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A new approach that can easily incorporate any generic penalty function into the diffuse optical tomographic
image reconstruction is introduced to show the utility of nonquadratic penalty functions. The penalty functions
that were used include quadratic (l2), absolute (l1), Cauchy, and Geman–McClure. The regularization parameter
in each of these cases was obtained automatically by using the generalized cross-validation method. The
reconstruction results were systematically compared with each other via utilization of quantitative metrics, such
as relative error and Pearson correlation. The reconstruction results indicate that, while the quadratic penalty may
be able to provide better separation between two closely spaced targets, its contrast recovery capability is limited,
and the sparseness promoting penalties, such as l1, Cauchy, and Geman–McClure have better utility in recon-
structing high-contrast and complex-shaped targets, with the Geman–McClure penalty being the most optimal
one. © 2013 Optical Society of America

OCIS codes: (170.0170) Medical optics and biotechnology; (100.3010) Image reconstruction techniques;
(100.3190) Inverse problems; (110.6960) Tomography; (110.6955) Tomographic imaging; (110.0113) Imaging
through turbid media.
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1. INTRODUCTION
Near-infrared (NIR) diffuse optical tomography [1–4] is an
emerging medical imaging modality that is capable of provid-
ing functional information of soft-tissue. Nonionizing NIR
(600–1000 nm) light is delivered by using optical fibers on
the surface of the tissue under investigation, making it an
attractive noninvasive imaging modality, as tissues may be
exposed several times without any risk of radiation-related
hazards [3]. Because of multiple scattering, the light diffuses
through the medium and is collected by the fibers placed at
the boundary. From the limited measured intensities on the
boundary of the imaging domain, the distribution of the inter-
nal optical properties of the tissue are estimated [5,6]. When
multiple-wavelengths data is available, then clinically
relevant functional properties of the tissues, such as oxy-
hemoglobin, deoxy-hemoglobin, and water concentration
can be determined by using this data [4].

Diffuse optical tomography recovers the internal distribu-
tion of the optical properties of tissue, and, in practice, it
requires solving a nonlinear inverse problem [6] involving a
numerical model for light propagation. The inverse problem
associated with diffuse optical imaging is ill-posed and often
underdetermined, as scattering is the dominant mechanism
experienced by the NIR light in the tissue [4]. Solving this
inverse problem, also known as the image reconstruction
problem, requires powerful and advanced computational
methods that can recover accurate solutions using limited
noisy boundary measurements [4,7]. Moreover, to overcome
the ill-posedness of the problem and to obtain a unique solu-
tion, a penalty term is deployed in the estimation process. The
penalty term, also known as a regularization scheme,
not only stabilizes the solution, but also promotes faster

convergence to the iterative solutions. More precisely, instead
of only trying to minimize the data-model misfit, the objective
function to be minimized for diffuse optical tomographic im-
age reconstruction incorporates additional information about
the image to be reconstructed by including a penalty term.
Several penalty terms are proposed in the literature that
can effectively be used to model the unknown optical prop-
erty distribution [8–11]. In multimodal diffuse optical imaging
systems, the structural information provided by the traditional
imaging modalities has been incorporated into the penalty
terms to improve diffuse optical image reconstruction [10].
The standard and the simplest method is Tikhonov-type
(quadratic) regularization, in which the image quality is deter-
mined by the regularization parameter (scalar value). A higher
value over smoothes the reconstructed image, which results
in the loss of image quality due to poor spatial contrast
and resolution, whereas a lower value amplifies the high-
frequency noise [9,12].

Even though often maligned [12], quadratic penalties pro-
vide a useful reduction in image noise over a large range of
spatial resolutions. Nonquadratic potential functions as pen-
alty terms may induce additional nonuniformities beyond
the resolution effects. In this case, the model of the imaging
domain has to be consistent with the actual image to be re-
constructed [13–17]. In this paper, a simple, yet effective,
framework to incorporate nonquadratic penalty terms is intro-
duced for the inverse problem encountered in diffuse optical
tomography, and implementation of the same is achieved
through MATLAB-based open-source NIRFAST [7]. Using
this framework, three such nonquadratic penalty terms are de-
ployed to show their usefulness in some special cases. Mainly
the resolving power, robustness against noise levels, and
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high-contrast recovery of the proposed penalty functions are
compared with the standard uniform quadratic regularization
parameter. Moreover, the generalized cross-validation (GCV)
method is incorporated into this framework for automated
choice of the regularization parameter for obtaining unbiased
reconstruction results. The reconstruction results using differ-
ent penalization schemes deployed in this work have been
compared quantitatively via use of both relative error (RE)
and Pearson correlation (PC) figures of merit. As the empha-
sis in this work is on investigating the effect of nonquadratic
penalty functions on image reconstruction, the discussion is
limited to the continuous-wave (CW) case. In this case, the
amplitude of the light is the boundary data collected, from
which the unknown optical absorption coefficient distribution
is recovered.

2. METHODS
A. Diffuse Optical Tomography: Forward Problem
The modeling of CW NIR light propagation through a thick
biological tissue is achieved by solving a diffusion equation
(DE) [5,18], which is given as

−∇ · �D�r�∇Φ�r�� � μa�r�Φ�r� � So�r�; (1)

where the optical diffusion coefficient is defined as D�r�, the
optical absorption coefficient as μa�r�, and the spatially re-
solved photon fluency density is denoted by Φ�r�. The
right-hand side of the DE, So�r�, represents the CW light
source, and is modeled as isotropic. The diffusion coefficient
is defined as

D�r� � 1
3�μa�r� � μ0s�r��

; (2)

where μa�r� is absorption coefficient defined above and μ0s�r�
is the reduced scattering coefficient, which is defined as μ0s �
μs�1 − g� with μs as the scattering coefficient (and g is the
anisotropy factor of the medium). Note that μ0s�r� is assumed
to be known and remains constant in the CW case. In order to
account for the refractive-index mismatch at the boundary
[19], a Type-III boundary condition (Robin-type) is employed
for the DE. The solution of the DE [Eq. (1)] for the given
distribution of the optical properties [μa�r�] of the imaging do-
main is obtained by applying the finite element method (FEM)
[20], and thus the forward problem solution gives the modeled
data at the detector positions. Themodeled data (y), under the
Rytov approximation, is the natural logarithm of the intensity
(I), i.e., y � ln�I), and this forward model is repeatedly used
in solving the inverse problem [5].

B. Diffuse Optical Tomography: Inverse Problem
The inverse problem solving involves estimation of the un-
known optical property distribution using the limited number
of CW boundary measurements via a model-based approach.
This is typically an iterative procedure, where the experimen-
tal measurements are matched iteratively with the modeled
data in the least-squares sense over the range of μa. The in-
verse problem is popularly solved as an optimization problem
[1,5–7,10,19,21] and involves direct calculation of the Jacobian
(J, also known as the sensitivity matrix) with the help of

a forward model, followed by solving a linear system of
equations to estimate the update in the optical properties.

1. Quadratic Penalization
A typical (standard) objective function (Ω) to be minimized
with respect to μa can be written as follows:

Ω � ky − G�μa�k2 � λkμa − μa0k2; (3)

where y denotes the experimental data, i.e., y � ln �I�measured

and G�μa� denotes the model data for the given distribution of
μa. Because of the ill-posedness of the problem, a regulariza-
tion or penalty term is added; here it is the generalized
Tikhonov regularization, one of the most popular penalty
terms. The initial guess for the background absorption coef-
ficient is μa0. Taylor’s series expansion of theG�μa� around μa0
gives

G�μa� � G�μa0� � G0jμa0 �μa − μa0� �…; (4)

where G0 � J � dG�μa�
dμa

is the Jacobian. The Jacobian matrix
has the dimensions of NM × NN, where NM represents the
number of measurements and NN represents the number of
nodes in the finite element mesh. Ignoring the higher-order
terms by assuming that the initial guess μa0 is very close to
the solution leads to the linearized inverse problem [20,22];
using Eq. (4) in Eq. (3),

Ω � kδ − JΔμak2 � λkΔμak2; (5)

where δ is the data model misfit, δ � �y − G�μa��, and
Δμa � �μa − μa0�. Minimizing the above objective function
with respect to Δμa by applying the first-order derivative
condition yields

�JTJ � λI�Δμa � JTδ: (6)

This leads to the iterative update equation [22]

�JTi−1Ji−1 � λiI�Δμia � JTi−1δi−1; (7)

where Δμia represent the update of the optical absorption
coefficient (μa) at the ith step, the Jacobian Ji−1 is calculated
from the distribution of the absorption coefficient from the
(i − 1)th step (μi−1a ), which is obtained from the previous up-
date Δμi−1a , and I is the identity matrix of order equal to num-
ber of FEM nodes (NN). The regularization parameter (λi), in
Eq. (7) can be shown to be the ratio of the variance in the data
and the estimated optical properties [10]. For a given problem,
finding a suitable λ requires the prior information about the
noise level in the data and also the noise characteristics of
the image to be reconstructed, which may not be possible
in a realistic scenario. In the present work using simulated
data, 1% normally distributed Gaussian noise was added to
the amplitude, which is a typical noise observed in experimen-
tal data [23]. The iterative procedure is stopped when the
l2-norm of the data-model misfit (δ) does not improve by
more than 2%.

2. Nonquadratic Penalization
In the linearized objection function [Eq. (5)] instead
of the Tikhonov regularization term, which is quadratic
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(l2-norm-based), one can deploy nonquadratic penalty terms
[13–15,17]. Some of these penalties are given in Table 1 (in-
cluding the l2-norm-based one) with σ2Δμa representing the
variance in Δμa. Typically, these penalty terms are added
to stabilize the solution, thus ensuring convergence [16,24]
and removing high-frequency components [9,11]. Different
penalty functions model the distribution of the update, in turn
modeling the absorption coefficient of the domain. The inclu-
sion of σ2Δμa in the update equation assists in controlling the
reconstructed image quality at each iterative step. The gener-
alized objective function in this case can be written as

Ω � 1
2
kδ − JΔμak2 � λρ�Δμa�; (8)

where ρ�Δμa� is one of the penalty function given in Table 1.
Minimizing the above objective function with respect to Δμa
and equating the first-order derivative to zero leads to

−JT �δ − JΔμa� � λρ0�Δμa� � 0: (9)

Similar to Eq. (7), the update equation for the ith iteration
becomes

�JTi−1Ji−1 � λiDΔμi−1a
�Δμia � JTi−1δi−1; (10)

where �DΔμi−1a
� is a diagonal penalty matrix consisting of values

of �ρ0�Δμi−1a �∕Δμi−1a � corresponding to each FEM node. The
details of generalized inversion along with the comparison
with the standard (quadratic penalty) are given in Appendix A.
The value of λi is chosen optimally in an automated fashion
using the GCV method (explained below). Note that the first
iteration of the reconstruction scheme is same for all cases,
where we use a standard quadratic penalty and the regulari-
zation parameter used is 0.01. From the second iteration
onward the penalty terms given in Table 1 are deployed,
and the regularization parameter (λi) is automatically chosen
by using the GCV method.

The GCV method is the most popular method for estimating
the optimal regularization parameter in ill-posed inverse prob-
lems [25,26]. The main advantage of this method is that it does
not require accurate estimation of the noise-level (σ2) present
in the system for finding the optimal regularization parameter.
The L-curve method is another popular scheme for estimation

of the optimal regularization parameter for a linear inverse
problem, which typically assumes that the penalty term is
quadratic [27,28]. Moreover, in diffuse optical tomography,
L-curve based regularization parameter choice was found
to result in overly smooth solutions [27,28]. Using the GCV
method, obtaining an estimate for the regularization param-
eter used in Eq. (10) is achieved by minimizing a continuous
function G�λ�, with λ > 0, which is given by

G�λ� �
1
NN k�I − A�λ��δk2h
1
NN trace�I − A�λ��

i
2 ; (11)

where

A�λ� � �Ji−1�JTi−1Ji−1 � NN · λ · DΔμi−1a
�−1JTi−1�: (12)

Here trace represents the trace of the matrix (sum of the
diagonal entries). Since there exists an optimal regularization
[29] or at least a suboptimal regularization for noisy data, a
direct line search methods can be applied to find the optimal
λ that minimizes G�λ�. For finding such an optimal λ, here a
gradient-free simplex-method-type algorithm is used owing
to its computational compactness [30,31].

3. NUMERICAL EXPERIMENTS
In order to investigate the different characteristics of the
reconstructed images obtained as a result of using different
penalty functions, five numerical experiments were con-
ducted. In the initial four experiments, the imaging domain
considered is circular in shape, having a radius of 43 mm,
where the source–detector fibers are placed on the boundary.
The optical properties of the background are at 0.01 mm−1 for
the absorption coefficient and 1.00 mm−1 for the reduced scat-
tering coefficient. For the generation of the experimental am-
plitude measurements [y � ln�I��, a fine FEM mesh having
10,249 nodes (corresponding to 20,160 triangular elements)
was used, whereas for the generation of modeled data
G�μa�, a coarser FEM mesh with 1785 nodes (corresponding
to 3148 triangular elements) was used. The measurement
setup consists of 16 equi-spaced fibers arranged along the cir-
cumference of the circular domain. When one fiber is used at a
time as the source of NIR light, then the remaining 15 fibers
act as detectors, resulting in 240 (16 × 15) measurements. To
mimic the experimental conditions, Gaussian-type modeling

Table 1. Different Penalty Functions and Their Derivatives Used for Estimation

of Optical Properties from Eq. (10)

Penalty function ρ�Δμa� ρ0�Δμa� �
∂ρ�Δμa�
∂Δμa

DΔμa �
ρ0�Δμa�
Δμa

Quadratic �l2� 1
2

���� Δμa
σΔμa

����
2

2

�
Δμa
σ2Δμa

�
1

σ2Δμa

Absolute value �l1�
����
�
Δμa
σΔμa

�����
1

sgn�Δμa�
σΔμa

1
σΔμa jΔμaj

Cauchy 1
2
ln
�
1�

�
Δμa
σΔμa

�
2
� Δμa

σ2Δμa � Δμ2a
1

σ2Δμa � Δμ2a

Geman–McClure 1
2

�
Δμ2a

σ2Δμa � Δμ2a

�
Δμaσ2Δμa

σ2Δμa � Δμ2a

1

�σ2Δμa � Δμ2a�2
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of the source with a full-width at half-maximum of 3 mm was
used [23].

Initially, two circular absorbing targets are placed along the
x axis with a 5 mm separation and equidistant from the center
of the circular domain with contrast of 2∶1 compared to the
background μa value. The target (expected) μa distribution is
shown in Fig. 1 (top left-hand corner). The numerically gen-
erated data using a fine mesh were added with 1% (Fig. 1) and
3% (Fig. 2) white Gaussian noise to mimic a typical experimen-
tal scenario. Next, similar to Fig. 1, the circular absorbing
targets are placed in an asymmetric position as shown in
the top left-hand corner of Fig. 3. Here, to mimic experimental
data, numerically generated data using the fine mesh were
added with 1% white Gaussian noise. One more case, with
a centrally absorbing target with a high contrast of 4:1 when
compared with the background μa, was considered as the next
test problem. The expected target distribution is given in the
top left-hand corner of Fig. 4. In this case, numerically gener-
ated data was added with only 1% white Gaussian noise. The
next test problem had two rectangular absorbers placed hori-
zontally (centered at [0, −14 mm]) and vertically (centered at

[−10 mm, 0]) to obtain an L-shaped target (shown in Fig. 5, top
left-hand corner) with a uniform thickness of 7 mm. The ab-
sorption contrast of the target is 2:1. Similar to the previous
case, 1% white Gaussian noise was added to the numerical
data. In all cases, data calibration was performed to
remove biases introduced due to irregularities in modeling
source–detectors [32].

Fig. 2. Similar to Fig. 1 except that the data noise level is 3%; the
target distribution is the same as in Fig. 1.

Fig. 3. Similar to Fig. 1 except that the absorption targets are placed
asymmetrically close to the boundary (top left-hand corner).

Fig. 4. Similar to Fig. 1 except the target is located at the center and
has a contrast of 4∶1.

Fig. 5. Similar to Fig. 1 except for an L-shaped target.

Fig. 1. Reconstructed images using the penalization functions dis-
cussed here (Table 1) in the numerical experiment with 1% noisy data
where target distribution is given as in the top left-hand corner. The
penalization functions used are given at the top of each corresponding
reconstructed image. The one-dimensional cross-sectional profile
along the solid line of the target distribution is given at the top
right-hand corner.
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In order to effectively assess the reconstruction perfor-
mance of different penalizations, a numerical experiment
involving a typical magnetic resonance imaging (MRI) NIR hu-
man breast mesh is considered. The segmented high-
resolution MRI images clearly show three breast regions,
and the corresponding optical properties of the tissue types
used in this simulation case were μa � 0.01 mm−1 for the fatty
region, μa � 0.015 mm−1 for fibro-glandular tissue, and tumor
with μa � 0.02 mm−1. The target distribution of the same is
shown in the left-hand top corner of Fig. 6. The value of μ0s was
assumed to be known and was kept constant at 1 mm−1

throughout this imaging domain, also. The mesh used for data
collection was a fine mesh with 4876 nodes (corresponding to
9567 triangular elements), and 1% Gaussian noise was added
to mimic the real-life condition. For the reconstruction a
coarse mesh with 1969 nodes (corresponding to 3753 triangu-
lar elements) was used.

A. Quantitative Analysis
To better assess the performance of different penalty func-
tions deployed in the test cases presented here, a quantitative
analysis was undertaken using the metrics RE and PC. As the
studies involved here are numerical in nature, these metrics
are easily computable.

The RE is a quantitative metric to measure the deviation of
the reconstructed image from the target image and is defined
as

RE �
�k��μa�TRUE − �μa�RECON�k2

k��μa�TRUE�k2

�
× 100; (13)

where �μa�TRUE and �μa�RECON, respectively, represent the tar-
get and the reconstructed images. The less RE, the better is
the reconstruction performance of the penalty function.

PC quantitatively [33] measures the detectability in the
reconstructed images by measuring the linear correlation
between the target and the reconstructed image and is defined
as

PC��μa�TRUE; �μa�RECON� �
COV��μa�TRUE; �μa�RECON�

σ��μa�TRUE�
; (14)

where COV is the covariance and σ indicates the standard
deviation. The higher the PC value, the better is the detectabil-
ity of the anomalies in the imaging domain.

All reconstruction results presented in this work were
performed on a Linux workstation with dual quad-core Intel
Xeon processor 2.33 GHz with 64 GB of RAM.

4. RESULTS
The reconstruction results in the numerical experiment
conducted using the target distribution having two circular
targets (top left-hand corner of Fig. 1) are given in Figs. 1
and 2 for 1% and 3% noisy data cases, respectively. For the
case of the absorption target’s being close to the boundary
(top left-hand corner of Fig. 3), the results are given in Fig. 3.
The penalty functions used are given at the top of each recon-
structed image, and the one-dimensional cross-sectional
profile along the solid line of the target distribution is also
given in the same figures. The corresponding penalty function
forms are given in Table 1. The RE and PC quantitative metrics
for the analysis of these results are given in Tables 2 and 3,
respectively. These results indicate that the l2, l1, and Cauchy
penalty function performance in resolving the anomalies
is comparable, while the Geman–McClure has the best perfor-
mance compared to the others. But even though the
reconstruction is not visually showing good performance
for the Geman–McClure, the RE value is the lowest, as it is
evident from the profile plot that the variation from the target
distribution is far less when compared with the other penalty
functions.

The numerical experimental results (1% noisy data) of the
high-contrast target placed at the center of the imaging do-
main are given in Fig. 4 along with the one-dimensional
cross-sectional profile. Similar to earlier cases, the quantita-
tive metrics that analyze the results are given in Tables 2
and 3. Here, it is clearly seen how the nonquadratic penaliza-
tion gives better reconstruction than the traditional l2-based

Table 2. Quantitative Comparison of RE [Eq. (13)]

of Reconstruction Results Using the Discussed

Penalty Functions

Figures l2 l1 Cauchy Geman–McClure

Fig. 1 30.3253 29.8520 26.7255 20.6825
Fig. 2 25.6591 24.9072 22.6244 20.0364
Fig. 3 29.1088 29.7643 27.4685 19.4516
Fig. 4 32.5844 30.0740 28.3723 29.2519
Fig. 5 35.6552 35.4859 31.5659 25.5824
Fig. 6 16.9519 16.9585 15.8667 15.2391

Table 3. Quantitative Comparison of Pearson

Correlation (PC) [Eq. (14)] of the Reconstruction

Results Using the Discussed Penalty Functions

Figures l2 l1 Cauchy Geman–McClure

Fig. 1 0.4794 0.4744 0.4825 0.5270
Fig. 2 0.4258 0.4599 0.4781 0.5283
Fig. 3 0.3884 0.4045 0.3907 0.5373
Fig. 4 0.6762 0.7193 0.7552 0.7944
Fig. 5 0.3516 0.3506 0.3321 0.3744
Fig. 6 0.6495 0.6502 0.6847 0.7046

Fig. 6. Reconstructed optical images with various penalty functions
listed in Table 1, using a realistic MRI derived patient mesh. The one-
dimensional cross-sectional profile along the sold line of target distri-
bution is given at the top right-hand corner.
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penalization, both visually and also by one-dimensional line-
profile plot shown in the same figure.

In Fig. 5, the reconstruction results for the L-shaped target
is provided, using penalty functions described here. Similar to
the earlier results, the corresponding figures of merit of the
reconstructed results are given in Tables 2 and 3. These re-
sults indicate, in terms of quantitative metrics, that
l2- and l1-based penalty performance is inferior compared to
the others and that the nonconvex penalty functions (Cauchy
and Geman–McClure) performance is superior.

The reconstruction results with a patient mesh obtained
from MRI images using various penalty functions are given
in the Fig. 6 along with the one-dimensional cross-sectional
profiles. Tables 2 and 3 also have the quantitative comparison
of these reconstruction results. Quantitatively the perfor-
mance of all penalty functions is similar; the Geman–McClure
result shows that it is effective in suppressing the background
artifacts (also true for the results presented in Fig. 5). Further,
the shape recovery more closely follows the expected distri-
bution (line profile of Fig. 6).

5. DISCUSSION
The inverse problem of estimating the internal distribution
of tissue optical properties in NIR diffuse optical tomography
is a challenging task and involves using advanced numerical
techniques to get reasonable estimates. The ill-posedness
encountered in the inverse problem is compensated by using
penalty or regularization terms to get a unique solution. Often,
these penalties dictate the reconstructed image characteris-
tics. Many penalties have been proposed in the literature;
more often they are based on prior information available
to the user about the imaging domain and data-noise level
[34–37]. Here, the framework was more tailored toward use
of nonquadratic penalties, especially in cases where no prior
information, including the structural information, about the
tissue under investigation and data-noise level is available.
The proposed generalized framework can easily incorporate
any penalty function, including the standard quadratic
penalty, for reconstruction of optical properties. Also, the pro-
posed scheme is independent of any heuristics imposed by the
choice of the regularization parameter (λi), which is automati-
cally estimated in this work by using the GCV method.

Even though there are only three other penalties, other than
the standard quadratic penalty, discussed in this paper, the
proposed framework can be extended to include any generic
penalty function. The quantitative analysis of the results via
the figures of merit has provided some insights into the
deployment of appropriate penalties for a given problem at
hand. For example, if the imaging problem demands suppres-
sion of boundary artifacts in the reconstructed images (Fig. 5),
use of traditional quadratic (l2 norm) penalties should be
encouraged. On the other hand, if one is interested in the re-
covery of the shapes of the target, the use of a nonquadratic
penalty should be discouraged (Fig. 4). For the case of a high-
contrast target (Fig. 3), the traditional method (l2-norm
based) may not be optimal, as it encourages smooth solutions
compared with other nonquadratic penalties. Also, it is evi-
dent from other results that the nonconvex penalties (Cauchy
and Geman–McClure) may be the optimal ones for the cases
discussed here, as they promote sparse solutions. The
Geman–McClure penalty function yields a sparser result

compared to Cauchy [14]. From the figures of merit, one could
see that Geman–McClure performance is superior compared
to the others; visually, the Geman–McClure also produces
more appealing results by reducing the background artifacts
(Figs. 4 and 6).

Even though the cases considered here are limited in
nature, our aim in this work is to show that nonquadratic
penalization can improve the diffuse optical tomographic
image reconstruction by providing additional information or
feedback into the minimization scheme. Note that as the
quantitative comparison of the results requires adequate infor-
mation about the region of interest, the discussion was limited
to the numerical experiments. Future work includes extend-
ing this work to real-time phantom and patient data cases.

6. CONCLUSIONS
For diffuse optical tomographic reconstruction, a new frame-
work that can easily incorporate nonquadratic penalty
terms was developed, and through numerical cases these
penalization schemes were systematically compared with
one another. The nonquadratic penalty terms that were used
in this work include, l1, Cauchy, and Geman–McClure. The
GCV method was also deployed in this work for automatic
estimation of the regularization parameter in each of these
penalization schemes to remove any heuristics involved in
the optical property estimation process. The results indicate
that nonquadratic penalization has advantage compared to
traditional quadratic penalty in terms of improving the recon-
structed image characteristics, especially in cases where high-
contrast and complex shapes need to be reconstructed.

APPENDIX A: IMAGE RECONSTRUCTION
THROUGH GENERIC PENALTY FUNCTIONS
Diffuse optical tomographic image reconstruction is an itera-
tive procedure in which modeled data is matched with
experimental data in the least-squared sense as explained
in Subsection 2.B. So the objective function to be minimized
is posed as follows:

Ω � ky − G�μa�k2: (15)

Since the inverse problem is ill posed, it requires regulari-
zation to be added to the cost function, which becomes [34]

Ω � 1
2
ky − G�μa�k2 � λρ�μa − μa0�; (16)

where the penalty function is denoted ρ�μa − μa0�, with μa0
being the initial guess (typically assumed to be a uniform
scalar value). Taking the first-order approximation to G�μa�
results in a linear inverse problem, whose objective function
is written as

Ω � 1
2
k�δ − JΔμa�k2 � λρ�Δμa�; (17)

where Δμa � μa − μa0. To minimize the above objective func-
tion, we have to differentiate the ρ�Δμa� function. If it is
possible, then we can find the first-order derivative condition
for the function minimization as
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−JT �δ − JΔμa� � λρ0�Δμa� � 0: (18)

Rearranging the terms above, we get the condition to be
satisfied,

−JTδ� JTJΔμa � λρ0�Δμa� � 0: (19)

This can be further simplified to

�JTJ � λDΔμa �Δμa � JTδ; (20)

where DΔμa is a diagonal matrix determined by the nonqua-
dratic penalty function ρ�Δμa�,

�DΔμa �ii �
�
ρ0�Δμa�
Δμa

�
i

for i � 1; 2;…NN; (21)

where NN represents the number of FEM nodes recon-
structed. Actual functional forms of DΔμa of some of the pen-
alty functions are listed in the fourth column of Table 1. An
iterative scheme similar to the standard image reconstruction
procedure [Eq. (7)] can be formulated in a similar way and is
given in Subsection 2.B.1 [Eq. (10)]. The first row of Table 1
gives the l2-norm-based penalization, and the last column of
the first row gives the diagonal matrix DΔμa ,

�DΔμa�ii �
1

σ2Δμa
for i � 1; 2;…NN; (22)

where σ2Δμa represents the variance of Δμa, and this makes
DΔμa a scalar matrix. Now this gives the updated equation,
which is same as the traditional update [refer to Eq. (7)]
wherein the regularization parameter scales DΔμa . On careful
observation, for the l2-norm-based penalization, finding the
update using Eq. (20) requires only the knowledge of the
variance of the update, and it is part of the regularization
parameter, making DΔμa a scalar multiple of the identity
matrix.

Different functional forms of ρ�Δμa� along with the tradi-
tional l2-norm-based functions is listed in the second column
of Table 1, and, in this table, note that the standard deviation
of the Δμa is represented as σΔμa .

Similarly if one takes different nonquadratic penalty func-
tions as given in Table 1, we can get different forms of the
diagonal matrix DΔμa in the update Eq. (20). For any generic
penalty function it is not possible to find the diagonal matrix
DΔμa , as Δμa itself is the unknown; here we are using informa-
tion obtained from the previous iteration to find the diagonal
matrix, and for starting the iteration we are using a single
scalar value for all nodes, which is obtained from the GCV
method explained in the Subsection 2.B. So, the modeling
parameters for defining all the penalty functions in
this approach are progressively generated from the previous
update and are independent of any heuristics.
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