain)

2D circle, radius a

2 iyt
Finite cylinder, radius a, length [ 2ypeta ")

y?)e‘ﬂapc(l—l')

Q>

0

2

n=-oco

[cos(ne)Ze-’z"‘ OB (Bt /f,m] (205)

P

=

2

ﬂ‘(lx 3

[cos(ane DB f (B’ /fnq)] (206)

R k=Todd n=-c0 P
~HapC(L=L) o
Infinite cylinder, radius a, 2 = 2’ rpet cos(nd) e TP -t) BoS (B B
) ! L A 2 : Bu) (807
2nq? /n(t -1 n:z—oo ; B
Sphere, radius a rpet T < g ) B 2n + 1)P, 08
) W;}ﬁzl e 2 ﬁn+§f'n+%(/ n+%7‘ */ijJr%Q)( n + 1)P,(cos 0) (08)
n+§
Note: For all the circular geometries, such as the 2D circle, cylinder, and sphere, we have
ZBC q=a, f,n(ﬂ,,ﬂ’”, ﬁnQ) = %
— / — LB (Bu1’)
EBC q= b) fn (ﬂnr aﬂnQ) - W
Table 4. Green’s Function Solution in the Frequency-Domain Case for Planar Type Geometries,
where p =x or m
Geometry Gggo (Frequency Domain)
ot —a,,d
Infinite e (1+a (GO1)
e 2\/(2 V2
—jot’ —a, Py — 0, P2
Semi-infinite half-space L die dae™
D TerEE [(1 + a,p1) 3 + (1 4+ app2) 3 (G02)
ZBC dy=dy =20, pr=p2=0p
EBC dy =2, dy = (20 + 22,), p1 =p, p2 =P
Infinite slab (at z = d) N di D o
= T DU+ app)) e = (1 + aypy) — € (G03)
\'% (2”) n=0 P1 P2

ZBC dy = Rins dy =2y, p1 = Pins P2 = P-n
EBC dl = '%-Fm dZ = é‘f'm P1= /)+7L! P2 = /\Ln
. —jot’
Infinite slab (at z = 0) 6(2 7 ((1 + apP) —e GP Z [(1 + apﬂl)—e B — (1 4 apﬂz) —e %/b]) (G04)
n=1
ZBC dl =24 dz =20 P1 = Pns P2 = P
EBC di =240, da =20, p1 = Piw, P2 =P
212 4 8 the following derivations we would determine the Green’s
re(n) = 4d-m )2 a j lgn + 3271 ) , function for the equation
3n(n® -1)*(n" +1) Time-domain case:
1+6n*+n8)lo ( )+4n +nb lo[”"] . 0
( ) g 14+n ( ) g n2(1-n) 59 y2V2 — UyC — — (I)(I‘, t) — _qo(r’ t). (60)
7'4(72) 2 3 ( ) ot
m?-12m%+1)
Frequency-domain case:
Note that typical tissue refractive index is considered to be
1.33 d the f i idered to be 1 Iti .
, an e free space is considered to be 1, resulting 272 + e + jolD(K, ) = ~Qu(K, ). 61)

inn<1.
The extrapolated boundaries for infinite slab and circular
geometries are depicted in Figs. 3 and 4, respectively. In

by using suitable suffixes to the Green’s function solu-
tions of the above equations combining with the result of
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Table 5. Green’s Function Solution in the Frequency-Domain Case for Circular Type Geometries, where
p=xorm

Geometry

Gggo (Frequency Domain)

2D circle, radius a

Finite cylinder, radius a, length [

Infinite cylinder, radius a, 2z = 2’

Sphere, radius a

2y @n)’qr 1=

\/;.;w_[)_s i cos(O)f, (a,r) (GO5)
)" n=-co0
ej(ut’ o)

> Z cos(nO)f , (a7 (GO6)

N 2”l k=1.0dd n=—oco

e—jwl'

" cos(nf)
vV (2ﬂ)3 n—Zw o ; m

Br9n () (G0N

jot'
o Z(Zn + 1P, (€05 O)f () (G08)

Note: For all the circular geometries, such as the 2D circle, cylinder, and sphere, we have
ZBC a=a, fy(er) =P8, g, (er) = 5700
EBC a=b, fuler') =TGR (e, be), gu(er') = s

Fy(ae, be) = J2F, (ag, be) - (1,1 (ae)K, (be) + K, _1(ag)], (be))

F,(ae, be) = K, (ae)l,(be) - I,(ae)K, (be)

Eq. (53) using the EBC for arriving at a more generic
form. The Green’s functions for the EBC, which is a more
realistic condition compared to ZBC, in the time domain
and the frequency domain are given by gg’eo(r r,t,t) and

geo(r r,w, '), respectively, for each relevant geometry drop-
ping suffixes x, m.

Figure 3 shows the dipole arrangement necessary to
achieve zero flux on the extrapolated boundaly Initially,
we derive the expression for ggeo(r r,t,t') and

geo(r r,w,t) in planar geometries such as semi-infinite
and infinite slabs when subjected to EBC. Note that the
infinite geometry solution is not affected by the boundary
condition, as the boundary does not exist. So for infinite
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Fig. 3. (Color online) Illustration of the extrapolated boundary for
infinite slab geometry with source dipoles. The actual domain is
the shaded region.

geometry, the Green’s function solutions are the same for both
ZBC and EBC (Section 3.A gives these expressions).

A. Case 1: Semi-Infinite Geometry

Figure 2 shows the ZBC for the semi-infinite geometry; now
assume an extrapolated boundary exists at a distance -z,.
In order to satisfy the ZBC on the extended boundary,
Eq. (30) needs to be modified as

b ( ) e Hacll= I)+4y2u n:l _ (zgzo)z _ (z+zg+zze)2
gha]f r, rl, t, t) = A2, 8 e ) —e 42 (=) .
[yt - O)F

(62)
Taking the Fourier transform we have
R e’jwt' e’a(éz“'(z’zo)z)l/z
G? (r,Y,w,t) = - { -
half 2(2”)3/2}/2 [52 + (Z _ 20)2]1/3
o~ a(E+ etz +22,))V?

-— - 63
Erernrm  ®

B. Case 2: Infinite Slab Geometry

Figure 3 shows the extended boundary for the infinite slab
geometry. In order to satisfy the ZBC on the extended bound-
ary, Eq. (31) needs to be modified as

| ctt—ty1—2—
4 e |:”“(’(t f)ﬂyzm’):l o _ea? e
gslab(n ritl)y=————— E e ut) —g 4PuD) .

[4ny* (- | ==
64

Taking the Fourier transform we have the Green’s function
in the frequency domain
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o a(E (-2,

e—ja)t o
2(2n)¥? [ 2. {[52 + (2 -2,

N=-00

@+ P
- |. 65
Ere —z_n)Z]WH )

Gl 0, t) =

C. Case 3: Circle

Figure 4 shows the source-detector placement in a circular
geometry with the extrapolated boundary. In this section,
we derive the expression for gggo (r,r,t,t') and Gggo (r,
r', w,t') for the circle initially and extend it to other circular
geometries, such as a cylinder and a sphere when subjected
to EBC.

We consider the circle as a cross section along a plane per-
pendicular to the axis of an infinite cylinder with an infinite
source along its axis. We will derive this form in detail, as it
will act as a precursor to determine the analytical solution for
other circular domains. Starting with the two-dimensional
form of the Green’s function for an infinite medium [5] as
the plausible solution for the circular geometry,

2
_(ﬂ,,c(t-t’)+4‘f?" - )
,

772 (1-1)

¢ / "o
(e ) = ————e
Geir )= =)
y e—jml’
Gla(r.x.0.0) = 57y Kol =¥

The auxiliary equation for circular geometry in the Fourier
domain is

# 10 1&
(a_rZ“L;E“LFﬁ‘“Z)H'ﬁ(”‘)) =0, (66)
which has a general solution of the form H?(r,w) =
S lady(ra) + b, K, (ra)] cos(nd), where I, and K, are
modified Bessel functions of the first and second kind of order
n, respectively.

We make use of the addition theorem for the Bessel func-
tion K(alr —r'|) as given in Section 11.4 in [13],

p—— N —
— ~

P
7~ N

\
Fig. 4. (Color online) Illustration of the extrapolated boundary

(dashed line) for circular geometry; the solid line shows the actual
boundary.
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Ko(alr-r)) = D oo COS(O),(r'a) + b, K, (ra), r>71
TN T i cosmO, (ra) + b,K, ("), <1’
(67)
and find a,, b,, such that Gflr + H? = 0 on the extrapolated

boundary r=b. This leads to b,=0 and a,=
—(K,(bao)I,(ra))/I,(ba) resulting in

oot ),
ErRe > [COS(”H)I )

NnN=-o00

Gt/’

Cir

r,r,mt) =

F,(ra, ba):|,
(68)

where F,(ra,ba) = K,(ra)l,(ba) - I,(ra)K,,(ba) for r > 7.
In the case of r» <7/, we interchange » and 7’ in the above
expression. Taking the inverse Fourier transform results in
the time-domain form as

0

w1
g ) = % Z [cos(né))

n=-oo

o L, (ra)
o
x/; edo(t=1) T.(a )F L (ra, ba)da)] (69)

This can be evaluated by considering a closed contour con-
sisting of the real axis and a large semicircle in the upper half-
plane for ¢ > t'. This contour cannot pass through any poles on
the imaginary axis at the zeros of J,, (ba). This can be realized
by using the identity I, (ze™®#?)) = e 72 ], (2), where J,, is
the Bessel function of order n, and the fact that the equation
J(2) = 0 has an infinite number of distinct real roots [14].
Evaluating the residues over all these poles gives the final
expression as

g Hac(l-1) 2

“oma Z [cos(n@)

N=-00

—v2 32 (1t J’n(ﬂnr)Jn(ﬁn'r,)
2 (A Gl e i (A (G
" P e (J’n(ﬁnb))Z :| (70

gl b t) =

D. Case 4: Finite Cylinder
In this case the auxiliary equation in the Fourier domain
becomes

(1 # &# 19

2
___ ¢ =
Tt r e JH ) =0 ()

which has a general solution of the form

HY(r,0) = iﬂam,nln( [a N (wlm) ]1/2)

mn

+bm,nKn( [a + (m”) ]l/z)l]

x cos(nd) sin (mlﬂz)

We make use of the addition theorem for the Bessel
function Ky(a|r -r'|) similar to the above case leading to
by = 0 and
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1, ([ + (2] )&, (8] @ + (29%] ™)
I, (V’ [az + (%)2]1/2)

with m being an odd number or otherwise 0. We proceed as
in the previous case and arrive at the following expressions
for the Green’s functions in time and frequency domains,
respectively:

Am.n

g?;yl(r, r.z,z2,tt)

N (2-2)2
= Hact-0)+5 ,) ;
e ( 7 a=t) ad e_},mfzxz(t_t,)
mal Z

m=1,odd
o o L (B o (But’)
« cos(nb) e—yzﬂi(t—t)"tfink . (72)
e—jmt’ 0 ©

GlLa.r o.0)] _

2 2

m=1,oddn=-c0

L(am?)
T b) Foy(ay,r amb)]. (73)

T 2l

X [cos(n@)

E. Case 5: Infinite Cylinder
The limiting case of the finite cylinder with the limit! — oo will
yield expressions for the infinite cylinder case; we consider

K. Ayyalasomayajula and P. Yalavarthy

. e—.fﬂlt/ ®
G (r,r,20,l) = — cos(nd
Cyl( , ) (27[)3/2b nz ( )

=-0

ooln(r’\/az + 22)
Sy e

I, (b V& + zz)

an(r\/az +22,bv/a? +z2)dz. (74)

Taking the inverse Fourier transform leads to (time-domain
case)

_ oy @=2)?
(ﬂaC(t 7 )+472(H,,)

- cos(nf

2nb%y /m(t -t n:Z_oo )

% 26_72’/}% (t-t) Jn (ﬂn’r)Jn (/}n/r,) (75)
— T3 (Bub))?

gy 2,2 1t) =

F. Case 6: Sphere
The auxiliary equation for a spherical geometry in the Fourier
domain is defined as

@ E —sin 0— -«

# 20 11 9 0
2sin 000 90

)H‘/’(r, w)=0. (76)

Considering solutions that are finite at the origin, the
general solution to the auxiliary equation will be H? (r, w) =

Va/2ar Y 3 ayly 12 (ra)Py(cos 6), where P, is Legendre
polynomial of order n.

Table 6. Closed-form Expressions for Planar Type Geometries for Integrated Intensity
Egeo (&) = 8277/ (Vo = 12)) Wieo (€)

Geometry Wieo(£)
—0,d _ —Gd
Infinite (1+o,d)e (‘1 + opd)e 101
4rd?
Semi-infinite ha]f_space i dl((l + O‘xﬂl)e_(ympl - (1 + O'wtpl)e_amm) + dz((l + Gx/)Z)e_U’pz - (1 + Umﬂz)e_“'"”) (102)
4n o
ZBC dy=dy =20, p1=p2=p
EBC dy =2y, dy = (20 +22,), pr =p, p2 =
Infinite slab 0 <z <d (at z =d)  _ 1 i di(( + oyp))e — (L4 opp)e )| i da((1 4 oypp)e ™" — (1 + oypa)e”*n"?) (103)
27 [ &= o = I
n=0 1 n=0 2
ZBC dy =2, d2 =2 5, P1 = Piyny P2 = P
EBC dy =24y dy = o 1= Pins P2 = P
Infinite slab (at z = 0) 1 21 +op)e™ — (1 +onp)e™”)
2r P
+ i(dl (A + oppr)e = ; 1+ oppe ))
n=1 P1
- L3 (Bl e oupene) o
27 1A 2
ZBC di =24y, A2 =20, P1 = Piyns P2 = Pw

EBC d, = éiJrn’r dy =2, p1 = Piws P2 = Pw
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Table 7. Closed-form Expressions for Circular Type Geometries for Integrated Intensity
Egeo (&) = 827/ (Vo = 12)) Wieo (€)

Geometry Wi (&)
. . 1 &
2D circle, radius a 5= Y cos()(fu(0,7) = fu(0mr)) (105)
2r =
- . . 1 & =
Finite cylinder, radius a, length [ = Z Z cos(O) (f n(G.7") = f n(Coi?)) (106)
Ic 1,0dd n=-c0
Infinite cylinder, radius a, 2z = 2’ 1 1
cos(nd) ) _g,(Bnr") = = - —= = 107)
2n n;x, ; Vi + B Vom + b
Sphere, radius a fi(007) = frsi(om?) ) @0 + 1P, (cos )  (108)
+ x + m n
J&?ﬁz v et (o)
Note: For all circular type geometries, such as the circle, cylinder, and sphere
_ ’ L,(r'e) N g, (1'e)
ZBC q=a, fu(er) =110 guler) = 7
EBC q=b, fu(er) = PG (e, be), gy (er') = G200
F"n(a& b(:‘) = ;—?Fn(a&‘, bE) (Infl(aS)Kn(bE) + anl(ag)ln(bg))
F,(ag, be) = K, (ae)l, (be) — I,(ae)K,, (be)
The Green’s function for the infinite medium in spherical with » > 7'. In case of r < 7/, we interchange r and ' in the
coordinates can be written as [12] above expression. Imposing the condition G;"f(r r,wt)+
H¢(r w)=0, we have = -(2n + D)((K,4 (12 (ab)
(,4 ot bt ) Iy (o ))/(47772\/7%(1/2)(0‘1’)))
P C ! P We proceed as in 2D circle case and arrive the following
Yne (0.7 1. 1) = 8y /—”(t 1) ’ expressions for the Green’s functions in the time and

t) e frequency domains, respectively:
eJl=t) g

G]‘flf(r, r,wt)=

2(2”)3/272R ' e —pqc(t-t) 0 1(t )

gsph(r rit) = B Z Z "2

where R? =12 4+ 72 - 20 cos 6, in the time domain and the 2nb */Wn*foo/f 4

frequency domain, respectively. J ( 4 17’) ( r’)

By using an addition theorem in the Bessel function ey Pntg ) n g Pnty

similar to earlier cases, Gmf may be expressed as a form ( " +1(ﬂn +1b))

more suitable for spherical coordinates as Gmf(r,r’,a),t’) =

(1/4mr* 7)oy @n+ DI, 172y (@)K 4 12 (@) Py (cos ) x (@n+ 1)Py(cos 0), D

Table 8. Closed-form Expressions for Planar Type Geometries for Mean Time of Flight (t eo) (E) = (ageo)(tf) + @+

Geometry (@feo) (&)
. 1 d2< ;"’d - e/%d)
Infinite = — = — (t01)
2((L+ o, d)e ™ — (1 + o, d)en%)
dl(*(wl _(zﬂmq) (]Z(*ﬂuz _(z"'m/2>
Semi-infinite half-space 1 P\ Vx Vm P2\ Vr Vm (t02)
2
[% (A + oypr)e™ = (1 + oppr)e ) + %((1 + oupp)e 2 - (1 + ampz)e’“m”)]
ZBC dy=dy =20, pr=p2=p
EBC di =20, d2 = (R0 +22,), pr=p, p2=p
Infinite slab 0 <z < d (at 2 = d) ) |: o { /dTl (e’;”’l _ e’:’"”l)} - {d; (e e efzmwz>}i|
= 1 x 'm ¢ 'm
2 (t03)
|: b {d1 ((1 + Ualol)eimm - (1 + O"mPI)eiampl)} { ((1 + UTPZ)ei{T")Z = (1 + 0'7,:,,02)370"’/}2)}]
ZBC dy =2y, dp =2, p1 = Pin, P2 =P
EBC Ay =2, d2 =2, p1 = Pins P2 = P

Note: ¢ is implicitly assumed to be zero. It is easily verified that the correct result for ¢’ # 0 is obtained
by adding ¢ to (tg)(¢)-
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Table 9. Closed-form Expressions for Various Geometries for Mean Time of Flight (t eo) (6) = (aﬁ_}eo @)+ @+

Geometry <age0 (3]
Tnfinite slab (at 2 = 0) 3

20 (e 0P o OuP © (d. (e %P1 e OmPL ® (do (e CcP2  e=OmP2
S s B P G | Bl Sl
P Uy U n=0 P1 Uy n= x Uy,

S oo™ (Lt oupen) + 3B+ e — (L4 o pr)e )

n=1F1
o~ da —oup: .
=) S (A + agpa)e ™ = (1 4 oypa)e ) (t04)
n=1F2
ZBC dy =2y, dy =20, P1 = Piw, P2 =P
EBC dy = 2+7L'7 dy=2_,p1= Pints P2 =Py
125 08(u0) (171, (0.) = - (o))
2D circle, radius a - o : (t05)
2 chozfoo COS(’}’LQ) (fn (UIT ) _fn (Gmr ))
bl ®_ o cos(nb)(Lfr(owr) - L1 7
Finite cylinder, radius a, length [ 2100 2i=-oo ( )(”"”‘fn(%k ) "”’“‘fn i )) (t06)
ZI?:LOdd Z;c:—oo COS(’}’LG) (fn (ka’i"') _fn(amk’r,))
o0 / 1 1
Infinite cylinder, radius a, 1 DI cos(n@)zﬁ”g n(But”) (73. VAR 2 +/7;1)3)
2=z B - (t07)

55w 030020, - 727

Note: ¢ is implicitly assumed to be zero. It is easily verified that the correct result for ¢ # 0 is obtained
by adding t' to (tz)(¢).

Table 10. Closed-form Expressions for Circular Type Geometries for Mean Time of Flight

(teo) (B) = (ageo) (&) + (z +&2)
Geometry (aleo) (&)

Sphere, radius a 1200 ( n+'(0ﬂ) "+‘(0’”T )) (@n + Py (cos 6)
2 2y (funear) —fﬂﬁ(amm) (20 + 1P, (cos 0)

(t08)

Note: ¢’ is implicitly assumed to be zero. It is easily verified that the correct result
for ¢’ # 0 is obtained by adding ¢ to (tg)(£).

Note: For all circular type geometries, such as the circle, cylinder, and sphere
ZBC q=a, fu(er) = 1208, gu(er) = 5200 1,(07e) = L, (er" @)
EBC q=0b, fuler) = PEOF, (ag, be), gn(er) = 5‘%

fL@'e) = (’;‘(gj; + ell, (e, b)) F,, (ae, be) + & , (bé 958, (eat, €b)

_ L), (re)-ql, (qe)],(r'e)
(e, q) = T, (@e)? ’

F”n(a/& b(:‘) = ,_TZIFW ((l&‘, bé‘) - (Infl(aE)Kn (b{;‘) + K'nfl(ag)ln (b&‘))

B, (ae, be) = (M;H) - a)Fn (ae,be) + bF, . (ae.be) + =L (1, (ae)K,, (be)
aeg &

+ K1 (ae)l,(be)) - % (I (ae)K, 1 (be) + K, (ae)],, 1 (be))
F,(ag,be) = K, (ag)l, (be) - I, (ae)K,, (be)
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F, + (ra,ba)P,(cos 6). (78)

7=0 L+l
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The expressions for Eq(¢) and (ty) (&) for various geome-
tries are derived as follows using the solutions listed in
Tables 6-10. For any function g(¢) with G(w) as its Fourier
transform, one can write

/ ® g(tyde = @G(wm:o and,

7}
- _ = —Jwt
5. EXPRESSIONS FOR DIFFERENT DATA 55 G@) = \/—a / g(ye"de
TYPES
The important measured quantities (data types) [5], which are = f tg (®)dt (8D
of significance in the diffuse fluorescence spectroscopy/
imaging, need to be evaluated, and the expressions for the and thus
same are listed as below.
(i) Integrated intensity (units: energy per unit area): Eé‘eo(f) = V272G ()] =9
V2zn®y;,
0 = — - r.r',w,t Ghn r.r’,w,t’]
En(§) = / Ta(&. 0dt, (79) R [ )~ Gl )
o 1 1 1 }
where 'y (&, ) is the temporal point-spread function (TSPF). - i +jo 5%—!— Jofll _,
ii) Mean time of flight (MTOF): .
(i) f flight (MTOF) VI,
/ o = yz ” [ geo(r r,w,t) - Ggeo(r r,w, t’):H
_ogo tFﬂ s t)de m ~ lx
(ta) (&) = =2———. (80) o
[ Ta(é, t)de (82)
Table 11. Glossary of Notation of Symbols Used in Tables 2-10
Symbol Formula Symbol Formula
5 = \/xz + yz Oxm = ;;’iﬁ:mc
P = &+ o S
Rin = (27L + l)d + 2 Ok ke = (\/ aﬁm + kzl_f)
2.n =(2n+ 1d -2 r Radial position of the source.
2w =2nd + 2, B; Positive root of J;(8;a) = 0, where j = n, n + L.
B = 2nd - 2 ¢ = c(n’,,li»_—:;m>
2in =(2n+ 1)(d+2z,) + 2 2 =(2n+ 1)(d+2z,) -2
2w =2n(d + 2z,) + 2y 2, =2n(d+ 2z,) - 2
Table 12. Glossary of Notation of Symbols Used in Tables 2-10
Symbol Formula Symbol Formula
P+n = 52 + z+n Vym = Yam/Hax.amC
Pn 62 + zé” Yam = 3(ﬂm».mnrﬂér sm)
P+n 52 + Zin’ Oukemk
P-w 52 + z%n' Uk mk
Bessel function — J,(x) =20 %
Modified Bessel function — I,(x) =3, %
Legendre polynomial — P,(v) =g o[ - 1"
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w=0 __

(1o} (&) = %

V2l 9 Iy / , Lo / 1 1 1
i Gfﬂ(w) ) A2 o Ggeo(r,r,w,t) —Ggeo(r,r,w, r))- = %_¢%+jm
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w=0

G ()]

w=0

Jw oo

V2t

YoTs

I, / ’ Iy, ’ ,
.[iGgéo(r,r,w,t) — LGl (. x ,w,t)]|

[Gggo(r. ¥.0.l) - Gha(r. v, o, t’)]

0=0

=J

Note that the above equations are generic in nature; the spe-
cific solutions for various geometries are listed in Tables 6-10
with Tables 11 and 12 giving the glossary of terms used.

6. DISCUSSION AND CONCLUSIONS

Many closed-form Green’s function solutions were proposed
in the past for diffuse fluorescence spectroscopy/imaging in
biological tissues, but they were dealing mostly with the infi-
nite and semi-infinite geometries along with ZBCs [3,7-9].
Here, the usage of the EBC for various regular geometries
(other than the infinite geometry) to derive generic Green’s
function solutions was attempted. A generic closed-form solu-
tion that could be used for any given geometry was derived,
giving immense flexibility to obtain a solution for any kind of
regular geometry. For example, the solution for the cube geo-
metry, which is not discussed here, could easily be written
using the heat equation solution as given in [12] (also shown
in Section 2 of this work [10]).

Patterson and Pogue [3] have suggested (through Eq. (3) of
[3]) that the general form of photon flux could be derived in
the case of fluorescence imaging; here a formal derivation
for various regular geometries using the first principles and
Fourier transform techniques has been provided.

Assuming the fluorophore lifetime is negligibly small, i.e.,
7= 0in Egs. (5) and (6), leads to

qn (I‘, t) = ”ﬂafN(r)q)x(r’ t)» (84)

Qﬂ(r’ w) = ﬂ”afN(r)q)x(r’ (0) (85)

This case was extensively discussed by Sadoqi et al. [9], mak-
ing the solution provided in [9] a special case of the closed-
form solutions derived here.

Moreover, for the case of an EBC that closely mimics the
real scenario, more than six geometries of closed-form expres-
sions were derived in detail here. All expressions were de-
rived using first principles without losing the generality.
The comparison of the solutions obtained using zero and ex-
trapolated boundary conditions and their validation has been
taken up in the next part of the work [10]. Extension of the
methods deployed here for irregular geometries and usage
of these closed-form solutions to provide estimates of bulk
(homogenous) fluorescence properties using the experimen-
tal data has also been discussed in the companion paper [10].

In summary, generic closed-form Green’s function solu-
tions for time- and frequency-domain diffuse fluorescence
spectroscopy/imaging in biological tissues for the zero and ex-
trapolated boundary cases have been derived in this work,
and the expressions for various regular geometries have been
provided for easy reference. The expressions for the derived

[Gieotr. ¥ 0.0) - Gy ¥ 0,1

9=0 4 (z 4 ). (83)

data types, integrated intensity, and MTOF have been also
been presented in this work.
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